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Summary 
Quite recently, codes based on real field are gaining momentum 
in terms of research and applications.  In high-performance 
computing, these codes are being explored to provide fault 
tolerance under node failures.  In this paper, we propose novel 
real cycle codes based on expander graphs.  The requisite graphs 
are the Ramanujan graphs constructed using incidence matrices 
of the appropriate projective-geometric objects.  The proposed 
codes are elegant in terms of reduced complexity encoding and 
very simple erasure correction.  Further, the codes are guaranteed 
to correct three erasures.  Apart from building the codes from the 
sound existing principles, necessary simulation results and 
justification of the useful properties are also presented in the 
paper. 
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1. Introduction 

The ability to detect and correct errors in communications, 
storage and computing is of both fundamental and 
practical importance.  Error control codes providing this 
capability are well researched and also many related 
practical issues are addressed from last sixty years.  Even 
though, the error control codes are most often defined over 
finite fields (or Galois fields), one can see codes defined 
over real-number or complex-number fields in the 
literature.  These real-number or complex-number codes 
can be advantageous in certain situations and some 
aspects; the advantages in general are captured in [1].  
These codes were initially approached from a signal 
processing perspective [2], and some of the applications 
include coding for Orthogonal Frequency Division 
Multiplexing (OFDM) transmission over fading wireless 
channels [3] and in High Performance Computing (HPC) 
([4],[5],[6],[7]).    In high-performance computing, these 
codes are explored to provide fault tolerance for the 
smooth execution of sophisticated scientific applications 
under node failures.  Both diskless checkpointing and 
check-point free scenarios are considered while examining 
these codes in [6], [7].  The concepts and issues related to 

diskless check pointing are well known in the computing 
community; see [8], [9] and references therein for details.  
Cursorily, checkpointing is one of the techniques used in 
fault-tolerant computing, where the “checkpoints” are 
stored in stable storage (i.e. disk), since the stable storage 
typically survives processor failures [8].  The goal of 
diskless checkpointing is to remove stable storage and 
replace it with memory and processor redundancy [8].  
The redundant information in the spare processors is 
obtained through coding (parity or Reed-Solomon codes) 
and in this sense diskless checkpointing is akin to 
software-implemented Redundant Array of Independent 
Disks (RAID) technology [9], [10]. In linear algebra 
computations involving a large dense matrix, the 
application involved modify a large amount of memory 
between consecutive checkpoints, introducing 
considerable overhead (see [9] and the references therein).  
In these cases, checkpoint-free fault tolerance is useful [9].   
The benefits of using real or complex number codes in 
HPC are covered in [8].  Further, as mentioned in [9], the 
real (or complex) number codes can be used in other fields 
like fault tolerant combinatorial and dynamic systems, 
Compressive Sensing (CS) (see [11],[12],[13],[14]), and 
Network Coding ([15]).  
 
It is well known that the error correction involves finding 
the location of errors and their values to reconstruct the 
original data.  When the positions of errors are known, we 
have a simpler case of erasure correction, where the values 
(magnitudes) of the “erased” digits are estimated.  The 
error correction for real (or complex) codes may involve 

1l -norm minimization (also called as basis pursuit) and 
greedy algorithms such as various matching pursuits, 
based on the recent CS framework ([11],[12],[13],[14]).  
Depending on the encoding or the choice of generator 
matrix, reduced complexity decoding is also possible (see 
[14]), including very simple majority-logic decoding [1].  
In this paper, we restrict to erasure correction which 
involves less complex decoding algorithms compared to 
error correction. 
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One of the main problems of real (or complex) number 
codes is the contamination of the codeword due to 
computations involving the digital representation of:  (a) 
the data (b) the coefficients of generator or parity check 
matrices and (c) the results of encoding and decoding 
operations.  This contamination can lead to numerical 
instability as elaborated in [4], [6] in the context of HPC.  
The argument is based on the following facts [6], [7]: (1) 
most of the error correction procedures involve solving a 
system of linear equations (2) in computer floating-point 
arithmetic no computation is exact due to round-off errors 
(3) in solving a system of linear equations using computer, 
a condition number of p10  for the coefficient matrix leads 
to a loss of accuracy of about p digits (4) the generator 
matrices of many of the real (or complex) number codes 
contain ill-conditioned submatrices (i.e.,  numerically 
indistinguishable from singular submatrices)   (5) certain 
error patterns can thus result in ill-conditioned system of 
linear equations for the error correction causing the loss of 
precision of possibly all digits in the recovered numbers.  
Designing appropriate real number coding scheme to 
correct different number of erasures is thus a challenging 
problem.  In [7], a class of Reed-Solomon (RS) style 
erasure correction codes are presented, which are 
numerically best in the sense that the each of the generator 
matrix obtained has the condition number of the worst-
conditioned sub matrix minimized [7].   The two-erasure 
correction codes are constructed analytically and the codes 
to correct three or more erasures are obtained through 
computations based on an approximation method.  Based 
on the chosen framework by the author, it is also proved in 
[7] that it is impossible for any minimum redundancy code 
to correct all erasure patterns, when the number of 
erasures is more than one, for large generator matrices.  In 
the HPC scenario, the case of large generator matrix 
corresponds to large number of processors. 
 
Viewed from a slightly different perspective and following 
[1], a real number erasure code would be really elegant if 
(1) The code is guaranteed to correct certain number of 
erasures (2) The encoding and decoding operations 
involve fewer number of additions and subtractions only, 
rather than the multiply and accumulate (MAC) operations.  
This eliminates errors in representing the elements of 
generator and parity check matrix and also the errors 
involved in representing the product of two real numbers.  
(3) The erasure correction capability remains the same as 
the code length or generator matrix size increases.  In a 
nutshell, we need a family of real-number codes which are 
asymptotically good and efficient, which simply means, as 
the code length n increases, the error-correction capability 
and rate are always maintained above some fixed values, 
and the encoding and decoding can be performed in 
polynomial time in n, respectively (see pp.46 of [16] ).   

Of late, expander codes have emerged as popular family of 
asymptotically good and efficient codes.  Following [17] 
and [18], we consider the family of expander codes 
parameterized by a fixed-size linear code with some small 
block length and a family of expander graph with constant 
degree (say, d ); the degree and the block length need to 
be matched.  Using the small fixed-size linear block code 
C  (can also be referred to as sub code or component 
code) and an expander graph G , one can build a larger 
linear code, which is the expander code, denoted as 
( )CGC ,′ . The rate and the error correction property of 

this expander code depend on the rate and distance of the 
component code as well as the spectral expansion of the 
expander graph [16].  If the component code C  is the 
parity code, then the expander code ( )CGC ,′  is a cycle 
code, which we refer to as the cycle expander code, as the 
underlying graph is an expander graph.  On the other hand, 
if the underlying graph G  is not an expander graph, we 
end up with the conventional cycle codes.  See [19], [20] 
(and the references there in) for more details on cycle 
codes.  The parity code mentioned has block length d , 
message or information length 1−d  and the minimum 
distance of 2. 
 
In this paper, we propose a novel family of real number 
erasure correction cycle expander codes which are 
guaranteed to correct three erasures.  The component 
codes are simple parity-based codes over the real field.  
The expander graphs chosen are the Ramanujan graphs 
constructed using the Projective Geometry (PG) based 
incidence matrices [21], [22], [23].  Some of the 
advantages of using the PG-based graphs are highlighted 
in [21],[22],[23].  The code construction follows that of 
Zemor [18] and involves using the edge-vertex incidence 
graph G′ of the Ramanujan graph G .  See also [17] for 
details on edge-vertex incidence graphs.  These cycle 
expander codes facilitate reduced complexity encoding 
and further, the erasure correction with the proposed 
expander codes involves only additions and subtractions, 
rather than the MAC operations.  The errors which may 
occur due to these computations can be taken care of by 
simply having a “longer” accumulator. The proposed 
expander codes are asymptotically good in the sense that 
the three-erasure correction capability is intact with the 
increase in block length.  The rest of the paper is 
organized as follows.  In Section 2, the necessary 
ingredients of the proposed expander code are briefly 
covered. Included here are the relevant details about cycle 
codes, expander graph preliminaries, PG based incidence 
matrices and the associated Ramanujan graphs, edge-
vertex incidence graph and some remarks on decoding.  In 
Section 3, a conceptual proof is provided towards the 
three-erasure correction capability of the proposed code.  
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Section 4 presents some relevant simulation results and 
discussion.  Finally, conclusions are provided in Section 5.   

2. Nuts and Bolts of the Proposed Code 

The aim of this section is to cover the necessary nuts and 
bolts for the proposed expander code, including the 
relevant basics and terminology.  Any coding scheme 
necessarily implies appropriate decoding strategy as well. 
Thus, the aspects related to decoding (in particular, erasure 
correction), are also touched upon.  Since the code of 
interest is a cycle code based on expander graphs, we start 
with some necessary information about cycle codes.   
   

2.1 Cycle Codes over Binary and Real Fields 

In this section, the required concepts and definitions are 
borrowed heavily from [19] and [20]. Cycle codes are 
defined over graphs. As customary, we consider an 
undirected connected graph ( )EVG ,= , where V and E 
are the set of vertices and edges of G respectively.  If an 
edge e connects a vertex v to some other vertex, then e is 
said to be incident to v.  The graph induced by a subset E ′  
of edges is the graph ( )EV ′′, , where V ′ is the set of 
vertices incident to at least one edge in E ′ . A cycle in a 
graph G is a collection of edges such that in the graph 
induced by them, all vertices have even degree.  The cycle 
code associated to G, denoted as ( )GC , is a binary code of 
block length n equal to the number of edges, i.e. En = , 
and every code word corresponds to a cycle.  From the 
construction perspective, it is useful to consider a 
spanning tree of G (which is a tree containing all vertices 
of G), since a convenient way of generating a cycle is by 
adding an edge to the spanning tree.  Considering a 
spanning tree T  and its complement T , each edge ie  in 

T form a unique cycle ic  with those edges in T  that form 

a path between the nodes at which  ie  is incident.  If the k 

edges in T  (where 1+−= mnk  with m being the 
number of nodes in G) and the remaining 1−m edges of 
T are numbered keee ,,, 21 L   and nkk eee ,,, 21 L++  

respectively, then each cycle ic  can be represented by a 

binary vector [ ]iniii ccc L21=c  with 1=ijc  if je  

is the edge in ic  and 0 otherwise.  The vectors 

kii ,,2,1, L=c  form the rows of the generator matrix 
G of the cycle code and hence are the basis vectors for the 
linear space spanned by the cycles of G.    In a nutshell, 

( )GC  can be viewed as a subspace of nF2  of cycles of G, 
where nF2 is the n-dimensional vector space over the 
binary field 2F  .  As far as encoding is concerned, the 
cycle codes can be encoded in linear time.  This follows 
from the theorem in [19] suggesting a linear time 
algorithm to calculate the values on the edges in T  given 
the values on the edges in T , which are the information 
bits.  Before, remarking on the decoding of the cycle codes, 
it is worth noting that the examination of parity check 
matrices of cycle codes suggests that they can be viewed 
as Low Density Parity Check (LDPC) codes [24] with 
column weight 2. The associated Tanner graph of the 
parity check matrix can be used for decoding using 
different flavors of sum-product algorithms [25].  For 
erasure correction, simple Exclusive OR (XOR) 
operations are sufficient, where the idea is, if each node of 
the graph has d neighbors and if the values of 1−d  edges 
are known, the remaining value can be determined as the 
XOR of the rest.  The process is iterated until no new 
values can be determined.   
 
So far, the discussion presented is for the cycle codes over 
binary fields.  Since the focus of the paper is on real-
number codes, how to extend these binary codes is really 
important.  But, this can be very simply accomplished by 
treating the generator matrix as a matrix over the real field 
to generate the real-number code word from real number 
information symbols.  This is similar in principle to that 
followed in [1].  For the erasure correction, the value of 
the requisite edge is obtained as the negative of the sum of 
the known 1−d  edge values, again a simple extension of 
the XOR operation of the binary case.  
 
The simple structure coupled with easy encoding and 
decoding of cycle codes make them really attractive and 
they have been under intense studies since the early days 
of coding theory to recent times [20].  It is worth 
examining these codes over real field when the underlying 
graph G is an expander.  To the best of our knowledge, a 
study in this direction is not reported elsewhere.  We start 
with a background on expander graphs before arriving at 
projective-geometrically constructed Ramanujan graphs, 
which are a class of expander graphs.  
 

2.2 Expander Graphs 

Informally, an expander graph is a graph ( )EVG ,= , in 
which every subset of vertices sV expands quickly, in the 

sense that it is connected to many vertices in the set sV  of 
complementary vertices [26].  An Expander Graph is 
interesting as it satisfies two conflicting but desirable 
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properties: (1) being sparse and (2) “well connected”.  The 
property of well connectedness or expansion can be more 
formally defined in terms of edge expansion rate or vertex 
expansion ratio, the latter being more suitable for bipartite 
graphs (see [16],[26],[27] for more details).  The 
expansion property is related to the first two largest 
eigenvalues of the adjacency matrix of the graph [16],[26]. 
The difference of these eigenvalues is known as spectral 
gap [16],[26].  A useful result to note at this juncture is 
that the edge expansion rate ( )Gh  of a d-regular graph G 
(i.e. every vertex of G has degree d ) is bounded as in Eq.1 
 

( ) ( )λλ
−≤≤

− ddGhd 2
2

     (1) 

 
where λ  is the second largest eigenvalue; of course, the 
largest eigenvalue in this case is d.  Thus, smaller theλ for 
a given d, better is the expansion.  The expander codes are 
based on explicit construction of expander graphs and 
include codes based on bipartite expander graphs, Sipser 
and Spielman constructions using regular expander graphs 
and Zemor’s construction considering the special case of 
Ramanujan’s graphs (see [16],[17],[18] for more details).  
A finite, connected d-regular graph is a Ramanujan graph 
if it satisfies 
 

12 −≤ dλ        (2)  
 
Roughly, the Ramanujan graphs have large spectral gap 
[16].  There are various ways to construct Ramanujan 
graphs, and we would be using the PG for their explicit 
construction, following [21],[22],[23].   
 

2.3 Projective Geometry Based Ramanujan Graphs 

The projective geometry (PG) is essentially a geometric 
realization of linear algebra [28]. Restricting to the finite 
PG, a PG of dimension l and order is denoted as ( )qlPG , , 
where q is a prime or power of a prime. ( )qlPG , is 
constructed using a vector space S of dimension ( )1+l  
over the field qF  [29].  This ( )1+l -dimensional object 
can be viewed in geometrical terms, by calling the one-
dimensional subspaces of S as points, 2-dimensional 
subspaces as lines, the 3-dimensional subspaces as planes, 
and the l-dimensional subspaces are called hyperplanes 
[29].  The r-dimensional objects described by ( )1+r -
dimensional subspaces are called as r-flats.  Treating the 
geometric objects this way is justified by observations like 
any two points are precisely one common line since two 

different 1-dimensional subspaces (points) generate 
precisely one 2-dimensional space (a line) [29].   
 

A  ( )qlPG ,  has  ( )
( )1

11

−
−

=
+

q
qN

l

 points and equally many 

hyperplanes.  A useful notion in PG is that of 
homogeneous coordinates.  The elements of the 
underlying vector space 1+= l

qFS  are the ( )1+l -tuples 

( )121 ,, +lxxx L  of field elements.  Let 

( )121 ,, += lq xxxFP L  be the 1-dimensional vector 

space generated by the nonzero ( )1+l -tuple.   As any 
nonzero scalar multiple of ( )121 ,, +lxxx L  
generates the same “point” P, it is customary to write  

( )121 ::: += lxxxP L  called as homogeneous 
coordinates with the implication of  
 
( ) ( )121121 :::::: ++ = ll xxxxxx λλλ LL       (3) 
 
for every qF∈≠ λ0  [29].  The term homogeneous 
coordinates makes sense as it simply means scaling is 
unimportant [30]. The homogeneous coordinates can be 
assigned naturally to hyperplanes as well [29].  Each 
hyperplane can be described as the set of points satisfying 
a nontrivial linear equation.  In other words, the 
hyperplane consisting of all points 
( )121 ::: +lxxx L  such that  
 
             0112211 =+++ ++ ll yxyxyx L                     (4) 

 
has homogeneous coordinates [ ]121 ::: +lyyy L  [29]. 
 
The next concept relevant to us is that of incidence 
relations.  They are simply the binary relations decsribing 
how the geometric objects (or equivalently the subspaces) 
meet [31].  Examples include, “lies on” between points 
and hyperplanes (as in “point P lies on hyperplane H”), 
and “intersects” (as in “line 1L  intersects line 2L ”) [31].   
The incidence relationship we are interested in is that of 
between points and hyperplanes.  This relationship can be 
captured in terms of a square incidence matrix as the 
number points is equal to the number of lines (which is N).  
This incidence matrix can then be used to generate a 
bipartite graph, which in our case is the Ramanujan graph 
we are looking for.  It is to be noted that the requisite 
Ramanujan graphs can be obtained using PG over any 
field, including extension fields.  However, for the results 
presented in this paper, we examined the graphs generated 
by the point-hyperplane incidence matrices of ( )2,lPG , 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011 
 

 

52

i.e., PG over binary field 2F .  An example is presented in 
the following towards a better comprehension of the 
construction. 
 
Example: We consider the projective plane ( )2,2PG  
corresponding to 2=l  and for this case we get 7 points 
and 7 hyperplanes (here, they are lines).  The incidence 
matrix M  for this case is given by  
 
 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000101
1100010
0110001
1011000
0101100
0010110
0001011

M

                      (5) 

 
 
For this incidence matrix, the corresponding bipartite 
graph can be drawn as shown in Fig.1. A bipartite graph 

( )EVVG RL ,∪=  is called a ( )dc, -regular graph if every 
vertex in LV has degree c and every vertex in RV  has 
degree d [32].  The subscripts L and R refer to left side and 
right side respectively; a convention usually followed to 
group two sets of vertices.  For better utilization of space, 
the bipartite graph in Fig.1 is tilted, making the left and 
right sides shifted to upper and lower sides, respectively.  
This display aspect is followed in the rest of the paper also.  
As the number of hyperplanes is equal to the number of 
points, we have 7== RL VV in this case and 

further, 3== dc .  These equalities of RL VV =  and 

dc =  are also true for other values of l  and 2=q . Thus, 
the graphs obtained this way are balanced d-regular 
bipartite graphs.  Further, all these graphs satisfy Eqn.2 
and thus are Ramanujan graphs.  Continuing with our 
example, for ( )2,lPG , we have 4142.1=λ  which is less 

than 8284.212 =−d . 
 
It is useful to note that the Adjacency Matrix A required 
to compute the λ  can be obtained from the incidence 
matrix M  using the relationship 
 
 

⎥
⎦

⎤
⎢
⎣

⎡
=

OM
MO

A T
                                               (6) 

 
Even though we considered the case of projective 
plane ( )2,2PG  for simplicity and ease of depicting the 

graphs, the graphs obtained from ( )2,lPG  with 3≥l , i.e., 
higher-dimensional projective spaces, are very useful as 
well.  The codes based on the graphs of projective spaces 
are also capable of guaranteeing 3-erasure correction and 
further can support higher code rates (see Section 3 and 
Section 4).  The Ramanujan graphs so obtained can be 
used as “base graphs” to construct the requisite expander 
codes as discussed next.  
 
 

 

 

Fig. 1  Bipartite graph generated by the point-hyperplane incidence 
relations of ( )2,2PG . 

 
 

2.4 Zemor Construction of Expander Codes 

Sipser and Spielman [17] suggested a construction of 
asymptotically good and efficient linear codes using d-
regular expander graphs.  By using bipartite Ramanujan 
graphs, Zemor [18] constructed the expander codes 
capable of correcting 12 times more errors compared to 
that of Sipser and Spielaman codes, without compromising 
the complexity of the decoding. As mentioned in the 
beginning of the paper, our construction is similar to 
Zemor’s construction, but utilizes PG- based Ramanujan 
graphs, including those from higher dimensions.  As the 
expander codes we are focusing are a class of LDPC codes, 
any construction should lead to a bipartite (Tanner) graph, 
with the appropriate identification of variable and 
constraint nodes.  Similar to [18] (see also [17]), this is 
obtained using the edge-vertex incidence graph of PG-
based Ramanujan graph ( )EVVG RL ,∪= .    This edge-
vertex incidence graph ( )EVVG RL ′′∪′=′ ,  has EVL =′  
and RLR VVV ∪=′ .  Each “vertex” in LV ′  is joined to both 
of its end points, hence one in LV  and another in RV  [32]; 
the edge set E ′  of G′  is obtained this way.  The resultant 
bipartite graph is ( )d,2 - regular graph.  Since G′  is 
constructed from the PG-based Ramanujan expander 
graph G, it also exhibits good expansion properties [33].   
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Continuing with our illustrative example, the resultant 
edge-incidence graph is as shown in Fig.2 with 21=′LV , 

14=′RV , and  3=d .  Also, as shown in the figure, it is 

useful, towards better visualization of decoding, to keep 
the vertices corresponding to LV  and RV  in the respective 
groups, rather than mixing them up (see Section 3). 
 
 

 

Fig. 2  Edge-vertex incidence graph of the bipartite graph in Fig.1. 

 
To arrive at the expander codes, the next steps involved 
are (1) identifying the variable and constraint nodes of  
G′  and (2) to bring component code into the scenario 
through constraint and variable nodes interaction.  The 
vertices in { }nL vvvV L21=′  and 

{ }tR pppV L21=′ can be identified with the 
variable nodes and constraint nodes respectively [18],[32]; 

here LVn ′= and 
d
nt 2

= .  Each of the constraint nodes is 

connected to d variable nodes and for the expander code, it 
is required that these d variable nodes form a linear code 
word of length d.  Because the restrictions imposed on the 
variables are linear, the resulting expander code will be 
linear as well. It is useful to define a mapping function 
( )jib ,  towards a formal definition of expander code, 

where, ( )jib ,  returns the j-th neighbor ( jv ) of the 

vertex Ri Vp ′∈  [32].   
Definition of Expander Code [32]: Let C be an error 
correcting code of block length d.  The expander code 

( )CGC ,′  consists of all code words [ ]nxxx L21  
such that for all i (from 1 to t) 
 

( ) ( ) ( )[ ] Cxxx dibibib ∈,2,1, L                     (7) 

 
As remarked in Section 1, the performance of the 
expander code depends on both the expander graph and 
the component code.  The formal quantification of the 
performance metrics are well documented (see 
[16],[19],[32], [33] for example).  It is sufficient to note 
that if  G′  is a good expander and if the constraints are 
identified with sufficiently good codes, then the resulting 

expander code will be a good code [19].  As far as the 
component code C is concerned, different flavors are 
possible including RS codes [21],[22].   

2.5 Cycle Expander Codes 

For our real expander codes, the component code is the 
parity code as mentioned in Section 1.  But, we need a 
systematic constructive procedure to carry out the 
encoding as it is necessary to ensure that neighbors of 
each of the constraint nodes are code words.  Needless to 
say, this cannot be done in an ad hoc fashion.  By 
following the concepts and methodology presented in 
Section 2.1 this can be carried out using the 
(complementary) spanning tree of G .   Of course, the base 
graph G  and the edge-vertex incidence graph G′  are 
closely related; recollect that each variable node in 
G′ corresponds to an edge inG , whereas each constraint 
node in G′  corresponds to a node in G .  Now the turn of 
decoding: the erasure correction decoding happens on the 
graph G′ iteratively as mentioned in Section 2.1.  
 
In a nutshell, using the procedure suggested in Section 2.1, 
we can construct useful real cycle expander codes which 
are asymptotically good and efficient as well as 
guaranteed to correct three erasures. A conceptual proof 
for the latter is provided next.  

3. A Conceptual Proof for Three-Erasure 
Correction Capability 

To prove the three-erasure correction capacity of the 
proposed code, it is sufficient to show that, it is possible to 
correct all combinations of three erasures, whereas there 
are certain four and more erasure locations which cannot 
be corrected. Based on the detailed examination of PG 
graphs, it is possible to rigorously prove the error 
correction properties of the expander codes.  These are 
available in [22] and would be submitted for publication 
soon.  Here, we rather take a conceptual approach towards 
bringing out the three-erasure correction capability of the 
real cycle expander codes. 
 
How the proposed codes are capable of correcting any 
pattern of three erasures can be conceptually brought as 
follows. As seen in Section 2.4, each variable node of the 
edge-vertex incidence graph is connected to two constraint 
nodes, one in LV  and another in RV .   Thus, if a code 
symbol (corresponding to variable node) is erased, it has 
to be corrected by one of the two constraint nodes. A 
constraint node can correct an erased symbol provided the 
remaining 1−d  variable nodes connected to it are intact. 
Now, note that a variable node in G′  corresponds to an 
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edge in G  and there are no multiple edges in G . Using 
these facts, it can be observed that any group of three 
variable nodes is connected to at least four constraint 
nodes.  Further, there are at least two of these four 
constraint nodes which are connected to only one variable 
node in this group. Hence, if the symbols corresponding to 
variable nodes in this group are erased they can be 
corrected over the iterations, starting from the correction 
by the constraint node, which is “seeing” one erased 
symbol.   This corrected information is fed back in the 
Tanner graph to facilitate the correction of other errors. 
 
The next task is to bring out the fact that there are certain 
four-erasure locations which cannot be corrected. It is to 
be noted that certain four erasure patterns, in fact, many of 
them can be corrected as the proposed code demonstrates 
graceful degradation in erasure correction performance 
(see Section 4).   
 
A group of erased nodes cannot be corrected if both the 
constraint nodes connected to any erased node, are 
connected to at least one other erased node. Since the 
edge-vertex incidence graph is constructed from the point-
hyperplane incidence graph (i.e. the base graph), it is 
possible to carefully examine the base graph in order to 
find out the variable nodes that form such a deadlock in 
the edge-vertex incidence graph. One way to find out such 
variable nodes from the base graph is as follows. First, 
consider the plane obtained by the intersection of any two 
hyperplanes; we call this plane as base plane. For example, 
if 3=l and considering the intersection of first and last 
hyperplanes, we get the base plane (base line in this case) 
as { }14,11,0 . Then, find the hyperplanes which are 
incident on this base plane (base line). For the case of 

3=l , these are given by 0, 1, and 4. Now, consider the 
subgraph of the base graph, which corresponds to the 
incidence relation of the points on the base line (i.e. 0, 11, 
14) and the hyperplanes incident on the base line (i.e. 0, 1, 
4). This is shown in Fig. 3. Note that in the base graph, 
usually the vertices corresponding to the points are labeled 
from 0 to 14 and those corresponding to the hyperplanes 
are labeled from 15 to 30. Thus, in Fig 3, the vertices 
corresponding to hyperplanes 0, 1, 4 are labeled as 15, 16 
and 19 respectively.  This subgraph is a complete bipartite 
graph.  Now, if any two vertices corresponding to points 
and hyperplanes in this subgraph are considered, the four 
edges joining them form a cycle. One such cycle is shown 
in Fig. 3 by dotted edges. The portion of the edge-vertex 
incidence graph containing the variable nodes 
corresponding to these four dotted edges and their 
corresponding constraint nodes is shown in Fig. 4. The 
edge between nodes 0 and 15 is labeled as 0 and 
corresponds to variable node 0; edge between nodes 0 and 
19 is labeled as 3 and corresponds to variable node 3; and 

so on. Observe that variable nodes 0, 3, 98 and 101 and 
their corresponding constraint nodes form a deadlock, 
where each constraint node is connected to at least two 
variable nodes. Thus, if symbols corresponding to these 
variable nodes are erased, it is not possible to correct them.   
 
Using the above procedure, it is possible to find various 
locations of the code symbols that, if erased, cannot be 
corrected.  It is important to emphasize that for 2=l , the 
cycle of length 4 does not exist in the base graph and the 
code is able to correct four erasures.   
 
For erasures of size greater than four, the arguments 
similar to above can be built to arrive at the erasure 
patterns which cannot be corrected. 
  
 
 

      

Fig. 3  Subgraph obtained from base line-hyperplane incidence relation. 

 

  
 

Fig. 4  Subgraph of edge-vertex incidence graph corresponding to Fig. 3. 
 

4. Some Results and Discussion 

Elaborate simulations are carried out to analyze the 
performance of the proposed codes in terms of their 
erasure correction capacity.  Also studied are few issues 
relating to the floating point arithmetic.  Some of these 
results are captured in this section, augmented with a 
discussion on different aspects and behavior of the codes.   
The construction of the code, as discussed in Section 2, 
involves four steps. In the first step, a PG-based 
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Ramanujan graph G is constructed using the point-
hyperplane incidence relation of ( )2,lPG  (see Section 
2.3). To simplify the implementation, the points 
corresponding to a particular hyperplane are first 
identified, and then, the remaining hyperplanes are 
obtained by applying the cyclic shift to this hyperplane. 
The second step consists of obtaining the edge-vertex 
incidence graph G′  of the Ramanujan graph G . As seen 
earlier, the resultant graph is ( )d,2 -regular bipartite graph. 
The third step is to find the location of information 
symbols. The nodes in G′  corresponding to the edges in 
the complement T  of the spanning tree T  of graph G  
give the locations of the information symbols.  The 
requisite spanning tree of G  is constructed using the 
Prim’s algorithm, a well known algorithm in Computer 
Science (see for example, Chapter 6 of [34]).   The last 
step is to find the parity symbols using the simple addition 
and subtraction operations such that the sum of the values 
at each of the constraint nodes is zero. 
 
The effects of floating-point arithmetic are studied by 
fixing the number of digits to the right of decimal point. 
The values of information symbols are generated 
uniformly at random in the interval [ ]1,0  and are 
truncated according to the pre-selected resolution. Note 
that by r -digit resolution, we mean that information 
symbols contain r  digits to the right of the decimal point. 
For parity symbols, δ+r  digits can be considered to the 
right of the decimal point to counter the effect of possible 
subtractions. For the given number of erasures, the erasure 
locations are selected at random. The decoding is 
computationally very simple and involves only additions 
and subtractions over real fields.  

Some of the codes considered for simulation are given in 
Table 1 and their erasure correction capacity is shown in 
the Fig.5 for resolution of 8=r . The guaranteed erasure 
correction performance claimed when number of erasures 

3≤  is evident from the figure. Also, when number of 
erasures increases for a given dimension, it is clear that the 
performance shows graceful degradation, a useful feature 
indeed. Further, for a given number of erasures, the 
increase in the dimension increases the percentage of 
erasure correction, a “better” graceful degradation.  

Now, let us consider the effect of resolution. Table 2 gives 
average of 1l -norm (called as residue) between actual and 
decoded codewords, following [6], for 8=r . Note that ε  
denotes the number of erasures. It is easy to see that the 
mean residue increases with PG dimension l . This is 
because the degree of the bipartite graph d increases with 
,l  and thus, calculations of parity symbols require more 

number of additions and/or subtractions. Also, the mean 
residue increases with the number of erasures, as more 
erasures require more addition/subtraction operations for 
recovering them. 
 

Table 1: Specification of Codes obtained using various PG Dimensions 
l  n  k  d  Rate 
2 21 8 3 0.3810 
3 105 76 7 0.7238 
4 465 404 15 0.8688
5 1953 1828 31 0.9218 
6 8001 7748 63 0.9684 

 

Fig. 5  Erasure Correction Capacity vs. Number of Erasures for different 
dimensions of PG. 

 
 

Table 2: Mean Residue between Actual and Decoded Codewords for 
.8=r  

l ε 3 4 5 
3 9.89×10-17 8.98×10-16 3.65×10-15

4 1.39×10-16 1.28×10-15 4.69×10-15

5 2.03×10-16 1.50×10-15 6.68×10-15

6 2.48×10-16 1.88×10-15 7.27×10-15

 
 
It is to be noted that, compared to the codes of [7], for the 
proposed expander codes, the three erasure correction 
capability is intact even when n  increases and is high.  
This is attributable to the frame work we have used: that 
of expander graphs.  In this framework, the requisite 
computation for erasure correction is local to the 
constraint nodes of the graph, whether n  is small or not.  
Thus, the ill-condition situation which manifests with 
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larger n  in [7] is taken care of by the “divide-and-
conquer” strategy intrinsic to the expander codes.  Further, 
from the Table 1, it can be easily observed that the rate 
increases with the dimension of PG (and hence n ). These 
aspects demonstrate that the proposed real expander codes 
are asymptotically good and efficient.  Here, it may be 
worth mentioning about [35], where, some theoretical 
results are available towards using some Ramanujan 
Cayley graphs to arrive at asymptotically optimal class of 
cycle codes.  But, the codes are over binary field and the 
explicit frame work of expanders is not considered in [35].      
 
At this juncture, it is important to mention that the 
proposed codes do not follow the strict definition of 
expander codes. This is because, the classical definition of 
the expander codes requires that the degree d  has to 
remain constant as number of nodes n  increases. But, in 
our case, d  increases as n  increases (see Table 1); similar 
to [21] and [22].  Thus, the codes presented can be called 
as expander-like codes, following [21] and [22].  This can 
lead to better error-correction properties 
([16],[17],[18],[21],[22]) and in fact, “better” graceful 
degradation with increase in l mentioned earlier can be 
attributed to this fact.  But, there is a drawback with this 
increase in d  from a practical point since the accumulator 
has to “grow” to take care of addition of more number of 
values for the parity calculation.   Even though, the 
increase in d  is rather slow compared to n  (Table 1), this 
issue has to be appropriately addressed when the value of 
n  is very large (like hundreds of a thousand in present day 
HPC systems). 
 
Before concluding the paper, it is worth remarking that the 
real field codes proposed are arrived and examined from a 
“traditional” perspective.  Since, the real codes are closely 
linked to the area of CS (see [13],[14]), as mentioned 
earlier, it can be worth investigating these codes within 
this framework.  In that case, the erasure correction is 
related to sparsity of the signal to be detected and the 
parity check matrix is related to the so called 
“measurement matrix” ([13],[14]).  The erasure correction 
or more generally the error correction is related to the 
Restricted Isometry Property (RIP) ([11],[12],[13],[14]) of 
the parity check matrix. Interestingly, in this perspective 
there is a possibility to arrive at novel deterministic 
measurement matrices and hence the associated reduced 
complexity decoding algorithms (see [14] and the 
references therein). 

5. Conclusion 

The paper presented novel real number expander-like 
codes based on projective-geometrically constructed 

Ramanujan graphs.  The codes allow for fast linear time 
encoding and simple decoding in terms of erasure 
correction.  Apart from guaranteeing three-erasure 
correction, each of the codes in the family shows graceful 
degradation of the performance for the increasing number 
of erasures.  The codes can be explored for their utility in 
different scenarios of fault-tolerant computing and in other 
applications based on the Compressed Sensing paradigm. 
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