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Summary 
Survival Model is widely used in medical field and biostatistics. 

This model can be used to identify the risk factors of an event 

and can handle the situation when risk factors change with time. 

Timing of an event frequently depends on the location (spatial) 

called as spatial survival model. In the development, survival 

modeling also included random effects models (frailty) to 

overcome the heterogeneity / sources of unexplained variance in 

the model. Bayesian approach couple with Markov Chain Monte 

Carlo (MCMC) was developed in this paper to estimate the 

spatial parameters of survival models with Conditional 

Autoregressive (CAR) frailty. The purpose of this study is to 

assess and implement the MCMC algorithm for modeling 

survival by using software WinBUGS CAR frailty that can be 

used to overcome the heterogeneity / sources of unexplained 

variance in the model because of the influence of the location. 
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1. Introduction 
 

Recently it has been developed a statistical method that 

allows for parameter estimation for models with an 

unknown concentration of certain opportunities forms of 

normalized constants and therefore it work based on full-

conditional form iteratively. The method is known as 

Markov Chain Monte Carlo (MCMC). This method runs 

based on simulation techniques, which work on the scope 

of Bayesian statistical inference. In the development, this 

method can also be used to infer the spatial survival model 

parameters. Bayesian approach is employed for fitting 

hierarchical frailty model using MCMC computing 

method with Gibbs sampler algorithm [1]. MCMC is also 

very useful in determining the marginal posterior 

parameter that sometimes requires a very complicated 

integration process and quite difficult to be solved 

analytically. Survival Model is a model that is widely used 

in medical field and biostatistics [2], which can be used to 

identify the risk factors of an event and can handle the 

situation when risk factors change with time [3]. 

Often the timing of an event depends on the location 

(spatial). There are two approaches to capture the spatial 

factors, namely geostatistic approach using geographic 

location (latitude and longitude) and lattice approach 

which uses position of a region relative to another. 

Banerjee et. al. (2003) developed a hierarchal spatial 

survival models involving Conditional Autoregressive 

(CAR) distributed random effects (frailty) [4]. Inclusion of 

random effects or frailty term in the model can be used to 

address specific cases (for instance the case with spatial 

data) where there is diversity / variance sources that can’t 

be explained by a vector covariate in the model. As a 

result, there was a bias in the estimation of survival 

parameters [5]. Often frailty also found that it behaves a 

neo-normal distribution or a mixture ([6]-[9]). 

This research was conducted to assess and implement the 

Bayesian approaches couple with MCMC algorithm for 

modeling spatial survival with CAR frailty of dengue fever 

in the Pamekasan City Hospital, East Java, Indonesia. 

These coupling of methods are supposed to be able to 

overcome the heterogeneity/sources of unexplained 

variance in the model because of the influence of spatial. 

The algorithm will be implemented in WinBUGS. 

 

2. Markov Chain Monte Carlo (MCMC) 

 
MCMC is done by generating data parameter θ using 

Gibb's sampler. Parameter θ is expressed as a random 

vector with certain distribution, and the functions of 

estimator value, �(Θ�), is involved in joint distribution of  

�(Θ) [10]. The algorithms of Markov Chain Monte Carlo 

to obtain the posterior can be shown as follows:  

i. Choose an initial value θ
(0)
.  

ii. Generate samples θ
(1)
, θ

(2)
, …, θ

(T)
 from the full 

conditional posterior distribution of p(θ|x). 

iii. Monitore convergence algorithm, if not convergent it 

is necessary to generate more observations.  

iv. Remove the first B observations (sample burn-in)  

v. Note {θ
(B+1)

, θ
(B+2)

, …, θ
(T)
} as a sample for posterior 

analysis.  
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vi. Plot the posterior distribution  

vii. Get a conclusion from the posterior distribution (mean, 

median, etc.).  

 

The above algorithm will provide a random sample θ
(1)
, θ

(2)
, 

…, θ
(t)
, …, θ

(T’)
 which go along with marginal distribution of 

G(θ) and, therefore, some of the characteristics of parameter 

θ can be obtained as:  

1. Summary of posterior G (θ) from the sample by using a 

simple sample estimate. For example, the mean of the 

posterior can be obtained by the formula:  
 

                   
∑=
'

1

)( )(
'

1
)|)((ˆ

T
tG

T
xGE θθ

  (1)  
 

    Another measurement scale is the median and quantile 

(2.5% and 97.5%) gave 95% confidence interval.  

2. Summary of MC error, which is a measurement scale 

that measures the variability of any estimate of the 

simulation. MC error had small value to calculate the 

desired parameters with increased precision. 

3. Correlation of among parameters.  

4. Plot of the marginal posterior distribution.  

 

3. Spatial Survival Model 
 
Data as the time until the occurrence of an event (time-to-

event data) according to [4] are often grouped into strata / 

groups such as geographical area or areas. In these 

circumstances, hierarchical model approach using stratum-

specific frailties is often suitable. 

 

For example, if the time until recovery occurs or until an 

individual j ( inj ,,2,1 ⋅⋅⋅= ) in the strata / groups i 

( I,,,i ⋅⋅⋅= 21 ) experienced an event while the event is 

expressed as ijt , a vector of covariate that affect the 

incidence is expressed by ijx , and by assuming that the 

proportional hazard ( )ijijth x;  follows the Weibull 

parametric model: 

( ) ( )1; exp ,ij ij ij ijh t t ρρ −= Tx β x
  

 (2) 

 

then if the model capture the frailty, the proportional 

hazard ( )ijijth x;  can be expanded into: 

( ) ( )1; exp ,ij ij ij ij ih t tρρ −= +Tx β x W   (3) 

 

where ρ is the shape parameter of the baseline hazard and 

β contain the intercept for the baseline hazard. Parameter

ρ represents monotonicity of hazard rate in the Weibull 

model. When 1>ρ the hazard rate will be increasing 

monotone, and inversely 1<ρ  will be decreasing 

monotone, while 0=ρ stating constant hazard rate (Box 

and Jones, 2004 in Darmofal (2008) [5]). iW  represents 

an i
th
 partition areas of region D indexed in a discrete 

pattern. Partitions are referred to as the 'lattice'. This model 

uses the method combining information about the areas 

adjacent to each other / its neighbors compared to metric 

distance information [4]. As a result, the distribution of 

random effect W is defined as, 
 

( ),~| λλ CARW     (4) 

 

and are called as conditionally autoregressive model which 

indicates the existence of spatial dependence on the 

composition of covariance [11], where λ is the CAR 

parameter distribution stating precision or variance inverse 

of its random effect distribution  (θ ). 
 

4. Spatial Survival Simulation on WinBUGS 
 

Data used in this research is length of stay data of patients 

hospitalized with dengue fever until they recovered or 

allowed to go home in the Pamekasan City Hospital. This 

length of stay data is expressed as a failure event. Spatial 

factors are elaborated by the neighborhood between the 

locations of one another (adjacent matrix). Pamekasan 

district map with 13 sub-district areas is presented in 

Figure 1. 

 

 
Fig. 1. Map of Pamekasan District 

 

Response variables used in this study is length of stay (t) 

and the predictor variables are: sex (X1) (categorized as 1 

is Female and 2 is Male), age (X2), hematocrit level (X3), 

and total of trombosite (X4) (categorized as 1 if 

X4<50,000/µl; as 2 if 50000/µl<X4<100000/µl; as 3 if 

100000<X4< 150001/µl; and as 4 if X4>150,000 /µl). 

Some step to work with MCMC algorithm on spatial 

survival model is presented in Figure 2. 
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5. Simulation Result and Discussion  
 

The first step for doing the MCMC simulation in spatial 

survival model is defining a matrix of spatial weights. This 

matrix is used as parameters of the CAR prior distribution 

in the formation of spatial survival model. Queen 

Contiguity criteria can be used for determining the spatial 

weight matrix by employing the neighborhood of their 

respective areas of the so-called contiguity / adjacent. 

Contiguity/adjacent matrix for Pamekasan district is 

shown in Figure 3. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. MCMC Algorithm on Spatial Survival Model 
 

 

 

 

Fig. 3. Adjacent Matrix of Pamekasan Districts 

 

Secondly, modeling assumptions that must be met in the 

proportional hazard modeling is that the hazard function of 

the categorical predictor variables have to be proportional 

at all times.  Proportional testing can be done by using plot 

–ln[-ln S(t)] descriptively. Figure 4 shows lines between 

categories (male and female) are parallel, and the 

proportional hazard assumption, therefore, can be fulfilled. 

It’s meant that the predictor variables were independent of 

time and the relationship between the cumulative hazard is 

proportional / constant every time. 

  

Fig. 4. Proportional Hazard Assumption for  

 

The next step is determining the distribution of the length 

of stay as its survival time (t). From the goodness of fit test, 

all of 13 districts in Pamekasan, statistically can be 

modeled as Weibull distributions, even with different 

significant level which are all greater than 5%. This study, 

therefore, will employ the Weibull proportional hazard to 

estimate the spatial survival models with CAR frailty. 

 

Summary of MCMC simulation results on parameter 

estimation spatial survival model with frailty CAR are 

shown in Table 1. Simulation was done 51,000 iterations 

which has burn-in on iteration 1,000. Time execution for 

this process is 440 seconds or 7.3 minutes.  

 

Based on Table 1, there is one area within 13 areas in that 

region with no parameter significant. This area is 

Pamekasan sub-district. This is because the prior 

Start 

Map Survival time data 

Spatial Weight Distribution Identification 

CAR frailty 

Model parameter estimation using  MCMC Bayes ρ , β , λ  

Prior distribution Likelihood Function 
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distribution parameters chosen for this sub-district is uni-

modal, whereas from the plot of the data showed a 

tendency to be multi-modal or mixture distribution. This 

issue will become a significant research in the future. 

 

Posterior distribution and iteration history plots of the 

MCMC output of the significant parameters are presented 

in Figure 5 to Figure 16. 

 

Table 1. MCMC Simulation Results on Spatial Survival 

Models with CAR Frailty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note :            : significance on  95% confidence interval 

 *     : Pamekasan beside as the district name, its is 

also as a sub-district name. 

 

  
(a) (b) 

 

Fig. 5. (a) Posterior distribution and (b) history iteration 

plots of the hematocrit levels parameters in the Tlanakan 

sub-district 

 

 
 

(a) (b) 

Fig. 6. (a) Posterior distribution and (b) history iteration 

plots of the hematocrit levels parameters in the Pademawu 

sub-district 
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(b) 

(c) 
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(d) 

Fig. 7. (a) Posterior distribution and (b) history iteration 

plots of the age parameters, (c) Posterior distribution and 

(d) history iteration plots of the trombosite parameters 

(total from 50,000 to 100,000/µL), in the Galis sub-district. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 8 (a) Posterior distribution and (b) history iteration 

plots of the parameters of age, (c) Posterior distribution 

and (d) history iteration plots of the trombosite parameters 

(total from 50,000 to 100,000/µL), in the Larangan sub-

district. 
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(b) 

Fig. 9 (a) Posterior distribution and (b) history iteration 

plots of the gender parameters in the Propo sub-district. 

 

 

(a) 

 

(b) 

Sub-

district 

Mean Parameter model survival spatial 

dengan frailty CAR 

b1 b2 b3 b4_1 b4_2 b4_3 

Tlanakan  -0.540 -0.094 -0.082 -0.728 -0.452 -0.097 

Pademawu -0.429 -0.004 -0.105 -0.103 1.028 -0.326 

Galis -0.583 -0.574 0.038 -0.043 3.549 -0.014 

Larangan -0.818 -0.168 -0.132 -0.124 -2.819 -0.600 

Pamekasan* -0.603 -0.020 -0.040 -0.674 -0.689 0.023 

Propo -1.052 0.039 -0.078 -0.188 -0.712 -0.013 

Palengaan -1.251 -0.187 -0.096 -0.100 -0.537 -0.012 

Pegantenan -0.968 -0.212 -0.143 0.008 -1.831 -0.016 

Kadur -0.712 -0.739 -1.843 -0.009 79.790 -0.014 

Pakong -0.832 -0.958 0.039 -0.012 7.270 -0.003 

Waru -1.051 -0.130 -0.060 0.004 -0.002 -0.172 

Batu 

Marmar -0.890 -0.434 -0.187 0.091 3.350 0.153 

Pasean -1.053 -0.286 -0.081 0.117 -1.276 -0.022 
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 (c) 

 

(d) 

Fig. 10. (a) Posterior distribution and (b) history iteration 

plots of the gender parameters, (c) Posterior distribution 

and (d) history iteration of the age parameters, in the 

Palengaan sub-district. 

 

(a) 

 

(b) 

Fig. 11 (a) Posterior distribution and (b) history iteration 

plots of the hematocrit level parameters in the Pegantenan 

sub-district. 

 

(a) (b) 

 

 (c) (d) 

 

(e)  

 

(f) 

Fig. 12. (a) Posterior distribution and (b) history iteration 

plots of the age parameters, (c) posterior distribution and 

(d) history iteration plots of the hematrocrit level 

parameters, (e) posterior distribution and (f) history 

iteration of the trombosite parameters (total from 50,000 to 

100,000/µL), in the Larangan sub-district. 

 

 

 

(a) 

 

(b) 

Fig. 13 (a) Posterior distribution and (b) history iteration 

plots of the age parameters in the Pakong sub-district. 

 

 

(a) 

 

(b) 

Fig. 14 (a) Posterior distribution and (b) history iteration 

plots of the gender parameters in the Waru sub-district. 

 

 

(a) 
 

(b) 

(c) 

 

(d) 

 

Fig. 15. (a) Posterior distribution and (b) history iteration 

plots of the age parameters, (c) posterior distribution and 

(d) history iteration of the hemotocrit level parameters, in 

the Batu Marmer  sub-district. 

 

 

(a) 

 

(b) 

Fig. 16. (a) Posterior distribution and (b) history iteration 

plots of the gender parameters in the Pasean sub-district. 

 

Figure 5 to Figure 16, except posterior in Figure 12, show 

that all the posterior distribution of parameters perform a 

normal distribution and their history iteration shows such 

fastly mixing MCMC processes. One reason of Figure 12 

is not to be ideally performs because the amount of data 

(patient) in that area is too small, only 2 people. 
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Table 2. Validation of the Spatial Survival model with 

CAR Frailty 

Model MAE 

Survival without frailty  4.115 

Survival with  CAR frailty 4.073 

 

Validation of MCMC Simulation on spatial survival 

models with CAR frailty are carried out by comparing this 

result with spatial survival model without frailty [12]. 

Mean Absolute Error (MAE) is employed here to choose 

the best model. The smallest MAE value of the model 

indicates the best model. The comparison is showed in 

Table 2, which demonstrates that MCMC for spatial 

survival models with CAR frailty can reduce the error 

about 3.8% compared with no frailty survival model.  

 

6. Conclusion  

This paper has presented the Bayesian couple with MCMC 

computational methods as an approach to spatial survival 

models with CAR frailty using WinBUGS software. These 

methods not only have succeeded to demonstrate the 

accuracy in estimating parameters of spatial survival 

models with frailty CAR and have shown lower model 

error than without frailty, but also can overcome the 

heterogeneity/sources of unexplained variance in the 

model because of the spatial effect.  
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