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Summary 
In recent years the study of cryptosystem has shifted noticeably 
from symmetric to asymmetric key encryptions. One of the more 
intriguing issues of the research is NTRU encryption system, 
which is based on ring theory. The security of NTRU always 
depends on the lattices. Several studies have suggested that it is 
very difficult to know whether a polynomial is invertible or not. 
Nayak et al. introduced a new method as a matrix solution to 
solve the problem. However, this method is not without its flaws. 
In this paper, we expose the weakness regarding network 
security in matrix NTRU cryptosystem of Nayak et al. (2008, 
2010) conscientiously, and we also propose a novel solution to 
this weakness. Our approach is based on the fact that some new 
conditions for selection of keys can increase the size of domain 
compared to what was shown in the previous studies and 
improve the strength of security against different kind of network 
attacks. First, we use a counter example to point out the flaw in 
the theorem of inverse modulo q introduced in the previous 
studies. Second, we prepare a new approach for inverse modulo 
q. The purpose of this paper is to demonstrate that our twofold 
selection scheme is superior to the original matrix NTRU 
cryptosystem and will help cryptosystems function under a safer 
environment by creating one public key and two private keys. 
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1. Introduction 

Cryptography and network security are two of the more 
intriguing issues prevailing throughout the last few 
decades. The heart of the technique requires the use of 
complex algorithms to achieve better data security. With 
cryptographic algorithms, cryptographic keys are often 
manipulated to encrypt plaintext message into different 
cipher-ones and to decrypt the cipher-ones by inversing 
the process with the same corresponding key. One of the 
most import requirements when applying the technique to 
the Internet is confidentiality. Other important issues 
include integrity, non-repudiation, and authentication. 
Nowadays, however cryptography is paramount to the 
protection of the digital content, and as observed by 
practical experience, it provides a much more trustworthy 
means of constraining the senders and receivers of certain 
messages. 

The traditional role of cryptography is to hide the data in 
communications. Due to the fast emergence of the Internet 
and its potential for commercial transactions over public 
data networks, the urgent need for the development of a 
new type of cryptographic system has become evident. 
Classical cryptography uses a symmetric key scheme 
which requires the sender and recipient to share a common 
key. In 1976, Diffie and Hellman [1] introduced the 
concept of public key cryptography which used one key to 
encrypt and a different key to decrypt. As a result, the 
major problem of symmetric key cryptosystem is how to 
securely distribute the symmetric key. Since then, there 
has been increasing interest for researches in finding new 
and fast public key cryptosystems. New studies over 
NTRU follow group algebra over strictly non-
commutative groups. It is expected that new lattice 
reduction technique will be discovered over time and will 
be able to reduce the number of arithmetic operations 
involved in it. Speed is the key property of NTRU 
cryptosystem. Therefore, it is interesting to study a new 
variant of NTRU only if it gives any speed improvement 
along with more security against lattice attack. We will 
show that the keys are chosen in papers by Nayak et al. [3, 
4] through a non-commutative ring (matrix ring of 
polynomials) with the condition that the determinant is 
one or negative one, which will definitely provide a small 
selection range and therefore cryptosystem becomes more 
prone to different kind of attacks. We will introduce some 
new conditions for a selection of keys that increases the 
size of the domain compared to that which was shown in 
the paper of Nayak et al. [3, 4]. 

2. Review of previous results 

We will use ( )n nMat I×
 to denote n n×  matrices with 

integer entries. In Nayak et al. [2, 3], they selected two 

natural numbers, say p  and q , then they tried to find 

some conditions to ensure the selection of a matrix, say X  

that has inverse modulo p, say pX  and inverse modulo q, 

say qX  such that 
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( )p n nX X I pS×= + ,                                             (1) 

and  

( )q n nX X I qT×= + ,                                             (2) 

where pX , qX , S  and T  are in ( )n nMat I×  and n nI ×  is 

the identity matrix for n n×  matrices. To simplify the 

expression, they denoted Eq. 1 as 

( ) (mod )pX X I p= .                                           (3) 

For the matrix NTRU cryptosystem [2], the public key is 

qpX Y  and the two private keys are X  and pX . 

Consequently, the existence of pX  and qX  is crucial for 

the matrix NTRU cryptosystem. 

In Nayak et al. [3], they assumed that  

1
pX X pN−= + ,                                                   (4) 

where 1X −  is the inverse of X  and N  is any matrix in 

( )n nMat I× . They verified that ( ) ( )1X X pN I p XN− + = +  to 

imply ( )1 (mod )X X pN I p− + = . However, they forgot to 

check whether 1X pN− +  is in ( )n nMat I× . 

3. Counter example proposed by us 

We will demonstrate that the theorem of Nayak et al. [3, 4] 
for inverse modulo p  is false by the following counter 
example.  

We assume that 
⎟
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1X  with det 4A = − . It yields that for 

any matrix N  in ( )n nMat I× , 1X pN− +  is not 

in ( )n nMat I× .  

Let us recall that ( )1 1
det

TX cofX
X

− = , where cofX  is the 

cofactor matrix of X  with the ( ),i j  entry of cofX  

satisfying ( ) [ ]1 det detelt i row and j columni j X+
− , and 

( )T  is the transpose operation. 

Since X  is in ( )n nMat I× , the entries of cofX  are all 
integers. If det 1X = ± , it yields 1X −  which is also 
in ( )n nMat I× . 

The example in Nayak et al. [3, 4] for the modulo p 

inverse followed the rule Eq. 4 was based on the special 

condition that its determinant was -1 which accidentally 

derived that 1X pN− +  is in ( )n nMat I× .  

If the selection of X  is restricted to matrices 
whose det 1X = ± , the possible selection for X  will be 
shrunk to a very small range that may allure hackers to 
attack the cryptosystem. 

4. Our approach 

In this section, we present a new method to solve the 

restriction of possible selection for X  to achieve more 

secure cryptosystem. In our method, two matrices, say X  

and Y  in ( )n nMat I× , and two positive numbers, say p  

and q  are selected such that X  has (1) pX , the inverse 

modulo p , and (2) qX , the inverse modulo q . 

We selected a matrix X  in ( )n nMat I×  with det 0X ≠ , 

and a matrix Y  without any restriction. 

The row vectors of X  is denoted as { }1,..., nR R  where 

( )1,...,j j j nR x x=  for 1,...,j n=  and ( )i j n n
X x

×
= . 

According to Gram-Schmidt Orthogonalization, for 
2 1,..., ,nR R R  (the order is important, where 1R  is the last 

one), there is an orthogonal family, say { }1 2, ,..., nV V V  with 
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means the inner product in nR . 
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It implies that nV  is orthogonal with respect to 

{ }1 2 1, ,..., nV V V −  so that nV  is orthogonal with respect 

to{ }2 3, ,..., nR R R .  

Moreover, we will prove that 1, 0nR V ≠ . 

We assumed that 1, 0nR V =  then 1R  is in the orthogonal 

space of nV . Hence, 1R  is in the span of { }2 3, ,..., nR R R  to 
imply that the determinant of X  is zero, that is det 0X = . 
It is a contradiction. 

This is because the entries of jR  for 1,...,j n=  are 

integers, and then the entries of jV  are rational numbers. 

Therefore, we can construct a row vector with integer 

coefficient, say 1W  that satisfies (1) 1 1, 0R W ≠  and (2) 

1, 0jR W =  for 2,3,...,j n= . 

Similarly, for 1 3 2, ..., ,nR R R R  (the order is important, 

where 2R  is the last one), we can find a row vector, 

say 2W , with integer coefficients, that satisfies (1) 

2 2, 0R W ≠  and (2) 2, 0jR W =  for 1,3, 4,...,j n= . 

Following this trend, we can find jW  for 1, 2,...,j n=  

such that (1) , 0j jR W ≠ , for 1,2,...,j n= , and (2) 

, 0k jR W =  for { }1, 2,...,k n∈  with k j≠ . 

Hence, we can construct a matrix in ( )1nMat I× , say 

( )1,..., nC C C=  with T
j jC W=  for 1,2,...,j n= . 

We compute XC  to derive a diagonal matrix, say 

( )i jD d=  with 0i jd = , for i j≠ , 

and , 0i i i i i id R C R W= = ≠ , for 1,2,...,j n= . 

We will select a natural number, denoted as q  such that  

q  is relative prime with respect to 1 1 2 2, ,..., n nR C R C R C . 

From Euclidean Algorithm, there are values, say kα  and 

kβ   (they are integers) that satisfy 1k k k kR C qα β+ = , 
for 1, 2,...,k n= . 

We define a matrix in ( )n nMat I×  as [ ]1 1 2 2, ,..., n nC C Cα α α  

Next, we will prove that 

[ ]1 1 2 2, ,..., (mod )n n n nX C C C I qα α α ×= .        (5) 
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(mod )n nI q×= .                                                             (6) 

By the same argument, we can select a number, say p  that 
is also relative prime to 1 1 2 2, ,..., n nR C R C R C . Furthermore, 
from the Euclidean Algorithm, there are values, say ks  
and kt   (they are integers) that satisfy 1k k k ks R C pt+ = , 
for 1, 2,...,k n= . Consequently, we know that 

[ ]1 1 2 2, ,..., n ns C s C s C  is an inverse modulo p . 

5. Numerical example 

For example, we recalled the previous one
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with det 4X = − .  

From Gram-Schmidt orthogonalization 

for ( )2 1,0,1R = , ( )3 0, 2,0R = , and ( )1 2,1,0R = , then 

( )1 1,0,1V = , ( )2 0, 2,0V =  and ( )3 1,0, 1V = −  to imply that 

1 3, 2 0R V = ≠ . 

By Gram-Schmidt orthogonalization 

for ( )3 0, 2,0R = , ( )1 2,1,0R = , and ( )2 1,0,1R =  then 

( )1 0, 2,0V = , ( )2 2,0,0V =  and ( )3 0,0,1V =  to imply that 

2 3, 1 0R V = ≠ . 

Using Gram-Schmidt orthogonalization 
for ( )1 2,1,0R = , ( )2 1,0,1R = , and ( )3 0, 2,0R =  then 
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we select integer entries to imply ( )3 1, 2,1V = −  and to 

imply that 3 3, 4 0R V = ≠ . 

Next, we select 37q =  that is relative prime to{ }2,1, 4 . 

By the Euclidean Algorithm we derive that  

  ( ) 1 318 , 37 1R V− + = ,                                   (7) 

( ) 2 336 , 37 1R V− + = ,                                   (8) 
and 

( ) 3 39 , 37 1R V− + = ,                                    (9) 
so we know that  
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For completeness, we check that 
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to confirm that ( ) ( )37 3 3 mod37X X I ×= . 

6. Conclusion 

In this paper, we present a new matrix NTRU method to 
revise and improve the weak procedure proposed 
previously, and to locate an inverse modulo q. According 
to Nayak et al. [3, 4], they have only found the inverse 
modulo q for matrices with a determinant of 1± . This is 
too restricted and may cause the one public key and the 
two private keys provided by the cryptosystem to be easily 
hacked. In our method, there are plenty of matrices with 
non-zero determinant which can be used, and will improve 
the security of the cryptosystem. The capabilities against 
lattice or other possible attacks and the comparison with 
other variants in terms of size of plain text block, size of 
encrypted text block, encryption speed, decryption speed, 
message expansion, private key length, public security, 
private key security and lattice security etc. may be of 
interest to future research to explored and to meet real-
time application requirements.  
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