
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

43

Manuscript received January 5, 2011
Manuscript revised January 20, 2011

A Cooperative Information Exchange

Zina Houhamdi and Belkacem Athamena

Software Engineering Department, Faculty of Science and IT, Al-Zaytoonah University, Jordan

Summary
Multi-agent systems are often very complex applications with
many modules and issues that need to be taken into account. The
Cooperative Information exchange system is about multi- agent
system implementation that would implement each agent to act
on behalf of the user and exchange information with other agents.
The system would make use of ontologies in order to make
knowledge exchange more easy and convenient process.
In this paper, we present Expertorer, a system of distributed
collaborative agents to help ts owner find information most
relevant to current needs by asking other agents, present in the
system, whether they have certain knowledge about the subject
or not. Expertorer provides needed services for users to share and
learn information.
Key words:
Artificial Intelligence, Multi agents system, Ontology, Jade.

1. Introduction

Today we live in ‘Information Society’ where information
is the crucial part of everyday life. There are sufficient
amount of new information being exchanged and produced
every day. The Internet revolution has made an abundance
of information resources available for direct and easy
access on the users desktop. However, finding appropriate
information has become a significant problem for many
users. Organized information spaces are easier to search,
but finding or authoring these is difficult.

Current WWW search engines allow users to locate
information of interest, but often return vast amount of
irrelevant information. We are not able to investigate all
data that are potentially available for us. Therefore often
people are not able to get access to the all desired news
due to the number of new web sites and information
sources that appear every day.

However the semantic web idea and Artificial
Intelligence are new technologies introduced to help us
with such variety of information. In the future web
applications will be able to receive much higher accuracy
by using semantic information available on the web.
Cooperative Information Exchange will investigate and
implement a system, which will utilize these technologies,
which could eventually help with the information and
knowledge exchange that could speed and increase the
accuracy of this process [5].

The objective of this paper is to present Expertorer, a
system that uses Multi Agent Technology to allow its user

to exchange information on a special topic with the other
agents present in the system. A Multi-Agent System MAS
is one that consists of number of agents, which interact
with one another. Agents will be acting on the behalf of
users/other agents with different goals and motivation. The
Agents in MAS work in a team to achieve common goal
by interacting with one another. To successfully interact,
they require ability to cooperate, coordinate and negotiate
with each other in order to obtain valuable information.
The agents will share the same ontology, which will allow
exchanging meaningful and understandable information
for all the parties involved [6]. Agents will also use
protocols available with JADE to search for agents who
have the information that the agent is seeking on behalf of
its user.

2. System overview

2.1 Agent – database interaction

Knowledge exchange will be the most important part of
the system and therefore each agent representing user has a
database with all user's knowledge. Agents will be able to
query each other. However only the agent itself has the
ability to look for the knowledge in its database. After the
search it will return the answer or block the operations.
Therefore the agent querying others will only receive the
answers from those agents, which has it. User will be able
to receive and see the needed information from the system.
This information will be displayed in the GUI of the agent.

2.2 Agent – agent interaction

Agent must be able to communicate with other agent
present in the system in order to achieve what user
requested the agent to do. There is a message exchange
capability that each agent has. Each user will have his/her
own agent, which will serve as the users’ representative
and will all together form a MAS consisting of many users.

2.3 Interaction in Multi-agent system

One of the most important issues arising from MAS is the
communication between agents and coordination of this
communication. The main systems’ requirements will be
accomplished through agent communication. Agents will
speak directly to each other and will attempt to find the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

44

information that the user request. JADE provides each
agent with a globally unique identifier AID. It also gives
the platform addresses that agent operates on along with
all other agent addresses needed for communication [2].

The agent management will be done through JADE
available features such as graphical user interface to
manage agents with Agent Management System (AMS),
sniffer agent to look at the message exchange, transport
and agent migration services. Those JADE build in
modules help to manage Multi-agent system.

2.4 Agent deployment

Systems developed with JADE have the ability to become
distributed systems. The agent platform can be split on
several hosts. There could also be several platforms in the
system. Each host acts as a container of agents and
provides a complete run time environment for agent
execution and allows several agents to execute
concurrently. Each agent is then a single Java Thread. The
first container started is the main container maintains a
central registry of all the other containers agents can
discover and interact with each other across the whole
platform [3].

In the Expertorer, there is one platform, which would
be placed on the server. Each user would have his or her
own agent placed on the host machine. Therefore the
system operates as a distributed environment consisting of
many agents sharing its resources.

Fig. 1 Expertorer's MAS structure.

3. Design phase

To allow one agent to query other agents to send it some
kind information, communication between agents will be
based on the template similar to the FIPA-Query
Interaction Protocol (IP).

Explanation of the Protocol Flow: The Initiator asks
the Participant to perform inform action using one of two
query communicative acts, query-if or query-ref. The
query-if performative is used when the Initiator wants to
query whether a particular statement is true or false. The

query-ref communication is used when the Initiator wants
to query for some information. The Participant receives the
query-if or query-ref and makes a decision of whether to
act and reply or refuse the query request. When Participant
decides to refuse, then “refused” becomes true and the
Participant agent communicates a refuse. The other option
is that “agreed” becomes true [7].

In the Expertorer, we modified the idea of FIPA Query
Interaction Protocol so that the agent has to answer to the
query of another agent. We used Behaviors class available
in JADE to mimic and change the idea of FIPA Query
Interaction Protocol.

Interaction protocol and interaction between agents in
general means to exchange some kind of data. In case of
Multi-agent systems it usually means that agent requests or
query the receiver agent to execute some kind of an
“inform” that is, to answer to the “query-ref”. For example
agent i sends query to agent j because he wants to know
something and he thinks that agent j has this information.
If agent j really has this information it sends the “inform”
performative to agent i with the message containing this
information. So, it is not possible to reject the query and
fail or refuse to the query issued by another agent due to
the fact that Multi-agent system presented in the system
has to be a collaborative one.

Fig. 2 Program flow chart.

The system will work as follows: Agent, which is
represented by its user, will register with AMS of the
platform. Then the agent will obtain its AID. Each agent
has its own database where the user could enter his/her
terms and definitions which would be the knowledge
represented by him/her. Consequently, each agent will
represent the user knowledge in the system.

When user will need to know the definition of a term
he/she will ask the agent. Agent will then obtain all of
other agents’ addresses from the AMS. Then the agent will
use modification of FIPA-query protocol to contact all of

AMS
Knowledge
about the

other agents’
presence in
the system

Agent 1-
Knowledge

base

Agent 2-
Knowledge

base

Agent 1 Agent 2

Reply, Inform

Ask for the information, Query-ref

Registers with
AMS and

obtains AID

Registers with
AMS and

obtains AID
List of agents
present in the

system

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

45

them to ask them whether they have definition for the term.
If one or several of them will have the definition for the
term they will answer and send this definition only to
agent that requested it. The definition will be displayed in
the requestor agents’ user GUI.

3.1 Agent Management System (AMS)

The AMS is compulsory feature in agent platform. It is
responsible of creation and deletion of agents and its
possible migrations. Each agent must register with an
AMS in order to obtain an AID, which is then retained by
the AMS as a directory of all agents present within agent
platform and their current state (e.g. active, suspended or
waiting) [2]. When agent deregisters with AMS it is
deleted from the platform. The AID of the deleted agent
can then be taken by the other agent, which would request
to become a part of the platform. AMS contains Agent
description and platform description. Then the request
could be done in order to obtain this information. Single
agent platform could be expanded to be present on several
hosts and each platform could have only one AMS.
Therefore this AMS would manage the whole platform.

In the Expertorer, each agent is able to discover all
other agents in the system through the AMS which
provides the mechanism of discovering agents
automatically. Therefore it is used as the most reliable way
to do that among all methods provided by JADE.

Message Transport Service (MTS) allows exchanging
FIPA-ACL messages over many different agent platforms
and across single platform. The message carries for
example the information about the intended recipients of
the message. This is done in the envelope. FIPA message
structure consists of envelope with transport information,
payload, which is, encoded message, message that is
message parameters, and message content.

3.2 Architecture description

Simple reactive architecture is implemented. This
architecture type joins directly situation to an action and it
is based on a stimulus-response mechanism triggered by
sensor data. It is similar to finite state machines that
possess some kind of sensors transmitting information.
Higher levels of behaviors have more control over
decision making. Decisions are made through goals to be
achieved. This architecture is much less complicated than
BDI and artificial intelligence models don’t have to be
used in that case.

3.3 Ontology

The ontology is the set of concepts and symbols which
allow understanding a message that agent send or receive.
The agents present in the system must share the same

understanding in order to exchange and store shared
information. Ontologies are usually domain specific [8].
Those are the elements that should be distinguished when
JADE will read the content of the message:
• Predicates are elements, which are used to express the

status of the world. They are used usually for the
INFORM or QUERY-IF messages and express true or
false. In the Expertorer, the predicates will not be used
but the terms, which will be another element instead.

• Terms are another element identified by ontologies.
They describe entities that exist in the world. Agents
may reason about. In the Expertorer, Term and
Definition will be two elements recognized by JADE as
Terms in ontology.

• Actions are other elements of the ontology that suppose
to indicate some agent defined action. They are usually
used in such message performative as REQUEST or
QUERY. In the Expertorer, we use the call for an action
in the form of getsendDefinition() requests. It will
request other agents to send the definition for the term.

The ontology presented in the Expertorer has two
concepts. One is the Term that needs to be search and the
other concept is Definition for the Term. There is also an
action, which will be to sendDefinition. We have built a
class that extends ontology and declares and defines all
schemas, actions and concepts in that class. Each schema
will be associated with class. Therefore there is a
Glossary.java with main concepts and Send_glossary.java
with action of the program.

The Figure 3 presents the basic architecture of the
agent instance build to create multi-agent system. Many of
the same agents will cooperate in the system.

UserAgentGui
tfATerm : JTextField
tfSTerm : JTextField
tfADefinition : JTextArea
tfSDefinition : JLabel
Container : z
c : JPanel
pnPanel1 : JPanel
AskAgentToaddTermAndDefinition : JLabel
IbAgentInit : JLabel
pnPanel2 : JPanel
IbEnterTermToBeAdded : JLabel
btAdd : JButton
pnPanel3 : Jpanel
lbDefinitionFortheTermSupplied : JLabel
scrolling : JScrollPane

outcome()

UserAgent
myGui : UserAgentGui
agentDatabase : Hashtable
nsendAgent : AID

setup()
addBehaviorCyclicBehavior()
addBehaviorTickBehavior()
updateAgentDatabase()
sedAndReceiveMyRequest()

11 11

Send_glossary
setDefinition : String

setsendDefinition()
getsendDefinition()

GlossaryOntology
Term : String
Definition : String
Glossary : String
send_definition : String

1

0

1

0

1

1

Glossary
term : String
definition : String

setTerm()
getTerm()
setDefinition()
getDefinition()

1
1

1

1
1

1

Fig. 3 UML diagram of the agent instance.

The general structure of the classes is as follows: All
the classes are stored in the glossary folder within the
directory where there is an agent. GlossaryOntology.java

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

46

contains all concepts and action that agent has to execute
with relations between them and with their initializations.
Glossary.java class contains concepts their setting and
retrieving with the setTerm(), getTerm(), setDefinition()
and getDefinition() methods. Send_glossary.java creates
an action and implements setsendDefinition() and
getsendDefinition() methods. This class tells agent what to
do.

The ontology in the Expertorer is designed to let the
agent know what to do when the message arrives and to
understand what it should do if a certain type of the
message arrives. Agent would know that he should retrieve
the definition if the query arrives and what actually the
definition means. Therefore the whole expression will look
like that:

(action
(Send_glossary
 (Glossary : term “Software design “

 : definition “It is a process of problem
solving and planning for a software solution”)))

3.4 Graphical User Interface

Here the user can ask the agent to look for a particular
definition of a supplied term. Text box will provide the
user with possibility of entering term and after clicking on
the "Search" button the Definition label should show the
definition(s) found by the agent. The last text box will
provide the user with information about the search
operation (the result was found in local or remote database,
and if it is remote then the agent was informed by whom?).

Fig. 4 Search entry part of the agent GUI.

4. Related Works

A lot of research and commercial organizations are
involved in the realization of agent applications and a
considerable number of agent construction tools have been
realized. Some of the most interesting are:

• AgentBuilder is an integrated tool suite for constructing
intelligent software agents [10].

• AgentTool is a Java-based graphical development
environment to help users analyze, design and
implement multi-agent systems [9].

• Bee-gent is a software framework based on multi-agent
systems [1].

• FIPA-OS (FIPA Open Source) is an open agent platform
originating from Nortel Networks [12].

• The Open Agent Architecture (OAA) is a distributed
application framework that promotes a new
programming paradigm called Delegated Computing [4].

5. Conclusion

Multi-agent systems will become more widely used in the
future as they make available many useful things for the
Internet and for the businesses. However the standards
need to be developed for allowing those systems to
cooperate with each other and with the outside
environments. Multi-agent systems are often very complex
applications with many modules and issues that need to be
taken into account. However in this work, we have
implemented an agent that would be functional for the user
and that would be easy to create and use.

The agent consists of only one instance from which the
multi-agent system can be created. The agent is sender and
receiver at the same time and has the ability to create an
instance of the database for each user. The system was
build so that the agents cooperate with each other and
share information. This is not fully completed and still
needs enhancement. The ontology could be extended with
data handling for future help. Security is another very
important issue that has to be taken into account in the
future. Each agent would have to have its information
secured so that agent from outsider could not access it.

References

[1] Bee-agent Knowledge Media Laboratory Corporate
Research & Development Center TOSHIBA Corporation.
2005. http://www.toshiba.co.jp/rdc/beegent/index.htm.

[2] Bellifemine. JADE: A Java Agent Development
Framework. In "Multi-Agent Programming: languages,
platforms and applications". Springer 2005.

[3] Bellifemine et al. Developing Multi-Agent Systems with
JADE, Wiley. 2007.

[4] Cheyer A. & Martin D. The Open Agent Architecture.
Journal of Autonomous Agents and Multi-Agent Systems,
vol. 4 , no. 1, March 2001, pp. 143-148.

[5] Daconta M., Obrst L. & Smith K. The Semantic Web: A
Guide to the Future of XML, Web Services and Knowledge
Management. Wiley. 2003.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

47

[6] Denzinger J. Ontology-Guided Learning to Improve
Communication between Groups of Agents, Proc. AAMAS
2007, Hakodate, 2007, pp. 923-930.

[7] FIPA, FIPA-Query Interaction Protocol, Standard Number
SC00027H, FIPA TC Communication, 2002.

[8] Hadzic M., Chang E., Wongthongtham P. & Dillon T.
Ontology-based Multi-agent Systems, Springer 2010.

[9] Juan C., DeLoach, & Robby. AgentTool Process Editor:
Supporting the Design of Tailored Agent-based Processes.
Proceedings of the 24th Annual ACM Symposium on
Applied Computing, USA. March 2009.

[10] Ling T. AgentBuilder. http://www.limsi.fr/~jps
/enseignement/examsma/2005/1plateformes _3 /index-
Ling.html

[11] Padgham L. & Winikoff M. Developing Intelligent Agent
Systems: A practical guide, John Wiley and Sons. 2004.

[12] Mihaela U., Mircea C. & Douglas N. A FIPA-OS based
multi-agent architecture for global supply chain
applications. IPMM 2001 International Conference on
Intelligent Processing and Manufacturing of Materials, July
29-August 3, 2001.

Zina Houhamdi received the M.Sc.
and PhD. degrees in Software
Engineering from Annaba University in
1996 and 2004, respectively. She is
currently an Associate Professor at the
department of Software Engineering, Al-
Zaytoonah University of Jordan. Her
research interest includes Agent
Oriented Software Engineering,
Software Reuse, Software Testing, Goal

Oriented methodology, Software Modeling and Analysis, Formal
Methods.

Belkacem Athamena was born in
Algeria. He received the M.Sc. and PhD.
degrees in Computer Engineering and
System/Software Modeling and Analysis
from Annaba University in collaboration
with UCL University, Belgium, in 1994
and 2004, respectively. He is currently an
Associate Professor at the department of
Software Engineering, Al Zaytoonah
University of Jordan. His research
interests include System/Software

Modeling and Analysis, Multi-agent, Fuzzy Logic, Neural
Networks, Petri Nets, UML, VVT, Formal Methods, Fault
Diagnosis. He has published over 40 papers, chapter in books,
and conferences.

