
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

48

Manuscript received January 5, 2011
Manuscript revised January 20, 2011

A Class of Real Expander Codes Based on Projective-
Geometrically Constructed Ramanujan Graphs

B.S. Adiga, M. Girish Chandra and Swanand Kadhe,

Innovation Labs, Tata Consultancy Services, Bangalore, INDIA

Summary
Quite recently, codes based on real field are gaining momentum
in terms of research and applications. In high-performance
computing, these codes are being explored to provide fault
tolerance under node failures. In this paper, we propose novel
real cycle codes based on expander graphs. The requisite graphs
are the Ramanujan graphs constructed using incidence matrices
of the appropriate projective-geometric objects. The proposed
codes are elegant in terms of reduced complexity encoding and
very simple erasure correction. Further, the codes are guaranteed
to correct three erasures. Apart from building the codes from the
sound existing principles, necessary simulation results and
justification of the useful properties are also presented in the
paper.

Key words:
Fault Tolerant Computing, Real Number Codes, Ramanujan
Graphs, Expander Codes, Cycle Codes

1. Introduction

The ability to detect and correct errors in communications,
storage and computing is of both fundamental and
practical importance. Error control codes providing this
capability are well researched and also many related
practical issues are addressed from last sixty years. Even
though, the error control codes are most often defined over
finite fields (or Galois fields), one can see codes defined
over real-number or complex-number fields in the
literature. These real-number or complex-number codes
can be advantageous in certain situations and some
aspects; the advantages in general are captured in [1].
These codes were initially approached from a signal
processing perspective [2], and some of the applications
include coding for Orthogonal Frequency Division
Multiplexing (OFDM) transmission over fading wireless
channels [3] and in High Performance Computing (HPC)
([4],[5],[6],[7]). In high-performance computing, these
codes are explored to provide fault tolerance for the
smooth execution of sophisticated scientific applications
under node failures. Both diskless checkpointing and
check-point free scenarios are considered while examining
these codes in [6], [7]. The concepts and issues related to

diskless check pointing are well known in the computing
community; see [8], [9] and references therein for details.
Cursorily, checkpointing is one of the techniques used in
fault-tolerant computing, where the “checkpoints” are
stored in stable storage (i.e. disk), since the stable storage
typically survives processor failures [8]. The goal of
diskless checkpointing is to remove stable storage and
replace it with memory and processor redundancy [8].
The redundant information in the spare processors is
obtained through coding (parity or Reed-Solomon codes)
and in this sense diskless checkpointing is akin to
software-implemented Redundant Array of Independent
Disks (RAID) technology [9], [10]. In linear algebra
computations involving a large dense matrix, the
application involved modify a large amount of memory
between consecutive checkpoints, introducing
considerable overhead (see [9] and the references therein).
In these cases, checkpoint-free fault tolerance is useful [9].
The benefits of using real or complex number codes in
HPC are covered in [8]. Further, as mentioned in [9], the
real (or complex) number codes can be used in other fields
like fault tolerant combinatorial and dynamic systems,
Compressive Sensing (CS) (see [11],[12],[13],[14]), and
Network Coding ([15]).

It is well known that the error correction involves finding
the location of errors and their values to reconstruct the
original data. When the positions of errors are known, we
have a simpler case of erasure correction, where the values
(magnitudes) of the “erased” digits are estimated. The
error correction for real (or complex) codes may involve

1l -norm minimization (also called as basis pursuit) and
greedy algorithms such as various matching pursuits,
based on the recent CS framework ([11],[12],[13],[14]).
Depending on the encoding or the choice of generator
matrix, reduced complexity decoding is also possible (see
[14]), including very simple majority-logic decoding [1].
In this paper, we restrict to erasure correction which
involves less complex decoding algorithms compared to
error correction.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

49

One of the main problems of real (or complex) number
codes is the contamination of the codeword due to
computations involving the digital representation of: (a)
the data (b) the coefficients of generator or parity check
matrices and (c) the results of encoding and decoding
operations. This contamination can lead to numerical
instability as elaborated in [4], [6] in the context of HPC.
The argument is based on the following facts [6], [7]: (1)
most of the error correction procedures involve solving a
system of linear equations (2) in computer floating-point
arithmetic no computation is exact due to round-off errors
(3) in solving a system of linear equations using computer,
a condition number of p10 for the coefficient matrix leads
to a loss of accuracy of about p digits (4) the generator
matrices of many of the real (or complex) number codes
contain ill-conditioned submatrices (i.e., numerically
indistinguishable from singular submatrices) (5) certain
error patterns can thus result in ill-conditioned system of
linear equations for the error correction causing the loss of
precision of possibly all digits in the recovered numbers.
Designing appropriate real number coding scheme to
correct different number of erasures is thus a challenging
problem. In [7], a class of Reed-Solomon (RS) style
erasure correction codes are presented, which are
numerically best in the sense that the each of the generator
matrix obtained has the condition number of the worst-
conditioned sub matrix minimized [7]. The two-erasure
correction codes are constructed analytically and the codes
to correct three or more erasures are obtained through
computations based on an approximation method. Based
on the chosen framework by the author, it is also proved in
[7] that it is impossible for any minimum redundancy code
to correct all erasure patterns, when the number of
erasures is more than one, for large generator matrices. In
the HPC scenario, the case of large generator matrix
corresponds to large number of processors.

Viewed from a slightly different perspective and following
[1], a real number erasure code would be really elegant if
(1) The code is guaranteed to correct certain number of
erasures (2) The encoding and decoding operations
involve fewer number of additions and subtractions only,
rather than the multiply and accumulate (MAC) operations.
This eliminates errors in representing the elements of
generator and parity check matrix and also the errors
involved in representing the product of two real numbers.
(3) The erasure correction capability remains the same as
the code length or generator matrix size increases. In a
nutshell, we need a family of real-number codes which are
asymptotically good and efficient, which simply means, as
the code length n increases, the error-correction capability
and rate are always maintained above some fixed values,
and the encoding and decoding can be performed in
polynomial time in n, respectively (see pp.46 of [16]).

Of late, expander codes have emerged as popular family of
asymptotically good and efficient codes. Following [17]
and [18], we consider the family of expander codes
parameterized by a fixed-size linear code with some small
block length and a family of expander graph with constant
degree (say, d); the degree and the block length need to
be matched. Using the small fixed-size linear block code
C (can also be referred to as sub code or component
code) and an expander graph G , one can build a larger
linear code, which is the expander code, denoted as
()CGC ,′ . The rate and the error correction property of

this expander code depend on the rate and distance of the
component code as well as the spectral expansion of the
expander graph [16]. If the component code C is the
parity code, then the expander code ()CGC ,′ is a cycle
code, which we refer to as the cycle expander code, as the
underlying graph is an expander graph. On the other hand,
if the underlying graph G is not an expander graph, we
end up with the conventional cycle codes. See [19], [20]
(and the references there in) for more details on cycle
codes. The parity code mentioned has block length d ,
message or information length 1−d and the minimum
distance of 2.

In this paper, we propose a novel family of real number
erasure correction cycle expander codes which are
guaranteed to correct three erasures. The component
codes are simple parity-based codes over the real field.
The expander graphs chosen are the Ramanujan graphs
constructed using the Projective Geometry (PG) based
incidence matrices [21], [22], [23]. Some of the
advantages of using the PG-based graphs are highlighted
in [21],[22],[23]. The code construction follows that of
Zemor [18] and involves using the edge-vertex incidence
graph G′ of the Ramanujan graph G . See also [17] for
details on edge-vertex incidence graphs. These cycle
expander codes facilitate reduced complexity encoding
and further, the erasure correction with the proposed
expander codes involves only additions and subtractions,
rather than the MAC operations. The errors which may
occur due to these computations can be taken care of by
simply having a “longer” accumulator. The proposed
expander codes are asymptotically good in the sense that
the three-erasure correction capability is intact with the
increase in block length. The rest of the paper is
organized as follows. In Section 2, the necessary
ingredients of the proposed expander code are briefly
covered. Included here are the relevant details about cycle
codes, expander graph preliminaries, PG based incidence
matrices and the associated Ramanujan graphs, edge-
vertex incidence graph and some remarks on decoding. In
Section 3, a conceptual proof is provided towards the
three-erasure correction capability of the proposed code.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

50

Section 4 presents some relevant simulation results and
discussion. Finally, conclusions are provided in Section 5.

2. Nuts and Bolts of the Proposed Code

The aim of this section is to cover the necessary nuts and
bolts for the proposed expander code, including the
relevant basics and terminology. Any coding scheme
necessarily implies appropriate decoding strategy as well.
Thus, the aspects related to decoding (in particular, erasure
correction), are also touched upon. Since the code of
interest is a cycle code based on expander graphs, we start
with some necessary information about cycle codes.

2.1 Cycle Codes over Binary and Real Fields

In this section, the required concepts and definitions are
borrowed heavily from [19] and [20]. Cycle codes are
defined over graphs. As customary, we consider an
undirected connected graph ()EVG ,= , where V and E
are the set of vertices and edges of G respectively. If an
edge e connects a vertex v to some other vertex, then e is
said to be incident to v. The graph induced by a subset E ′
of edges is the graph ()EV ′′, , where V ′ is the set of
vertices incident to at least one edge in E ′ . A cycle in a
graph G is a collection of edges such that in the graph
induced by them, all vertices have even degree. The cycle
code associated to G, denoted as ()GC , is a binary code of
block length n equal to the number of edges, i.e. En = ,
and every code word corresponds to a cycle. From the
construction perspective, it is useful to consider a
spanning tree of G (which is a tree containing all vertices
of G), since a convenient way of generating a cycle is by
adding an edge to the spanning tree. Considering a
spanning tree T and its complement T , each edge ie in

T form a unique cycle ic with those edges in T that form

a path between the nodes at which ie is incident. If the k

edges in T (where 1+−= mnk with m being the
number of nodes in G) and the remaining 1−m edges of
T are numbered keee ,,, 21 L and nkk eee ,,, 21 L++

respectively, then each cycle ic can be represented by a

binary vector []iniii ccc L21=c with 1=ijc if je

is the edge in ic and 0 otherwise. The vectors

kii ,,2,1, L=c form the rows of the generator matrix
G of the cycle code and hence are the basis vectors for the
linear space spanned by the cycles of G. In a nutshell,

()GC can be viewed as a subspace of nF2 of cycles of G,
where nF2 is the n-dimensional vector space over the
binary field 2F . As far as encoding is concerned, the
cycle codes can be encoded in linear time. This follows
from the theorem in [19] suggesting a linear time
algorithm to calculate the values on the edges in T given
the values on the edges in T , which are the information
bits. Before, remarking on the decoding of the cycle codes,
it is worth noting that the examination of parity check
matrices of cycle codes suggests that they can be viewed
as Low Density Parity Check (LDPC) codes [24] with
column weight 2. The associated Tanner graph of the
parity check matrix can be used for decoding using
different flavors of sum-product algorithms [25]. For
erasure correction, simple Exclusive OR (XOR)
operations are sufficient, where the idea is, if each node of
the graph has d neighbors and if the values of 1−d edges
are known, the remaining value can be determined as the
XOR of the rest. The process is iterated until no new
values can be determined.

So far, the discussion presented is for the cycle codes over
binary fields. Since the focus of the paper is on real-
number codes, how to extend these binary codes is really
important. But, this can be very simply accomplished by
treating the generator matrix as a matrix over the real field
to generate the real-number code word from real number
information symbols. This is similar in principle to that
followed in [1]. For the erasure correction, the value of
the requisite edge is obtained as the negative of the sum of
the known 1−d edge values, again a simple extension of
the XOR operation of the binary case.

The simple structure coupled with easy encoding and
decoding of cycle codes make them really attractive and
they have been under intense studies since the early days
of coding theory to recent times [20]. It is worth
examining these codes over real field when the underlying
graph G is an expander. To the best of our knowledge, a
study in this direction is not reported elsewhere. We start
with a background on expander graphs before arriving at
projective-geometrically constructed Ramanujan graphs,
which are a class of expander graphs.

2.2 Expander Graphs

Informally, an expander graph is a graph ()EVG ,= , in
which every subset of vertices sV expands quickly, in the

sense that it is connected to many vertices in the set sV of
complementary vertices [26]. An Expander Graph is
interesting as it satisfies two conflicting but desirable

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

51

properties: (1) being sparse and (2) “well connected”. The
property of well connectedness or expansion can be more
formally defined in terms of edge expansion rate or vertex
expansion ratio, the latter being more suitable for bipartite
graphs (see [16],[26],[27] for more details). The
expansion property is related to the first two largest
eigenvalues of the adjacency matrix of the graph [16],[26].
The difference of these eigenvalues is known as spectral
gap [16],[26]. A useful result to note at this juncture is
that the edge expansion rate ()Gh of a d-regular graph G
(i.e. every vertex of G has degree d) is bounded as in Eq.1

() ()λλ
−≤≤

− ddGhd 2
2

 (1)

where λ is the second largest eigenvalue; of course, the
largest eigenvalue in this case is d. Thus, smaller theλ for
a given d, better is the expansion. The expander codes are
based on explicit construction of expander graphs and
include codes based on bipartite expander graphs, Sipser
and Spielman constructions using regular expander graphs
and Zemor’s construction considering the special case of
Ramanujan’s graphs (see [16],[17],[18] for more details).
A finite, connected d-regular graph is a Ramanujan graph
if it satisfies

12 −≤ dλ (2)

Roughly, the Ramanujan graphs have large spectral gap
[16]. There are various ways to construct Ramanujan
graphs, and we would be using the PG for their explicit
construction, following [21],[22],[23].

2.3 Projective Geometry Based Ramanujan Graphs

The projective geometry (PG) is essentially a geometric
realization of linear algebra [28]. Restricting to the finite
PG, a PG of dimension l and order is denoted as ()qlPG , ,
where q is a prime or power of a prime. ()qlPG , is
constructed using a vector space S of dimension ()1+l
over the field qF [29]. This ()1+l -dimensional object
can be viewed in geometrical terms, by calling the one-
dimensional subspaces of S as points, 2-dimensional
subspaces as lines, the 3-dimensional subspaces as planes,
and the l-dimensional subspaces are called hyperplanes
[29]. The r-dimensional objects described by ()1+r -
dimensional subspaces are called as r-flats. Treating the
geometric objects this way is justified by observations like
any two points are precisely one common line since two

different 1-dimensional subspaces (points) generate
precisely one 2-dimensional space (a line) [29].

A ()qlPG , has ()
()1

11

−
−

=
+

q
qN

l

 points and equally many

hyperplanes. A useful notion in PG is that of
homogeneous coordinates. The elements of the
underlying vector space 1+= l

qFS are the ()1+l -tuples

()121 ,, +lxxx L of field elements. Let

()121 ,, += lq xxxFP L be the 1-dimensional vector

space generated by the nonzero ()1+l -tuple. As any
nonzero scalar multiple of ()121 ,, +lxxx L
generates the same “point” P, it is customary to write

()121 ::: += lxxxP L called as homogeneous
coordinates with the implication of

() ()121121 :::::: ++ = ll xxxxxx λλλ LL (3)

for every qF∈≠ λ0 [29]. The term homogeneous
coordinates makes sense as it simply means scaling is
unimportant [30]. The homogeneous coordinates can be
assigned naturally to hyperplanes as well [29]. Each
hyperplane can be described as the set of points satisfying
a nontrivial linear equation. In other words, the
hyperplane consisting of all points
()121 ::: +lxxx L such that

 0112211 =+++ ++ ll yxyxyx L (4)

has homogeneous coordinates []121 ::: +lyyy L [29].

The next concept relevant to us is that of incidence
relations. They are simply the binary relations decsribing
how the geometric objects (or equivalently the subspaces)
meet [31]. Examples include, “lies on” between points
and hyperplanes (as in “point P lies on hyperplane H”),
and “intersects” (as in “line 1L intersects line 2L ”) [31].
The incidence relationship we are interested in is that of
between points and hyperplanes. This relationship can be
captured in terms of a square incidence matrix as the
number points is equal to the number of lines (which is N).
This incidence matrix can then be used to generate a
bipartite graph, which in our case is the Ramanujan graph
we are looking for. It is to be noted that the requisite
Ramanujan graphs can be obtained using PG over any
field, including extension fields. However, for the results
presented in this paper, we examined the graphs generated
by the point-hyperplane incidence matrices of ()2,lPG ,

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

52

i.e., PG over binary field 2F . An example is presented in
the following towards a better comprehension of the
construction.

Example: We consider the projective plane ()2,2PG
corresponding to 2=l and for this case we get 7 points
and 7 hyperplanes (here, they are lines). The incidence
matrix M for this case is given by

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1000101
1100010
0110001
1011000
0101100
0010110
0001011

M

 (5)

For this incidence matrix, the corresponding bipartite
graph can be drawn as shown in Fig.1. A bipartite graph

()EVVG RL ,∪= is called a ()dc, -regular graph if every
vertex in LV has degree c and every vertex in RV has
degree d [32]. The subscripts L and R refer to left side and
right side respectively; a convention usually followed to
group two sets of vertices. For better utilization of space,
the bipartite graph in Fig.1 is tilted, making the left and
right sides shifted to upper and lower sides, respectively.
This display aspect is followed in the rest of the paper also.
As the number of hyperplanes is equal to the number of
points, we have 7== RL VV in this case and

further, 3== dc . These equalities of RL VV = and

dc = are also true for other values of l and 2=q . Thus,
the graphs obtained this way are balanced d-regular
bipartite graphs. Further, all these graphs satisfy Eqn.2
and thus are Ramanujan graphs. Continuing with our
example, for ()2,lPG , we have 4142.1=λ which is less

than 8284.212 =−d .

It is useful to note that the Adjacency Matrix A required
to compute the λ can be obtained from the incidence
matrix M using the relationship

⎥
⎦

⎤
⎢
⎣

⎡
=

OM
MO

A T
 (6)

Even though we considered the case of projective
plane ()2,2PG for simplicity and ease of depicting the

graphs, the graphs obtained from ()2,lPG with 3≥l , i.e.,
higher-dimensional projective spaces, are very useful as
well. The codes based on the graphs of projective spaces
are also capable of guaranteeing 3-erasure correction and
further can support higher code rates (see Section 3 and
Section 4). The Ramanujan graphs so obtained can be
used as “base graphs” to construct the requisite expander
codes as discussed next.

Fig. 1 Bipartite graph generated by the point-hyperplane incidence
relations of ()2,2PG .

2.4 Zemor Construction of Expander Codes

Sipser and Spielman [17] suggested a construction of
asymptotically good and efficient linear codes using d-
regular expander graphs. By using bipartite Ramanujan
graphs, Zemor [18] constructed the expander codes
capable of correcting 12 times more errors compared to
that of Sipser and Spielaman codes, without compromising
the complexity of the decoding. As mentioned in the
beginning of the paper, our construction is similar to
Zemor’s construction, but utilizes PG- based Ramanujan
graphs, including those from higher dimensions. As the
expander codes we are focusing are a class of LDPC codes,
any construction should lead to a bipartite (Tanner) graph,
with the appropriate identification of variable and
constraint nodes. Similar to [18] (see also [17]), this is
obtained using the edge-vertex incidence graph of PG-
based Ramanujan graph ()EVVG RL ,∪= . This edge-
vertex incidence graph ()EVVG RL ′′∪′=′ , has EVL =′
and RLR VVV ∪=′ . Each “vertex” in LV ′ is joined to both
of its end points, hence one in LV and another in RV [32];
the edge set E ′ of G′ is obtained this way. The resultant
bipartite graph is ()d,2 - regular graph. Since G′ is
constructed from the PG-based Ramanujan expander
graph G, it also exhibits good expansion properties [33].

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

53

Continuing with our illustrative example, the resultant
edge-incidence graph is as shown in Fig.2 with 21=′LV ,

14=′RV , and 3=d . Also, as shown in the figure, it is

useful, towards better visualization of decoding, to keep
the vertices corresponding to LV and RV in the respective
groups, rather than mixing them up (see Section 3).

Fig. 2 Edge-vertex incidence graph of the bipartite graph in Fig.1.

To arrive at the expander codes, the next steps involved
are (1) identifying the variable and constraint nodes of
G′ and (2) to bring component code into the scenario
through constraint and variable nodes interaction. The
vertices in { }nL vvvV L21=′ and

{ }tR pppV L21=′ can be identified with the
variable nodes and constraint nodes respectively [18],[32];

here LVn ′= and
d
nt 2

= . Each of the constraint nodes is

connected to d variable nodes and for the expander code, it
is required that these d variable nodes form a linear code
word of length d. Because the restrictions imposed on the
variables are linear, the resulting expander code will be
linear as well. It is useful to define a mapping function
()jib , towards a formal definition of expander code,

where, ()jib , returns the j-th neighbor (jv) of the

vertex Ri Vp ′∈ [32].
Definition of Expander Code [32]: Let C be an error
correcting code of block length d. The expander code

()CGC ,′ consists of all code words []nxxx L21
such that for all i (from 1 to t)

() () ()[] Cxxx dibibib ∈,2,1, L (7)

As remarked in Section 1, the performance of the
expander code depends on both the expander graph and
the component code. The formal quantification of the
performance metrics are well documented (see
[16],[19],[32], [33] for example). It is sufficient to note
that if G′ is a good expander and if the constraints are
identified with sufficiently good codes, then the resulting

expander code will be a good code [19]. As far as the
component code C is concerned, different flavors are
possible including RS codes [21],[22].

2.5 Cycle Expander Codes

For our real expander codes, the component code is the
parity code as mentioned in Section 1. But, we need a
systematic constructive procedure to carry out the
encoding as it is necessary to ensure that neighbors of
each of the constraint nodes are code words. Needless to
say, this cannot be done in an ad hoc fashion. By
following the concepts and methodology presented in
Section 2.1 this can be carried out using the
(complementary) spanning tree of G . Of course, the base
graph G and the edge-vertex incidence graph G′ are
closely related; recollect that each variable node in
G′ corresponds to an edge inG , whereas each constraint
node in G′ corresponds to a node in G . Now the turn of
decoding: the erasure correction decoding happens on the
graph G′ iteratively as mentioned in Section 2.1.

In a nutshell, using the procedure suggested in Section 2.1,
we can construct useful real cycle expander codes which
are asymptotically good and efficient as well as
guaranteed to correct three erasures. A conceptual proof
for the latter is provided next.

3. A Conceptual Proof for Three-Erasure
Correction Capability

To prove the three-erasure correction capacity of the
proposed code, it is sufficient to show that, it is possible to
correct all combinations of three erasures, whereas there
are certain four and more erasure locations which cannot
be corrected. Based on the detailed examination of PG
graphs, it is possible to rigorously prove the error
correction properties of the expander codes. These are
available in [22] and would be submitted for publication
soon. Here, we rather take a conceptual approach towards
bringing out the three-erasure correction capability of the
real cycle expander codes.

How the proposed codes are capable of correcting any
pattern of three erasures can be conceptually brought as
follows. As seen in Section 2.4, each variable node of the
edge-vertex incidence graph is connected to two constraint
nodes, one in LV and another in RV . Thus, if a code
symbol (corresponding to variable node) is erased, it has
to be corrected by one of the two constraint nodes. A
constraint node can correct an erased symbol provided the
remaining 1−d variable nodes connected to it are intact.
Now, note that a variable node in G′ corresponds to an

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

54

edge in G and there are no multiple edges in G . Using
these facts, it can be observed that any group of three
variable nodes is connected to at least four constraint
nodes. Further, there are at least two of these four
constraint nodes which are connected to only one variable
node in this group. Hence, if the symbols corresponding to
variable nodes in this group are erased they can be
corrected over the iterations, starting from the correction
by the constraint node, which is “seeing” one erased
symbol. This corrected information is fed back in the
Tanner graph to facilitate the correction of other errors.

The next task is to bring out the fact that there are certain
four-erasure locations which cannot be corrected. It is to
be noted that certain four erasure patterns, in fact, many of
them can be corrected as the proposed code demonstrates
graceful degradation in erasure correction performance
(see Section 4).

A group of erased nodes cannot be corrected if both the
constraint nodes connected to any erased node, are
connected to at least one other erased node. Since the
edge-vertex incidence graph is constructed from the point-
hyperplane incidence graph (i.e. the base graph), it is
possible to carefully examine the base graph in order to
find out the variable nodes that form such a deadlock in
the edge-vertex incidence graph. One way to find out such
variable nodes from the base graph is as follows. First,
consider the plane obtained by the intersection of any two
hyperplanes; we call this plane as base plane. For example,
if 3=l and considering the intersection of first and last
hyperplanes, we get the base plane (base line in this case)
as { }14,11,0 . Then, find the hyperplanes which are
incident on this base plane (base line). For the case of

3=l , these are given by 0, 1, and 4. Now, consider the
subgraph of the base graph, which corresponds to the
incidence relation of the points on the base line (i.e. 0, 11,
14) and the hyperplanes incident on the base line (i.e. 0, 1,
4). This is shown in Fig. 3. Note that in the base graph,
usually the vertices corresponding to the points are labeled
from 0 to 14 and those corresponding to the hyperplanes
are labeled from 15 to 30. Thus, in Fig 3, the vertices
corresponding to hyperplanes 0, 1, 4 are labeled as 15, 16
and 19 respectively. This subgraph is a complete bipartite
graph. Now, if any two vertices corresponding to points
and hyperplanes in this subgraph are considered, the four
edges joining them form a cycle. One such cycle is shown
in Fig. 3 by dotted edges. The portion of the edge-vertex
incidence graph containing the variable nodes
corresponding to these four dotted edges and their
corresponding constraint nodes is shown in Fig. 4. The
edge between nodes 0 and 15 is labeled as 0 and
corresponds to variable node 0; edge between nodes 0 and
19 is labeled as 3 and corresponds to variable node 3; and

so on. Observe that variable nodes 0, 3, 98 and 101 and
their corresponding constraint nodes form a deadlock,
where each constraint node is connected to at least two
variable nodes. Thus, if symbols corresponding to these
variable nodes are erased, it is not possible to correct them.

Using the above procedure, it is possible to find various
locations of the code symbols that, if erased, cannot be
corrected. It is important to emphasize that for 2=l , the
cycle of length 4 does not exist in the base graph and the
code is able to correct four erasures.

For erasures of size greater than four, the arguments
similar to above can be built to arrive at the erasure
patterns which cannot be corrected.

Fig. 3 Subgraph obtained from base line-hyperplane incidence relation.

Fig. 4 Subgraph of edge-vertex incidence graph corresponding to Fig. 3.

4. Some Results and Discussion

Elaborate simulations are carried out to analyze the
performance of the proposed codes in terms of their
erasure correction capacity. Also studied are few issues
relating to the floating point arithmetic. Some of these
results are captured in this section, augmented with a
discussion on different aspects and behavior of the codes.
The construction of the code, as discussed in Section 2,
involves four steps. In the first step, a PG-based

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

55

Ramanujan graph G is constructed using the point-
hyperplane incidence relation of ()2,lPG (see Section
2.3). To simplify the implementation, the points
corresponding to a particular hyperplane are first
identified, and then, the remaining hyperplanes are
obtained by applying the cyclic shift to this hyperplane.
The second step consists of obtaining the edge-vertex
incidence graph G′ of the Ramanujan graph G . As seen
earlier, the resultant graph is ()d,2 -regular bipartite graph.
The third step is to find the location of information
symbols. The nodes in G′ corresponding to the edges in
the complement T of the spanning tree T of graph G
give the locations of the information symbols. The
requisite spanning tree of G is constructed using the
Prim’s algorithm, a well known algorithm in Computer
Science (see for example, Chapter 6 of [34]). The last
step is to find the parity symbols using the simple addition
and subtraction operations such that the sum of the values
at each of the constraint nodes is zero.

The effects of floating-point arithmetic are studied by
fixing the number of digits to the right of decimal point.
The values of information symbols are generated
uniformly at random in the interval []1,0 and are
truncated according to the pre-selected resolution. Note
that by r -digit resolution, we mean that information
symbols contain r digits to the right of the decimal point.
For parity symbols, δ+r digits can be considered to the
right of the decimal point to counter the effect of possible
subtractions. For the given number of erasures, the erasure
locations are selected at random. The decoding is
computationally very simple and involves only additions
and subtractions over real fields.

Some of the codes considered for simulation are given in
Table 1 and their erasure correction capacity is shown in
the Fig.5 for resolution of 8=r . The guaranteed erasure
correction performance claimed when number of erasures

3≤ is evident from the figure. Also, when number of
erasures increases for a given dimension, it is clear that the
performance shows graceful degradation, a useful feature
indeed. Further, for a given number of erasures, the
increase in the dimension increases the percentage of
erasure correction, a “better” graceful degradation.

Now, let us consider the effect of resolution. Table 2 gives
average of 1l -norm (called as residue) between actual and
decoded codewords, following [6], for 8=r . Note that ε
denotes the number of erasures. It is easy to see that the
mean residue increases with PG dimension l . This is
because the degree of the bipartite graph d increases with
,l and thus, calculations of parity symbols require more

number of additions and/or subtractions. Also, the mean
residue increases with the number of erasures, as more
erasures require more addition/subtraction operations for
recovering them.

Table 1: Specification of Codes obtained using various PG Dimensions
l n k d Rate
2 21 8 3 0.3810
3 105 76 7 0.7238
4 465 404 15 0.8688
5 1953 1828 31 0.9218
6 8001 7748 63 0.9684

Fig. 5 Erasure Correction Capacity vs. Number of Erasures for different
dimensions of PG.

Table 2: Mean Residue between Actual and Decoded Codewords for
.8=r

l ε 3 4 5
3 9.89×10-17 8.98×10-16 3.65×10-15

4 1.39×10-16 1.28×10-15 4.69×10-15

5 2.03×10-16 1.50×10-15 6.68×10-15

6 2.48×10-16 1.88×10-15 7.27×10-15

It is to be noted that, compared to the codes of [7], for the
proposed expander codes, the three erasure correction
capability is intact even when n increases and is high.
This is attributable to the frame work we have used: that
of expander graphs. In this framework, the requisite
computation for erasure correction is local to the
constraint nodes of the graph, whether n is small or not.
Thus, the ill-condition situation which manifests with

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

56

larger n in [7] is taken care of by the “divide-and-
conquer” strategy intrinsic to the expander codes. Further,
from the Table 1, it can be easily observed that the rate
increases with the dimension of PG (and hence n). These
aspects demonstrate that the proposed real expander codes
are asymptotically good and efficient. Here, it may be
worth mentioning about [35], where, some theoretical
results are available towards using some Ramanujan
Cayley graphs to arrive at asymptotically optimal class of
cycle codes. But, the codes are over binary field and the
explicit frame work of expanders is not considered in [35].

At this juncture, it is important to mention that the
proposed codes do not follow the strict definition of
expander codes. This is because, the classical definition of
the expander codes requires that the degree d has to
remain constant as number of nodes n increases. But, in
our case, d increases as n increases (see Table 1); similar
to [21] and [22]. Thus, the codes presented can be called
as expander-like codes, following [21] and [22]. This can
lead to better error-correction properties
([16],[17],[18],[21],[22]) and in fact, “better” graceful
degradation with increase in l mentioned earlier can be
attributed to this fact. But, there is a drawback with this
increase in d from a practical point since the accumulator
has to “grow” to take care of addition of more number of
values for the parity calculation. Even though, the
increase in d is rather slow compared to n (Table 1), this
issue has to be appropriately addressed when the value of
n is very large (like hundreds of a thousand in present day
HPC systems).

Before concluding the paper, it is worth remarking that the
real field codes proposed are arrived and examined from a
“traditional” perspective. Since, the real codes are closely
linked to the area of CS (see [13],[14]), as mentioned
earlier, it can be worth investigating these codes within
this framework. In that case, the erasure correction is
related to sparsity of the signal to be detected and the
parity check matrix is related to the so called
“measurement matrix” ([13],[14]). The erasure correction
or more generally the error correction is related to the
Restricted Isometry Property (RIP) ([11],[12],[13],[14]) of
the parity check matrix. Interestingly, in this perspective
there is a possibility to arrive at novel deterministic
measurement matrices and hence the associated reduced
complexity decoding algorithms (see [14] and the
references therein).

5. Conclusion

The paper presented novel real number expander-like
codes based on projective-geometrically constructed

Ramanujan graphs. The codes allow for fast linear time
encoding and simple decoding in terms of erasure
correction. Apart from guaranteeing three-erasure
correction, each of the codes in the family shows graceful
degradation of the performance for the increasing number
of erasures. The codes can be explored for their utility in
different scenarios of fault-tolerant computing and in other
applications based on the Compressed Sensing paradigm.

References
[1] Jiun Shiu and Ja-Ling Wu, “Class of Majority Decodable

Real-Number Codes”, IEEE Trans. Communications, Vol.44,
No.3, pp.281-283, March 1996.

[2] T. G. Marshall, Jr., “Coding of Real-Number Sequences for
Error Correction: A Digital Signal Processing Problem”,
IEEE J. Select. Areas Commun, Vol.SAC-2, No.2, pp.381-
391, March 1984.

[3] Zhengdao Wang and Georgios B.Giannakis,“Complex-Field
Coding for OFDM Over Fading Wireless Channels”, IEEE
Trans. Inf. Theory, Vol.49, No.3, pp.707-720, March 2003.

[4] Z. Chen and J. Dongarra, “Numerically Stable Real Number
Codes Based on Random Matrices”, Proc. 5th International
Conference on Computational Science (ICCS2005), Atlanta,
USA, May 2005.

[5] Z. Chen and J. Dongarra, “Algorithm-Based Fault Tolerance
for Fail-Stop Failures”, IEEE Trans. Parallel and Distributed
Systems, Vol.19, No.12, Dec. 2008.

[6] Z. Chen, G.E. Fagg, E. Gabriel, J. Langou, T. Angskun, G.
Bosilca and J. Dongarra, “Fault Tolerant High Performance
Computing by a Coding Approach”, Proc. ACM SIGPLAN
Symp. Principles and Practice of Parallel Programming,
PPOPP, Chicago, USA, Jun. 2005.

[7] Zizhong Chen, “Optimal Real Number Codes for Fault
Tolerant Matrix Operations”, Proc. Conf. High Performance
Computing Networking, Storage and Analysis, Oregon, USA,
Nov. 2009.

[8] James S. Plank, Kai Li and Michael Puening, “Diskless
Checkpointing”, Technical Report UT-CS-97-380, Dept.
Computer Science, University of Tennessee, Dec. 1997.

[9] Charng-da Lu, “Scalable Diskless Checkpointing for Large
Parallel Systems”, PhD Dissertation, Dept. of Computer
Science, University of Illinois at Urbana-Champaign, 2005

[10] Derek Vadala, “Managing RAID on LINUX”, O’ Reilly,
2003

[11] R. Baraniuk, “Compressive Sensing”, Lecture Notes, IEEE
Signal Processing Magazine, Vol.24, pp.118-124, July 2007.

[12] E. J. Candès and M. Wakin, “An Introduction to
Compressive Sampling”, IEEE Signal Processing Magazine,
25(2), pp. 21 - 30, March 2008.

[13] E. J. Candes and T. Tao, “Decoding by Linear
Programming”, IEEE Transactions on Information Theory,
Vol.51, No.12, pp. 4203-4215, Dec.2005.

[14] B.S. Adiga, M. Girish Chandra and Shreeniwas Sapre,
“Guaranteed Error Correction Based on Fourier Compressive
Sensing and Projective Geometry”, Accepted, ICASSP,
Prague, Chech Republic, May 2011.

[15] S. Shinte, S. Katti, S. Jaggi, B.K. Dey, D. Katabi, and M.
Medard, “Real and Complex Network Codes: Promises and

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

57

Challenges”, IEEE Workshop on Network Coding and
Applications, NetCod, Hong Kong. Jan.2008.

[16] Jose Miguel Perez Urquidi, “Expander Graphs and Error
Correcting Codes”, Master Thesis, Universite de Bordeaux,
2010.

[17] M. Sipser and D.A. Spielman, “Expander Codes”, IEEE
Trans. Inf. Theory, Vol.42, No.6, pp.1710-1722, Nov. 1996.

[18] G. Zemor, “On Expander Codes”, IEEE Trans. Inf. Theory,
Vol.47, No.2, pp.835-837, Feb. 2001.

[19] Amin Shokrollahi, “Expander Codes”, Lecture Notes
[20] Tony De Souza, “Cycle Codes”, Project Report, EPFL, June

2005.
[21] B.S. Adiga, S. Chaudhary, H. Sharma, S. Patkar, “System

for Error Control Coding using Expander-like codes
constructed from higher dimensional Projective Spaces, and
their Applications”, Indian Patent Application,
2455/MUM/2010.

[22] Hrishikesh Sharma, Swadesh Chaudhary, Sachin Patkar,
“Subgraph Embeddings in Projective Space Lattices”,
Internal Technical Report, Dept. of Electrical Engineering,
IIT Bombay, India, Nov 2009.

[23] Swadesh Choudhary, Tejas Hiremani, Hrishikesh Sharma
and Sachin Patkar, “A Folding Strategy for DFGs derived
from Projective Geometry based graphs”, The 2010
International Congress on Computer Applications and
Computational Science (CACS 2010), Singapore, Dec 4-6,
2010

[24] R. G. Gallager, “Low Density Parity Check Codes” , PhD
Dissertation, MIT, 1963

[25] M. Girish Chandra, Harihara S.G, B.S. Adiga,
Balamuralidhar. P, P.S. Subramanian, “Effect of Check Node
Processing on the Performance of Message Passing
Algorithm in the Context of LDPC Decoding for DVB-S2”,
ICICS 2005, Bangkok, Thailand, Dec.2005.

[26] M. A. Nielsen, “Introduction to Expander Graphs”, June
2005

[27] D. Song, D.Zuckerman and D. Tygar, “Expander Graphs for
Digital Stream Authentication and Robust Overlay
Networks”, Proc. IEEE Symposium on Security and Privacy
(S&P02), California, May 2002.

[28] Nigel Hitchin, “Projective Geometry”, Course Notes, 2003,
http://people.maths.ox.ac.uk/~hitchin/hitchinnotes/Projective_ge

ometry/Chapter_1_Projective_geometry.pdf
[29] Jurgen Bierbrauer, “Finite Geometries”, Course Notes, April,

2005
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

5.1808
[30] Stan Birchfield, “An Introduction to Projective Geometry

(for computer vision), March 1998,
http://ai.stanford.edu/~birch/projective/projective.pdf
[31] http://en.wikipedia.org/wiki/Incidence_(geometry)
[32] V. Aravind, “Expander Codes”, Lecture Notes,
www.cmi.ac.in/~ramprasad/lecturenotes/expcodes.pdf
[33] Prahladh Harsha, “Expander Codes”, Course Notes, May,

2005,
www.tcs.tifr.res.in/~prahladh/teaching/05spring/lectures/lec6
.pdf

[34] Gilles Brassard and Paul Brately, “Fundamentals of
Algorithmics”, Prentice Hall, 1996.

[35] J.P. Tillich and G. Zémor, “Optimal Cycle Codes
Constructed from Ramanujan Graphs”, SIAM Journal of
Discrete Mathematics, Vol. 10, No. 3, p.447-459, August
1997.

B. S. Adiga obtained his BE
(Electrical Engg.) and MTech
(Industrial Electronics) degrees from
Karnataka Regional Engineering
College, Surathkal, India. He
obtained his PhD in Computer
Science from the Indian Institute of
Science, Bangalore, India. He
worked as a scientist at National
Aerospace Laboratories, Bangalore,
India, for nearly 20 years. Later on,

he was with Motorola India Electronics Limited and Philips
Innovation Labs, Bangalore, India. Presently, he is a Principal
Scientist at the Innovation Labs, Tata Consultancy Services,
Bangalore, India. His interests are in the broad areas of Signal
Processing, Communications and Computing including, Error
Control Coding, Compressive Sensing, High-Performance
Computing and Multimedia Signal Processing.

M. Girish Chandra obtained his BE
in Electronics from University
Visvesvaraya College of Engineering,
Bangalore and MTech from IIT
Madras in Communication Systems
and High Frequency Technology. He
earned his PhD as a Commonwealth
Scholar in Digital Communication
from Imperial College, London.
Presently, he is a Senior Scientist at
the Innovation Labs, Tata
Consultancy Services, Bangalore,

India. Earlier, he was holding the position of Assistant Director
at the Aerospace Electronics Division of National Aerospace
Laboratories, Bangalore, India. His interests are in the broad
areas of Communications and Signal Processing, including, Error
Control Coding, Compressive Sensing, Cross-Layer Design and
Multimedia Signal Processing.

Swanand Kadhe obtained his BE
degree in Electronics and
Telecommunication from
University of Pune in 2007 and
MTech degree from IIT Kanpur in
Signal Processing,
Communications and Networking
in 2009. Currently, he is a
researcher at the Innovation Labs,
Tata Consultancy Services,

Bangalore, India. His interests are in sparse graph-based codes,
network coding, network information theory, cross layer design
and role of feedback in wireless systems.

