
IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 
 

 
 

204

Manuscript received December 5, 2010 
Manuscript revised December 20, 2010 

Efficient Source Code Plagiarism Identification Based on Greedy 
String Tilling 

Khurram Zeeshan Haider, Tabassam Nawaz, Sami ud Din, Ali Javed 
  

47080, University of Engineering and Technology, Taxila, Pakistan 
 

ABSTRACT 
There is no doubt that use of computers and internet has given 
benefits in abundance but on the other hand with other harms it 
has made easier to produce plagiarized work. Truthfully 
plagiarism can be encountered in any field and should be 
condemned at every level. The focus of this paper is on source 
code plagiarism. In college and universities students copy the 
programming assignments of each other similarly the employees 
claim the code belong to their by reproducing it or committing 
some other means of plagiarism. The lot of work has been made 
in the prevention of source code plagiarism. This paper spotlights 
the work which already has been done and a new method has 
been proposed in this research. The proposed method is based on 
GST. 
Key words:  
GST- Greedy String Tiling, Plagiarism, Algorithm, Source code 
tokenization. 

1. Understanding Plagiarism 

Plagiarism can be understood as___ with intent or by 
mistake replicating (making a copy, replacing the words, 
translating, etc) work that was created by someone else 
without any recognition for the purpose to achieve 
academic promotion. Tolerating such duplication to occur 
may also comprise plagiarism.  
Plagiarism in a work consists of: language 
(communication), thoughts, results, written material, 
graphic illustration, computer related programs, drawings, 
charts, graphics, artistic work, knowledge, teachings, on 
paper work, electronic work, or any other innovative and 
fresh work produced and presented by anyone else. 

1.1 Self-Plagiarism 

Self-plagiarism takes place when a research scholar 
reclaims whole or some portion of his/her personal work 
which was formerly evaluated for educational benefit and 
claims it as portion of another work without of any 
recognition of this fact. Some university rules concentrate 
on the matter of self-plagiarism. As, the Department of 
English at the University of Bristol has an undergraduate 
handbook with a section called “Advice on study skills”. It 
is stated in their handbook (2005). 

“The Department will also regard, for assessment purposes, 
the re-use of your own essays as ‘self-plagiarism‘. While 
you may return to the same subjects or works in essays for 
different units, or within a unit, to avoid self-plagiarism 
you must not only avoid the verbatim or near-verbatim re-
use of previously submitted essays in part or whole, but 
also ensure that your return to the same subjects or works 
involves a rethinking of your ideas. Self-plagiarism is also 
a serious disciplinary matter.”  

1.2 Plagiarism methods  

In essay assignments, research scholars are compulsory to 
acknowledge the source and belonging of the work that 
was not initially presented by them, they are advised to use 
quotation marks where applicable with suitable references. 
But some plagiarism practices in essays can be: 
• Students/research scholars copy the work from 

different locations/sources without of proper 
referencing and citation.  

• Students/research scholars summarize the work from 
one or more sources without of proper referencing and 
citation.  

• Thieving other’s material and claiming it as it was 
his/her own is a serious act of plagiarism. 

• A common practice is of copying another scholar’s 
work as a whole or some portion of it then submitting 
it with their name. It is also important to note that a 
student/research scholar who grants permission to 
someone else for reproducing his/her work is also 
committing plagiarism. 

• Students/research scholars if pay someone to do work 
for them is again an act of plagiarism. 

• Students/research scholars sometimes resubmit their 
own work which falls under self-plagiarism. 

• When two or more Students/research scholars make 
assignment with their collective effort when they were 
advised not to do so.  

1.3 Plagiarism method in source code 

The assigned work related to source code also the 
Students/research scholars are always directed to mention 
the proper recognition if they use any code which is 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 

 

205

originally related to someone else. They should 
acknowledge the work in the coding as well as in the 
documentation of the assignment. Cosma and Joy (2006) 
have mentioned some common source-code plagiarism 
practices which are:  
• Representation of source-code without any changing 

and proper acknowledgement. 
• Taking some portion of the source-code which was 

authorized by other party without of any proper 
acknowledgement. 

• Also converting/reproducing the whole of part of 
someone else’s source-code in other but similar 
programming language. 

• The use of code generating software without 
mentioning this. 

• Students/research scholars if pay someone to do 
coding work for them is again an act of plagiarism. 

• When two or more Students/research scholars make 
programming assignment with their collective effort 
when they were advised not to do so.  

1.4 Tackling with the source-code plagiarism 

The following is the checklist of some measures aimed for 
colleges/universities faculty members, students, research 
scholars and programming business companies to tackle 
with the source-code plagiarism: 
• One should teach and train himself/herself about the 

plagiarism. 
• Always follow the instructions and regulations of 

your institution on the plagiarism.  
• Teach and train your students and subordinates in the 

organization who are directly involved with the 
programming tasks for example developers and 
programmers. Make it sure that your students and 
subordinates in the organization understand the 
consequences of this theft and steeling and 
unauthorized collaboration in preparing the source-
code assignments. 

• Teachers must offer the programming assignments 
and evaluations methodology which should be not 
easy to plagiarize and they should encourage the use 
of source-code plagiarism prevention tools such as 
“EFFICIENT SOURCE CODE PLAGIARISM 
IDENTIFICATION BASED ON GREEDY STRING 
TILLING” 

• Convey your students and subordinates in the 
organizations that what they should consider as 
plagiarism and what is not the part of plagiarism. 

• Be aware of the cheat sites where people plagiarize 
their work or hire someone else for their work which 
is again a plagiarism. 

• You should properly document the conversation and 
communication with the students or subordinates in 
organization which would be useful in court. 

• It is most important to always take action when you 
spot plagiarism. 

2. Problem Statement 

Source code plagiarism can be experienced in institutions 
or even at commercial business points. It is considered as 
against the law if the others work is copyright or bad 
mannered practice otherwise in the society. Manually 
identification of source code plagiarism in educational 
institutions is not an easy task; the reason behind this is 
possibility of same copied source code but with different 
patterns. Some diplomatic changing are commonly in 
practice for making the code look different from the 
copied one but result in the same output. It actually 
decreased the efficiency of plagiarism detection tool. It 
could be: 
• Making variable names different 
• Placement of functions/procedures at different 

position as compared to the original work 
• toggling lines of codes 
Those grounds become the key initiative of developing 
"EFFICIENT SOURCE CODE PLAGIARISM 
IDENTIFICATION BASED ON GREEDY STRING 
TILLING". 

3. Aims & objectives of the proposed system 

3.1 Clone finding 

Clones are exact (identical), renamed (just name is 
different), gapped (some portions/patched have been used) 
[1, 2].  
• Textual resemblance 
• Token (It has proven to cover all above clones 

detection in this paper) 

3.2 False positive clone finding 

• Consecutive method declarations 
• Consecutive method invocations 
• Consecutive if-statements and if-else statements 
• Consecutive case entries 
• Consecutive variable declarations 
 

Moss, Sherlock, Copy-Paste Detector (CPD) and JPlag are 
most common tools for source code plagiarism detection 
available [3]. Below is the table comprising of the 
comparisons among them in terms of ease, outcomes and 
technique. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 

 

206

   MOS
S  

SHERL
OCK  

CODEM
ATCH  

COPY/
PASTE 
DETEC
TOR 
(CPD)  

JPLA
G  

Star
t 
Yea
r  

1994  1994  2005  2003  1997  

Cos
t  

Free 
but a 
user 
acco
unt 
is 
need
ed  

open 
sourced  

It is a 
Commer
cial tool. 
Free on 
less than 
1 M-byte 
size 

open 
source 

Free 
but a 
user 
accou
nt is 
neede
d 

Ope
n 
Sou
rce  

NO  YES  NO  NO  NO  

Saf
ety  

Sign 
in 
requi
red 

Execut
es at 
local 
machin
e  

Executes 
at local 
machine  

Execut
es at 
local 
machin
e  

Sign 
in 
requir
ed 

Spe
ed 

Fast more 
files 
require
s more 
time  

more 
files 
requires 
more 
time  

Fast Fast 

Ser
vice  

Inter
net  

Stand-
alone  

Stand-
alone  

Stand-
alone  

Web 
servic
e  

Inte
rfac
e  

Grap
hic 
user  
inter
face  

Graphi
c user  
interfac
e 

Graphic 
user  
interface 

Graphi
c user  
interfac
e 

Graph
ic user  
interfa
ce 

Nec
essi
ties  

A 
scrip
t for 
UNI
X or 
Win
dows  

JDK 
1.4 or 
higher 

  --- JDK 
1.4 or 
higher 

Web 
brows
er, 
JRE, 
Java 
1.5 or 
higher 

outc
ome 
stor
age 

Stora
ge is 
at 
Rem
ote 
serve
r 

Storage 
is at 
local 
machin
e  

Storage 
is at 
local 
machine  

Storage 
is at 
local 
machin
e  

Storag
e is at 
local 
machi
ne  

Alg
orit

Win
nowi

Token 
matchi

String 
matching  

Greedy 
String 

Greed
y 

hms ng  ng Tiling  String 
Tiling

 
The following outcomes were discovered made from the 
comparison: 
• Greedy String tiling is the best option for source code 

plagiarism detection. The work “EFFICIENT 
SOURCE CODE PLAGIARISM IDENTIFICATION 
BASED ON GREEDY STRING TILLING” is based 
upon it. 

• There is a need for some better solution regarding 
plagiarism in terms of ease of use, reliability, fastness 
and trustworthy which are main features of the 
proposed system. 

• Results must be more generic and understandable so 
that the source code plagiarism can be prevented so 
the results in the proposed system are more statistical 
and understandable. 

4. Methodology  

Two phases have been adopted for the research: 

4.1 Phase 1: 

Parsing & Pre-tokenization stages: 
• Read source code 
• Remove strings 
• Remove comments 
• Separate statements 
• Generate tokens which include[4]: 

a. Identifiers or Symbols (variables, types, functions, 
and labels) 

b. Keywords (these are language reserve words e.g. 
for, while, if etc for C++ language) 

c. Literals (these are constants) 
d. Operators (e.g. +, -, / etc) 
e. Punctuators (these have syntactic and semantic 

significance for the compiler e.g. and, not, bitand, 
xor etc for C++ language) 

4.2 Phase 2: 

Greedy String Tiling (an algorithm) application stages: 
• Input Tokens 
• Apply Greedy String Tiling (The algorithm have been 

explained later in this paper) 
• Obtain Results 
Some other results are included which are to detect “false 
positive clone detection”. Method is to count the token if 
found consecutive e.g. for “consecutive if” the psudocode 
is: 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 

 

207

GETCONSECTIVEIF( TOKENFILE ) 
{  
    LOOP INDEX = 1 TO TOKENFILE.LENGTH 
    { 

 IF( TOKENFILE[INDEX] = “if” THEN 
 ADD 1 IN  CONSECTIVE_IF 
    } 
RETURN CONSECTIVE_IF 

 

 

Figure 1: Tokenizer and GST structure 

4.3 Other Statistics 

• INCLUSION  
Fninc(T1, T2) = M(T1 T2) / Min(M(T1), M(T2)) 

• COVERAGE  
Fncov(T1, T2) = M(T1 T2) / Max(M(T1), M(T2)) 

• SIMILARITY 
Fnsim(T1, T2) = M(T1 T2) / M(T1 T2) 

 

Elaboration of terms used in above functions: 

• Fninc = Inclusion function 
Inclusion defines the measure of information of one 
file into another. If Fninc(T1, T2) = 1 then it means 
the smaller work is included into larger work. 

• Fncov = Coverage function 
It calculates the coverage of the larger work by the 
smaller work 

• Fnsim = Similarity function 
It measures the amount of similarity in both files. If 
Fnsim(T1, T2) = 1 then it depicts the both files are 
identical according to the token matrix M. 
 

Sr. # Term or 
Symbol Elaboration 

1 M(T1) 
Matrix of the number of 
tokens in first file 

2 M(T2) Matrix of the number of 

tokens in second file 
3 intersection 
4 union 

5 M(T1 T2) 
Matrix of the number of 
common tokens in both files

6 M(T1 T2) 
Matrix of the union of all 
tokens in both files (same 
token cannot be repeated) 

7 Min(M(T1), 
M(T2)) 

Minimum in M(T1) and M(T2)

8 Max(M(T1), 
M(T2)) 

Maximum in M(T1) and 
M(T2) 

5. Greedy String Tiling 

Psuducode for GST in proposed methodology is: 

SEARCH-PIECE P := FIRST-SEARCH-PIECE  
TERMINATE := FALSE 
DO AGAIN //loop 

PMAX := SCANPATTERN(P)  
IF PMAX > 2 × P THEN P := PMAX  
ELSE 

MARKPIECES(P) /* CREATE TILES 
*/ 

IF P > 2 × MIN_MATCH_PIECE 
THEN P := P DIV 2 

ELSE IF P > MIN_MATCH_PIECE 
THEN P := MIN_MATCH_PIECE 

Read 
Source 
code 

Remove 
all 

Strings 

Remove 
all 

Comments

Separate 
all 

Statements Literals  

Operators  

Punctuators 

Keywords 

Identifiers  
Tokens

Tokens Greedy String Tiling Results

Phase 1 

Phase 2 Algorithm

Pre-tokenization 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 

 

208

ELSE TERMINATE := TRUE 
UNTIL TERMINATE 
Here; PMAX = maximum match piece (The match is as 
long as it could be until the end of pattern came across or 
it’s already marked) 
MARKPIECES(P) ___ Its tiling process when tile is 
marked from PMAX (maximum match), it becomes 
unavailable for future comparisons. 
It’s important to note that the proposed system is fully 
effective against the source code plagiarism when 
someone tries the following techniques: 
• Making variable names different as compared to the 

original work 
• Placement of functions/procedures at different 

position as compared to the original work 
• shuffling the lines of codes (LOC) 

6. Experimental Results 

Sr. # No. of tokens Time in ms 
1 52 0.071428571 
2 2735 0.024163569 
3 1394 0.04779607 
4 723 0.059612321 
5 1729 0.041887945 
6 1326 0.048977695 
7 890 0.056658258 
8 1108 0.052817977 
9 1922 0.038490773 

Nine different source code files of C++ language were 
experimented for the plagiarism detection (On a Intel 
Core 2 Duo 2GHz with 2 GB RAM). First the code was 
tokenized as discussed earlier (figure 1) and then GST 
was applied. It showed results in terms of similarity in 
amazingly less time when applied to the scenario 
presented in figure 1. The data was recorded and entered 
in columns and rows of Microsoft Excel for the chart to 
view the trend of the tokens of a source code file over 
time.  
The experimental values of tokens are evaluated by 
category using vertical bars with the time in milliseconds. 
The histogram shows the variety in number of tokens 
(generated from the source code files) which have been 
taken into account for comparison purpose to detect 
plagiarism by its vertical rectangles.   
 

 

Figure 2: Tokens and their time trend 

 
 

 

Figure 3: Experimental histogram 

 
Sr. # Findings Results 

1 Inclusion, coverage and 
similarity 

Between 0 and 1

2 

Consecutive: 
• method declarations 
• method invocations 
• if-statements and if-else 

statements 
• case entries 
• variable declarations 

The count of 
consecutive 
occurrence(s). 

3 Similarity index (from GST) Percentage 

7. Conclusion 

The conclusion is summarized in the following points: 
1. The proposed technique is effective if someone 

makes variable names / function names different etc, 
tries to defeat by placing function names below or 
higher as compared to the original code or toggle the 
LOCs.  



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 

 

209

2. The proposed technique possesses all features which 
other tools have and some additional features like 
showing the false positive clone, inclusion, 
similarity and coverage. 

3. Tokens and their time trend shows it promising fast. 
4. Summarizing the all features we can claim that it is a 

fine contribution towards source code plagiarism 
prevention. 

5.  
References 
[1] Heejung Kim, Yungbum Jung, Sunghun Kim and 

Kwangkeun Yi, Clone Detection by Comparing Abstract 
Memory States, ROSAEC Research On Software Analysis 
For Error Free Computing, ROSAEC MEMO 2010-008 
March 5, 2010 

[2] E. Kodhai, S. Kanmani, A. Kamatchi, R. Radhika and 
B. Vijaya Saranya, CLONEMANAGER: A TOOL FOR 
DETECTION OF TYPE1 AND TYPE2 CODE CLONES, 
Information Processing and Management International 
Conference on Recent Trends in Business Administration 
and Information Processing, BAIP 2010, Trivandrum, 
Kerala, India, March 26-27, 2010. Proceedings 

[3] Vaughn M. Segers, James, An Online System for 
Plagiarism Detection, University of the Western Cape, 
Private Bag X17 Bellville, 7535, South Africa 2008 

[4] Oege de Moor, Michael Schwartzbach, Compiler 
Construction: 18th International Conference, 2009 

[5] Jeong-Hoon Ji, Su-Hyun Park, Gyun Woo*, and Hwan-
Gue Cho, Generating Pylogenetic Tree of Homogeneous 
Source Code in a Plagiarism Detection System, 
International Journal of Control, Automation, and Systems, 
vol. 6, no. 6, pp. 809-817, December 2008 

[6] Michel Chilowicz, Étienne Duris, and Gilles Roussel, 
Finding Similarities in Source Code Through Factorization, 
Electronic Notes in Theoretical Computer Science, 
Volume 238, Issue 5, 10 October 2009, Pages 47-62  

[7] Aleksi Ahtiainen, Sami Surakka1, Mikko Rahikainen, 
2007, Plaggie: GNU-licensed Source Code Plagiarism 
Detection Engine for Java Exercises, Proceedings, Koli 
Calling 

[8] Department of English, University of Bristol (2005). 
Undergraduate Handbook 2005-06. Retrieved February 
20, 2006.  

[9] Sanjay Goel, Deepak Rao et. al,  Plagiarism and its 
Detection in Programming Languages 

[10] Maxim Mozgovoy, Sergey Karakovskiy, and Vitaly 
Klyuev, October 10 – 13, 2007,  Fast and Reliable 
Plagiarism Detection System, Milwaukee, WI 37th 
ASEE/IEEE Frontiers in Education Conference 

[11] Bob Zeidman, Tools and algorithms for finding plagiarism 
in source code, Dr. Dobb's Journal July, 2004 

[12] Samuel Mann and Zelda Frew, Similarity and originality 
in code: plagiarism and normal variation in student 
assignments, Department of Information Technology, 
Otago Polytechnic, Dunedin, New Zealand 

[13] Christian Arwin, S.M.M. Tahaghoghi, Plagiarism 
Detection across Programming Languages, School of 
Computer Science and Information Technology RMIT 
University, GPO Box 2476V, Melbourne 3001, Australia. 

[14] Sebastian Niezgoda and Thomas P. Way, SNITCH: A 
Software Tool for Detecting Cut and Paste Plagiarism, 
Applied Computing Technology Laboratory Department 
of Computing Sciences, Villanova University, Villanova, 
PA 19085 

[15] Fintan Culwin, Anna MacLeod, Thomas Lancaster, 
SOURCE CODE PLAGIARISM IN UK HE 
COMPUTING SCHOOLS, School of Computing, South 
Bank University, Borough Road 

[16] Saul Schleimer, Daniel S. Wilkerson, Alex Aiken, 
Winnowing: Local Algorithms for Document 
Fingerprinting, University of Illinois, Chicago; Computer 
Science Division, UC Berkeley 

[17] Peter Vamplew and Julian Dermoudy, An Anti-Plagiarism 
Editor for Software Development Courses, School of 
Computing, University of Tasmania, Private Bag 100, 
Hobart 7001, Tasmania 

[18] J.-H. Ji, G. Woo, S.-H. Park, and H.-G. Cho, “An 
intelligent system for detecting source code plagiarism 
using a probabilistic graph model,” Proc. of the 5th 
International Conference on Machine Learning and Data 
Mining in Pattern Recognition, MLDM Posters 2007, pp. 
55-69, July. 2007.  

[19] J.-H. Ji, S.-H. Park, G. Woo, and H.-G. Cho, “Evolution 
analysis of homogenous source code and its application to 
plagiarism detection,” Proceedings of the FBIT2007, pp. 
813-818, October 2007. 

[20] Paul Clough July 2000,  Plagiarism in natural and 
programming languages: an overview of current tools and 
technologies, Department of Computer Science, 
University of Sheffield 

 
Khurram Zeeshan Haider 
completed his Masters in Computer 
Science from Punjab University 
College of Information Technology, 
Lahore, Pakistan. He is student of MS 
(Software Engineering) at UET 
Taxila. His areas of interest are 
Programming Languages, Compiler 
Optimizations, Greedy Algorithms, 
Networking, Database Management 
Systems (DBMS), Software 
Development and Software Quality 

Assurance. 
 
 

Tabassam Nawaz completed his MS 
Computer Engineering in 2005 from 
CASE (Center for Advance Studies in 
Engineering), Islamabad, Pakistan 
and subsequently he completed his 
Ph.D in 2008. He has published 
number of papers in different Journals. 
His research areas include Software 
Engineering, Programming 
Languages, Data Structure, Computer 
Graphics, Networks and Digital 
Image Processing. He is the Chairman 

of Software Engineering Department at University of 
Engineering & Technology Taxila, Pakistan. 



IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.12, December 2010 

 

210

Sami ud Din completed his M.Sc in 
Electrical Engineering, specialized 
in Computer Engineering in 2005 
from University of Engineering and 
Technology Taxila, Pakistan and 
subsequently he completed his Ph.D 
degree in 2009. He has published 
number of papers in different 
Journals. The field of his interest 
includes design and development of 

real time imaging and video systems, image security and 
steganography. He currently holds a position of a senior 
researcher in an R & D Organization. He has also been teaching 
at UET Taxila as a visiting faculty member. 
 

Ali Javed received his MS degree in 
Computer Engineering from the 
University of Engineering & 
Technology Taxila, Pakistan in 
February, 2010. He has received 
B.Sc. degree in Software 
Engineering from University of 
Engineering & Technology Taxila, 
Pakistan, in September, 2007. His 
areas of interest are Digital Image 
Processing, Computer vision, Video 

Summarization, Machine Learning, Software Design and 
Software testing. He is serving as a Lecturer in Software 
Engineering Department at University of Engineering & 
Technology Taxila, Pakistan since September, 2007. 
  


