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ABSTRACT 
There is no doubt that use of computers and internet has given 
benefits in abundance but on the other hand with other harms it 
has made easier to produce plagiarized work. Truthfully 
plagiarism can be encountered in any field and should be 
condemned at every level. The focus of this paper is on source 
code plagiarism. In college and universities students copy the 
programming assignments of each other similarly the employees 
claim the code belong to their by reproducing it or committing 
some other means of plagiarism. The lot of work has been made 
in the prevention of source code plagiarism. This paper spotlights 
the work which already has been done and a new method has 
been proposed in this research. The proposed method is based on 
GST. 
Key words:  
GST- Greedy String Tiling, Plagiarism, Algorithm, Source code 
tokenization. 

1. Understanding Plagiarism 

Plagiarism can be understood as___ with intent or by 
mistake replicating (making a copy, replacing the words, 
translating, etc) work that was created by someone else 
without any recognition for the purpose to achieve 
academic promotion. Tolerating such duplication to occur 
may also comprise plagiarism.  
Plagiarism in a work consists of: language 
(communication), thoughts, results, written material, 
graphic illustration, computer related programs, drawings, 
charts, graphics, artistic work, knowledge, teachings, on 
paper work, electronic work, or any other innovative and 
fresh work produced and presented by anyone else. 

1.1 Self-Plagiarism 

Self-plagiarism takes place when a research scholar 
reclaims whole or some portion of his/her personal work 
which was formerly evaluated for educational benefit and 
claims it as portion of another work without of any 
recognition of this fact. Some university rules concentrate 
on the matter of self-plagiarism. As, the Department of 
English at the University of Bristol has an undergraduate 
handbook with a section called “Advice on study skills”. It 
is stated in their handbook (2005). 

“The Department will also regard, for assessment purposes, 
the re-use of your own essays as ‘self-plagiarism‘. While 
you may return to the same subjects or works in essays for 
different units, or within a unit, to avoid self-plagiarism 
you must not only avoid the verbatim or near-verbatim re-
use of previously submitted essays in part or whole, but 
also ensure that your return to the same subjects or works 
involves a rethinking of your ideas. Self-plagiarism is also 
a serious disciplinary matter.”  

1.2 Plagiarism methods  

In essay assignments, research scholars are compulsory to 
acknowledge the source and belonging of the work that 
was not initially presented by them, they are advised to use 
quotation marks where applicable with suitable references. 
But some plagiarism practices in essays can be: 
• Students/research scholars copy the work from 

different locations/sources without of proper 
referencing and citation.  

• Students/research scholars summarize the work from 
one or more sources without of proper referencing and 
citation.  

• Thieving other’s material and claiming it as it was 
his/her own is a serious act of plagiarism. 

• A common practice is of copying another scholar’s 
work as a whole or some portion of it then submitting 
it with their name. It is also important to note that a 
student/research scholar who grants permission to 
someone else for reproducing his/her work is also 
committing plagiarism. 

• Students/research scholars if pay someone to do work 
for them is again an act of plagiarism. 

• Students/research scholars sometimes resubmit their 
own work which falls under self-plagiarism. 

• When two or more Students/research scholars make 
assignment with their collective effort when they were 
advised not to do so.  

1.3 Plagiarism method in source code 

The assigned work related to source code also the 
Students/research scholars are always directed to mention 
the proper recognition if they use any code which is 
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originally related to someone else. They should 
acknowledge the work in the coding as well as in the 
documentation of the assignment. Cosma and Joy (2006) 
have mentioned some common source-code plagiarism 
practices which are:  
• Representation of source-code without any changing 

and proper acknowledgement. 
• Taking some portion of the source-code which was 

authorized by other party without of any proper 
acknowledgement. 

• Also converting/reproducing the whole of part of 
someone else’s source-code in other but similar 
programming language. 

• The use of code generating software without 
mentioning this. 

• Students/research scholars if pay someone to do 
coding work for them is again an act of plagiarism. 

• When two or more Students/research scholars make 
programming assignment with their collective effort 
when they were advised not to do so.  

1.4 Tackling with the source-code plagiarism 

The following is the checklist of some measures aimed for 
colleges/universities faculty members, students, research 
scholars and programming business companies to tackle 
with the source-code plagiarism: 
• One should teach and train himself/herself about the 

plagiarism. 
• Always follow the instructions and regulations of 

your institution on the plagiarism.  
• Teach and train your students and subordinates in the 

organization who are directly involved with the 
programming tasks for example developers and 
programmers. Make it sure that your students and 
subordinates in the organization understand the 
consequences of this theft and steeling and 
unauthorized collaboration in preparing the source-
code assignments. 

• Teachers must offer the programming assignments 
and evaluations methodology which should be not 
easy to plagiarize and they should encourage the use 
of source-code plagiarism prevention tools such as 
“EFFICIENT SOURCE CODE PLAGIARISM 
IDENTIFICATION BASED ON GREEDY STRING 
TILLING” 

• Convey your students and subordinates in the 
organizations that what they should consider as 
plagiarism and what is not the part of plagiarism. 

• Be aware of the cheat sites where people plagiarize 
their work or hire someone else for their work which 
is again a plagiarism. 

• You should properly document the conversation and 
communication with the students or subordinates in 
organization which would be useful in court. 

• It is most important to always take action when you 
spot plagiarism. 

2. Problem Statement 

Source code plagiarism can be experienced in institutions 
or even at commercial business points. It is considered as 
against the law if the others work is copyright or bad 
mannered practice otherwise in the society. Manually 
identification of source code plagiarism in educational 
institutions is not an easy task; the reason behind this is 
possibility of same copied source code but with different 
patterns. Some diplomatic changing are commonly in 
practice for making the code look different from the 
copied one but result in the same output. It actually 
decreased the efficiency of plagiarism detection tool. It 
could be: 
• Making variable names different 
• Placement of functions/procedures at different 

position as compared to the original work 
• toggling lines of codes 
Those grounds become the key initiative of developing 
"EFFICIENT SOURCE CODE PLAGIARISM 
IDENTIFICATION BASED ON GREEDY STRING 
TILLING". 

3. Aims & objectives of the proposed system 

3.1 Clone finding 

Clones are exact (identical), renamed (just name is 
different), gapped (some portions/patched have been used) 
[1, 2].  
• Textual resemblance 
• Token (It has proven to cover all above clones 

detection in this paper) 

3.2 False positive clone finding 

• Consecutive method declarations 
• Consecutive method invocations 
• Consecutive if-statements and if-else statements 
• Consecutive case entries 
• Consecutive variable declarations 
 

Moss, Sherlock, Copy-Paste Detector (CPD) and JPlag are 
most common tools for source code plagiarism detection 
available [3]. Below is the table comprising of the 
comparisons among them in terms of ease, outcomes and 
technique. 
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The following outcomes were discovered made from the 
comparison: 
• Greedy String tiling is the best option for source code 

plagiarism detection. The work “EFFICIENT 
SOURCE CODE PLAGIARISM IDENTIFICATION 
BASED ON GREEDY STRING TILLING” is based 
upon it. 

• There is a need for some better solution regarding 
plagiarism in terms of ease of use, reliability, fastness 
and trustworthy which are main features of the 
proposed system. 

• Results must be more generic and understandable so 
that the source code plagiarism can be prevented so 
the results in the proposed system are more statistical 
and understandable. 

4. Methodology  

Two phases have been adopted for the research: 

4.1 Phase 1: 

Parsing & Pre-tokenization stages: 
• Read source code 
• Remove strings 
• Remove comments 
• Separate statements 
• Generate tokens which include[4]: 

a. Identifiers or Symbols (variables, types, functions, 
and labels) 

b. Keywords (these are language reserve words e.g. 
for, while, if etc for C++ language) 

c. Literals (these are constants) 
d. Operators (e.g. +, -, / etc) 
e. Punctuators (these have syntactic and semantic 

significance for the compiler e.g. and, not, bitand, 
xor etc for C++ language) 

4.2 Phase 2: 

Greedy String Tiling (an algorithm) application stages: 
• Input Tokens 
• Apply Greedy String Tiling (The algorithm have been 

explained later in this paper) 
• Obtain Results 
Some other results are included which are to detect “false 
positive clone detection”. Method is to count the token if 
found consecutive e.g. for “consecutive if” the psudocode 
is: 
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GETCONSECTIVEIF( TOKENFILE ) 
{  
    LOOP INDEX = 1 TO TOKENFILE.LENGTH 
    { 

 IF( TOKENFILE[INDEX] = “if” THEN 
 ADD 1 IN  CONSECTIVE_IF 
    } 
RETURN CONSECTIVE_IF 

 

 

Figure 1: Tokenizer and GST structure 

4.3 Other Statistics 

• INCLUSION  
Fninc(T1, T2) = M(T1 T2) / Min(M(T1), M(T2)) 

• COVERAGE  
Fncov(T1, T2) = M(T1 T2) / Max(M(T1), M(T2)) 

• SIMILARITY 
Fnsim(T1, T2) = M(T1 T2) / M(T1 T2) 

 

Elaboration of terms used in above functions: 

• Fninc = Inclusion function 
Inclusion defines the measure of information of one 
file into another. If Fninc(T1, T2) = 1 then it means 
the smaller work is included into larger work. 

• Fncov = Coverage function 
It calculates the coverage of the larger work by the 
smaller work 

• Fnsim = Similarity function 
It measures the amount of similarity in both files. If 
Fnsim(T1, T2) = 1 then it depicts the both files are 
identical according to the token matrix M. 
 

Sr. # Term or 
Symbol Elaboration 

1 M(T1) 
Matrix of the number of 
tokens in first file 

2 M(T2) Matrix of the number of 

tokens in second file 
3 intersection 
4 union 

5 M(T1 T2) 
Matrix of the number of 
common tokens in both files

6 M(T1 T2) 
Matrix of the union of all 
tokens in both files (same 
token cannot be repeated) 

7 Min(M(T1), 
M(T2)) 

Minimum in M(T1) and M(T2)

8 Max(M(T1), 
M(T2)) 

Maximum in M(T1) and 
M(T2) 

5. Greedy String Tiling 

Psuducode for GST in proposed methodology is: 

SEARCH-PIECE P := FIRST-SEARCH-PIECE  
TERMINATE := FALSE 
DO AGAIN //loop 

PMAX := SCANPATTERN(P)  
IF PMAX > 2 × P THEN P := PMAX  
ELSE 

MARKPIECES(P) /* CREATE TILES 
*/ 

IF P > 2 × MIN_MATCH_PIECE 
THEN P := P DIV 2 

ELSE IF P > MIN_MATCH_PIECE 
THEN P := MIN_MATCH_PIECE 
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ELSE TERMINATE := TRUE 
UNTIL TERMINATE 
Here; PMAX = maximum match piece (The match is as 
long as it could be until the end of pattern came across or 
it’s already marked) 
MARKPIECES(P) ___ Its tiling process when tile is 
marked from PMAX (maximum match), it becomes 
unavailable for future comparisons. 
It’s important to note that the proposed system is fully 
effective against the source code plagiarism when 
someone tries the following techniques: 
• Making variable names different as compared to the 

original work 
• Placement of functions/procedures at different 

position as compared to the original work 
• shuffling the lines of codes (LOC) 

6. Experimental Results 

Sr. # No. of tokens Time in ms 
1 52 0.071428571 
2 2735 0.024163569 
3 1394 0.04779607 
4 723 0.059612321 
5 1729 0.041887945 
6 1326 0.048977695 
7 890 0.056658258 
8 1108 0.052817977 
9 1922 0.038490773 

Nine different source code files of C++ language were 
experimented for the plagiarism detection (On a Intel 
Core 2 Duo 2GHz with 2 GB RAM). First the code was 
tokenized as discussed earlier (figure 1) and then GST 
was applied. It showed results in terms of similarity in 
amazingly less time when applied to the scenario 
presented in figure 1. The data was recorded and entered 
in columns and rows of Microsoft Excel for the chart to 
view the trend of the tokens of a source code file over 
time.  
The experimental values of tokens are evaluated by 
category using vertical bars with the time in milliseconds. 
The histogram shows the variety in number of tokens 
(generated from the source code files) which have been 
taken into account for comparison purpose to detect 
plagiarism by its vertical rectangles.   
 

 

Figure 2: Tokens and their time trend 

 
 

 

Figure 3: Experimental histogram 

 
Sr. # Findings Results 

1 Inclusion, coverage and 
similarity 

Between 0 and 1

2 

Consecutive: 
• method declarations 
• method invocations 
• if-statements and if-else 

statements 
• case entries 
• variable declarations 

The count of 
consecutive 
occurrence(s). 

3 Similarity index (from GST) Percentage 

7. Conclusion 

The conclusion is summarized in the following points: 
1. The proposed technique is effective if someone 

makes variable names / function names different etc, 
tries to defeat by placing function names below or 
higher as compared to the original code or toggle the 
LOCs.  
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2. The proposed technique possesses all features which 
other tools have and some additional features like 
showing the false positive clone, inclusion, 
similarity and coverage. 

3. Tokens and their time trend shows it promising fast. 
4. Summarizing the all features we can claim that it is a 

fine contribution towards source code plagiarism 
prevention. 
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