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Summary 
In this paper, we present a unidirectional linear response fuzzy 
controller (FC) to control the inverted pendulum system. The 
performance of turning fuzzy controller is defined as an 
evaluation function and our proposed technique, which is based 
on the integration of reinforcement learning and a perturbation 
method, is utilized to diversity the search of minimization of the 
evaluation function. Once the reinforcement learning method 
results in a local optimal solution for the problem, the 
perturbation method is implemented, actually a gradient ascent 
learning phrase is carried out. The two phrases are repeated until 
a better solution is found. The proposed hybrid learning method 
is utilized to adapt the parameters in the fuzzy control. 
Simulation results reveal that the proposed learning system can 
control the inverted pendulum system better than other 
traditional systems. 
Key words: 
Unidirectional linear response, fuzzy controller, reinforcement 
learning, perturbation  

1. Introduction 

In recent years, modern industrial plants increase their 
complexity and demand flexibility that makes the control 
design difficult. The conventional control system design 
requires an explicit mathematical model of the plant. 
Intelligent control can be a practical alternative since 
control design can be based on the knowledge and 
experience of human, such as fuzzy logic, neural network. 
A fuzzy controller is such a combination of neural 
network and fuzzy logic. It is knowledge-based or rule-
based systems which provide a framework for formalising 
intuition and experiences of human experts and operators 
[1]. Based on Zadeh’s theory of fuzzy sets [2], a typical 
fuzzy controller [3] contain descriptive if-then rules that 
are created from human knowledge and heuristics and 
associated fuzzy sets for mapping real-numbered inputs to 
outputs, and thus overcome the limitation that classical 
expert systems may meet because of their inflexible 
representation of human decision making.  
 
Based on this understanding, fuzzy controllers have 
successfully been employed for various applications such 
as information systems, consumer products, industrial 
process control, medical instrumentation and decision 

analysis [4-8]. It has proven to be an effective tool for 
complicated and imprecise processes because it can easily 
approximate what human experts perform well under such 
ill-defined environments when no mathematical 
formulation is able to define [9]. Despite the advantages of 
fuzzy controllers, its limitation lies in its inability to tune 
the membership functions effectively, which can be well 
accommodated by the learning in neural network. The 
learning capability of fuzzy controller makes it possible to 
change the membership functions for the current control 
situation and at the same time retains the rule. Realizing 
this researchers have discussed the possible combinations 
of neural network learning in order to improve the fuzzy 
controller so that it is able to handle extreme situations 
where the non-learning controller fails [10]. Many 
learning algorithms have been proposed in order to 
construct fuzzy controllers automatically [11-14]. 
However, some of these learning algorithms have proved 
to be not so efficient such as the evolutionary algorithm 
because it results in a very long learning process [15].  
 
Reinforcement learning (RL) addresses the problem of an 
agent that optimizes its reactive policy in a poorly 
structured and initially unknown environment [16]. 
Algorithms developed in this area can be viewed as 
computational processes that transform observations of 
states, actions and rewards into policy parameters. Several 
important RL algorithms, such as Q-Learning [17] and 
Actor critic methods [18], process the data sequentially. 
Each single observation is used for adjusting the 
algorithms' parameters and then becomes unavailable for 
further use, and in general call such methods “sequential”. 
They are based on a common assumption that RL 
applications to real-world learning control problems 
require large amounts of data which cannot be kept in a 
limited amount of memory assigned to the algorithm.  
 
In order to improve the performance of RL, some 
researchers applied other meta-heuristic methods to 
implement reinforcement learning in the design of fuzzy 
controllers. Lin et. al [19] proposed GA-based fuzzy 
reinforcement learning to control magnetic bearing 
systems. In the reference of [20], Juang et. al proposed 
genetic reinforcement learning in designing fuzzy 
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controllers. The GA adopted was based upon traditional 
symbiotic evolution which, when applied to fuzzy 
controller design, complements the local mapping property 
of a fuzzy rule. In [21], Er and Deng proposed dynamic Q-
Learning for on-line tuning the fuzzy inference systems. 
Kaya and Alhajj [22] proposed a novel multi-agent 
reinforcement learning approach based on fuzzy OLAP 
association rules mining. However, these approaches 
encountered one or more of the following major problems: 
(1) the initial values of the populations were generated 
randomly; (2) the mutational value was generated by the 
constant range while the mutation point is also generated 
randomly; (3) the population sizes always depend on the 
problem which is to be solved. 
 
In this paper, we propose a permutation method to 
enhance the performance of RL. The performance of 
turning FC is defined as an evaluation function and our 
proposed technique is utilized to diversity the search of 
minimization of the evaluation function. Initially, RL is 
implemented to adapt the weights and fuzzy-rules in FC to 
achieve an ideal state for inverted pendulum. Once the 
reinforcement learning method results in a local optimal 
solution, (that is to say, the FC system is not able to 
control the inverted pendulum any longer) for the problem, 
the perturbation method is implemented. In fact, the 
perturbation method performs a gradient ascent learning 
phrase to enable RL to a new state for further well 
controlling. The above two phrases are repeated until a 
better solution is found. The proposed hybrid learning 
method is utilized to adapt the parameters in the fuzzy 
control. Simulation results reveal that the proposed 
learning system can control the inverted pendulum system 
better than other traditional systems. 
 
The rest of this paper is organized as follows: the 
unidirectional linear response fuzzy controller is 
introduced in the next section. In Section 3, we present the 
inverted pendulum system and its corresponding 
representation in FC. The proposed hybrid reinforcement 
learning together with the perturbation method is 
illustrated in Section 4. Experimental results and the 
comparative analysis with other traditional learning 
methods are discussed in Section 5. Finally, we give some 
general remarks to conclude this paper. 

2. Unidirectional Linear Response Fuzzy 
Controller 

There are several types of fuzzy controller in the  literature. 
The main difference during them is the fire function and 
definition of nodes in the network. In [23], the authors 
constructed a fuzzy logic controller using simplified table-

lookup to build a set of fuzzy rules. Alata et. al [24] used 
adaptive neuro-fuzzy inference to construct the rules for 
the fuzzy gain schedule to control an inverted pendulum 
system. Sakai and his colleague [25] applied a nonlinear 
optimization method to learn fuzzy control rules for an 
inverted pendulum system by using the vertor simplex 
method. A fuzzy logic controller based on the single input 
rule modules (SIRM) to stabilize an inverted pendulum 
system can be referred to as in [26]. 

 
Different from the typical nodes in neural network which 
are primarily sigmoid or hard limiters, unidirectional 
linear response (ULR) works as well as the traditional 
nodes with some extra features. The advantage of ULR is 
that it is able to not only retain the significant behaviors of 
the traditional models, but gives powerful capability of the 
analog and continuous signal processing [27].  
 
The unidirectional linear response fuzzy controller 
(ULRFC) is illustrated in Fig. 1. In this figure, the nodes N 
is defined as the input singles where x1, x2 …. xn is each 
node as the input with weight of w1, w2 …. wn and the 
threshold is set at θ. In general, the fire function in ULR 
can be defined mathematically as in the following. 
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This representation of unidirectional can be achieved 
either in a single bipolar or a diode connected MOS 
transistor. However when one or more layers are present 
connecting hidden units or nodes, the ULR multilayer 
network can be represented as in Fig. 2. The figure shows 
a ULR multilayer fuzzy controller network with two 
inputs of x1 and x2, four fuzzy if-then rules, local mean-of-
maximum (LMOM) and an output of F. It consists of four 
layers: 
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(a)                        (b) 
Fig. 1: Definition of unidirectional linear response model. 
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Fig. 2: An ULR multi-layered neural network. 
Layer 1: The nodes in this layer share the membership 
function of μv(x) of V and V can be defined as linguistic 
label for the node function. V also defines the degree to 
which the given x satisfies it. The membership function 
used here is the triangular function (Fig. 3 and Fig. 4). 
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where CV  denotes the center of triangle, SVR represents the 
right of the center, and SVL denotes the left of the center. 
Weights are in the center where else the threshold of the 
network is spread about URL triangular. As both values of 
this systems change, the membership function too varies 
accordingly resulting in different forms of membership 
function. The triangular membership function used in the 
two-layer ULR network can berepresented as below: 
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Layer 2: Inputs for this layer originate from the previous 
layer. Besides performing a minimum operation that has 
been proposed to have a continuous differentiable softmin 
operation, it is also involved in the if part of the rule. Fig. 
5(a) shows how the network achieves the minimum 
operation in the case of uV1 ≤ uV2 when the threshold for 
the  
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Fig. 3: The details in unidirectional linear response model. 
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Fig. 4: The membership function. 
network is zero and the outputs from layer one are: 
( ) 0211 =− VV uuf                         
( ) 112 VV uuf =                         

( ) 110 VVr uufZ =+=                                                     
For the case of uV1 ≥ uV2 : 
( ) 21211 VVVV uuuuf −=−                          
( ) 112 VV uuf =                         

( )( ) 2121 VVVVr uuuufZ =+−−=                
Layer 3: This layer uses a triangular membership function. 
The specified LMOM method is as such: 
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The output is a limited value of  μv
-1(zr → 0*) and the 

membership function is monotic with μv
-1(zr) as the 

mathematical inverse. When the membership function of 
defuzzification used is the triangular function, the input 
output relationship can be represented as y = ax + b. 
Therefore it can be implemented by the network as shown 
in Fig. 5(b). 
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(b) Defuzzification 

Fig. 5: ULR network: the definitions in Layer two and 
Layer three, respectively. 
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Fig. 6: Defuzzification network response. 
Fig. 6 shows the input-output relation of the 
defuzzification is the inverse of the membership function 
whereby the output can either be positive or negative. The 
output will always remain positive as for the URL. 
Nevertheless, the output of the defuzzification will be 
positive if y1 > 0 and y2 =0 and negative if  y1=0 and y2  > 0 
by multiplying y2  with -1. The response of the 
defuzzification network is expressed by pulsing y1 with -y2 
while the parameters of the system is determined with Zr= 
0 and 1. The following conditions apply when determining 
the values of wc1¸θc1 for y1: 
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wc2 , and θc2 for  y2 are inverse of wc1 and θc1: 
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Layer 4: This is where all the signals coming from layers 3 
and 4 are summed as following and the rule is represented 
as r. 
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3. Inverted Pendulum System 

The inverted pendulum problem is one of the most 
important problems in control theory and has been studied 
excessively in control literatures [28]. It is well established 
benchmark problem that provides many challenging 

problems to control design. The system is nonlinear, 
unstable, non-minimum phase and under-actuated. 
Because of their nonlinear nature pendulums have 
maintained their usefulness and they are now used to 
illustrate many of the ideas emerging in the field of 
nonlinear control [29]. The challenges of control made the 
inverted pendulum systems classic tools in control 
laboratories. 
 
In this paper, the inverted pendulum system (IPS) 
considered is shown in Fig. 7, which consists of a straight-
line rail, a cart, a pendulum and a driving unit. The cart 
can move left or right on the rail freely. The pendulum is 
hinged on the center of the top surface of the cart and can 
rotate around the pivot in the same vertical plane with the 
rail. It is a non linear and unstable system with one input  

M
F

mgsin

m

l

 
Fig. 7: Configuration of the inverted pendulum system. 
 
and several output signals. The aim is to balance the 
pendulum vertically on a cart which moves in an 
uncontrolled state when an initial force is applied. The 
variables are set at zero when the cart at rest initially. The 
pendulum is set straight up and has only one degree of 
freedom. The primary task is to balance the pole and to 
keep the cart within boundaries by supplying the 
appropriate force to the cart. The aim is to move the 
wagon along the x direction to a desired point without the 
pendulum falling. At a pendulum of x1 from vertical, 
gravity produces an angular acceleration equal to x2, and 
cart acceleration. 
 
Given that no friction exists in the system, the dynamic 
equation of the inverted pendulum system can be 
expressed as: 
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Here, the parameters cm and m are the mass of the cart 
and the mass of the pendulum in the unit [kg], in the 
simulation, they equal to 1.0 and 0.1, respectively. g is the 
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gravity acceleration. The parameter l is the length from 
the center of the pendulum to the pivot in the unit [m] and 
equals to the half length of the pendulum. The variable 
F represents the driving force in the unit [N] applied 
horizontally to the cart. The variables θ, θ& , θ&&  represent, 
respectively, the angle of the pendulum from upright 
position, its angular velocity, its angular acceleration, and 
the clockwise direction is positive. 
 

4. Reinforcement Learning combined with 
Perturbation Method 

One of the most important breakthroughs in reinforcement  

 
Fig. 8: The framework of reinforcement learning. 
 
learning is the development of an off-policy TD control 
algorithm known as Q-learning. In reinforcement learning, 
Q-learning can discover the optimal policy. It is an 
incremental dynamic programming procedure that 
determines the optimal policy in a step-by-step manner. Q-
learning is an on-line procedure for learning the optimal 
policy through experience gained solely on the basis of 
samples of the form: ),,,( nnnnn gjais = , where n 

denotes discrete time, and each sample ns  consists of a 
four-tuple described by a trial action an on state in that 
results in a transition to state 1+= nn ij   (in denote state 

at time n) at a cost ),,( nnnn jaigg = . And it is highly 
suited for solving Markovian decision problems without 
explicit knowledge of the transition probabilities. The 
requirement of using Q-learning successfully is based on 
the assumption that the state of the environment is fully 
observable, which in turn means that the environment is a 
fully observable Markov chain. Nevertheless, if the state 
of the environment is partially observable, such as the 
sensor device on the inverted pendulum may be imprecise, 
special methods are required for discovering the optimal 
policy. For the purpose of overcoming this problem, a 
utilization of perturbation method combined with Q-
learning as a learning agent will be proposed. 
 
An agent is connected to its environment via perception 
and action, as depicted in Fig. 8. On each step of 
interaction the agent receives as input, some indication of 
the current state, of the environment; the agent then 

chooses an action, a, to generate as output. The action 
changes the state of the environment, and the value of this 
state transition is communicated to the agent through a 
scalar reinforcement signal. The agent's behavior should 
choose actions that tend to increase the long-run sum of 
values of the reinforcement signal. It can learn to do this 
over time by systematic trial and error, guided by a wide 
variety of algorithms.  
 
In order to realize an implementation of Q-learning, 
according to Bellman’s optimality criterion combined 
with value iteration algorithm, the small step-size 
version formula of Q-learning is described by 

∑
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where η is a small learning-rate parameter that lies in the 
range 0<η<1. The symbol i denotes sate at time n, j is 
state at time n+1, n is the action been taken at time n, ijp  
is the transition probability defined as 

),|()( 1 aAiXjXPap nnnij ==== + . By adjustingγ  we 
are able to control the extent to which the learning system 
is concerned with long-term versus short-term 
consequences of its own actions. In the limit, when γ= 0 
the system is myopic in the sense that it is only concerned 
with immediate consequences of its action. As γ 
approaches 1, future costs become more important in 
determining optimal actions. The action is computed as  

( )),(max aiQaction =                                                            (1) 
And the averaging performed in an iteration over all 
possible states is replaced by a single sample, there by 
resulting in the following update for the Q-factor: 

⎥⎦
⎤

⎢⎣
⎡ γ+η+η−=

∈+ ),(maxreinf),(11 bjQai)Q((i,a)Q nAbnn
j

        (2) 

The total flow chart for implementing Q-learning is illustrated in 
Fig. 9. 
 
Procedure of reinforcement learning: 
Start 
Steps 1. Set Q-factor table all entries zero.
         2. Initial cart and pole.
         3. Get current state.
         4. Determine a action according to equation (1).
         5. Push cart and get current state.
         6. If fail, reinforcement = -1 and reset cart, else reinforcement = 0.
         7. Update Q according to equation (2).
         8. Repeat 3-7, until the agent learns it to a steady state.
End  
Fig. 9: The implementation flow of Q-learning. 
 
In order to improve the control performance of Q-learning, 
a perturbation method is incorporated into it. There are 
several such methods to use. The basic idea is inspired 
from the guided local search [30], [31] which is one of the 
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methods to help local search escape local optima. The 
basic principle of this method is to penalize features of the 
candidate solutions when local search settles in a local 
optimum. Similar to guided local search, we propose an 
improved method called objective function adjustment 
algorithm, to further improve the performance of Q-
learning as a perturbation mechanism.  
 
The followings will explain the mechanism of the 
proposed method. Every term of the objective function 
multiplies a multiplier and the energy function E is 
described as  
 )(...)()( 222111 nnn afafafE λλλ +++=  
where (.)if is a term of objective function E and iλ is a 
multiplier for each function. In order to explain the 
adjustment  process  of  this  method, we  use a  
conceptual  

 
Fig. 10: The situation of escaping from the local optimum 
value by perturbation. 
 
graph of the energy landscape of the objective function 
with a local optimum and a global optimum as shown in 
Fig. 10. The energy function is reflected in the height of 
the graph. Each position on the energy landscape 
corresponds to an observed state of the Q-learning. For 
instance, if the solution of Q-learning has steadily trapped 
on point A (left graph in Fig. 10), because of the updating 
procedure of Q-learning made the state move towards 
negative gradient direction. Then we change the 
multipliers in gradient ascent direction so as to increase 
the energy temporarily, and point A will be renewed to a 
higher energy position of the new energy landscape (right 
graph in Fig. 10). The gradient ascent learning phase is 
according to 

i
ii

E
λ

αλλ
∂
∂

+=                                                                (3) 

After updating E with the new multipliers in the updating 
phase again, the learning goes down the slope of the valley 
and reaches a new stable state. The all multipliers are reset 
to 1 and the newly gained state will decrease and reach a 
new state. The above search process continues until a new 
optimum is reached. The total implementation flow can be 
summarized in Fig. 11. 
 

 
Fig. 11: The flowchart of reinforcement learning 
combined with perturbation method. 

5. Simulation Results and Discussion 

The effectiveness is verified by applying the proposed 
hybrid learning method to the inverted pendulum system. 
The ULR fuzzy controller is constructed with nine if-then 
rules as shown in Table 1, modeling after a skilled human 
operator's knowledge of handling the system. The 
horizontal axis represents the angle of the pole where else 
the vertical is the pole velocity with representations such 
as positive large (PL), positive medium (PM), positive 
small (PS), negative large (NL), negative medium (NM), 
negative small (NS) and zero (ZE).  
 
Fig. 12 is the fuzzy controller for the specified system of 
inverted pendulum. The simulation is carried as offline. In 
offline state, the fuzzy controller runs for a specified 
period of time after which the learning is applied to it. 
When learning is applied, it chooses the next possible 
local minima and again repeats the cycle using the newly 
found solution. This cycle is carried out until the best 
solution is found and the each cycle time is set at 2000ms. 
The simulation of the problem is carried out in three 
methods of the temporal backpropagation (BP), the 
canonical local search (LS) and the proposed improved 
hybrid learning method. Fig. 13 clearly demonstrates how 
the member-ship functions have shifted after learning was 
applied. 
 
Table 1: If-then rules used in ULR fuzzy controller. 

  θ&  
  PO2 ZE2 NE2 

θ  
PO1 PL PM ZE 
ZE1 PS ZE NS 
NE1 ZE NM NL 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011 
 

 

64

 
Fig. 12: Fuzzy controller used for the inverted pendulum 
system.  

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

-60 -30 0 30 60

NE1 ZE1 PO1

-10 -5 0 5 10

NE2 ZE2 PO2

angle(degree) angular vclocity(deg/sec)

gr
ad

e

gr
ad

e

0

0.2

0.4

0.6

0.8

1.0

10 20 30 40
force(N)

-40 -30 -20 -10 0

NL NM NS ZE PS PM PL

gr
ad

e

 
(a) Before learning state by the hybrid method. 
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(b) After learning state by the hybrid method. 
Fig. 13: Membership functions before and after learning. 
 
Table 2: Initial parameters used in the experiments.  

Label Cente
r Left Spread Right Spread

PO1 30.0 30.0 5000.0
ZE1 0.0 30.0 30.0
NE1 -30.0 5000.0 30.0
PO2 5.0 5.0 5000.0
ZE2 0.0 5.0 5.0
NE2 -5.0 5000.0 5.0
PL 30.0 10.0 5000.0
PM 20.0 10.0 10.0
PS 10.0 10.0 10.0
ZE 0.0 10.0 10.0
NS -10.0 10.0 10.0
NM -20.0 10.0 10.0
NL -30.0 10.0 10.0

Table 3: Final values of the system parameters after 
learned by the proposed method. 

Label Cente
r Left Spread Right Spread

PO1 34.9 25.7 5040.0
ZE1 0.8 64.5 75.0
NE1 -35.0 5460.6 34.9
PO2 5.7 2.3 5049.0
ZE2 -0.3 3.8 0.9
NE2 -5.0 1233.1 3.2
PL 45.1 54.0 4940.0
PM 19.7 70.8 24.1
PS -98.0 4537.0 11.2
ZE 0.5 3.2 12.3
NS -24.1 7.9 6.5
NM 13.4 24.6 6.8
NL -28.9 5001.3 21.9

 

 
Fig. 14: The 3D surface of the learned parameters by 
proposed method. 
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The control parameters of the membership function are 
shown in Table 2 and Table 3. Table 2 shows the control 
parameters without any learning while as Table 3 is after 
learning process. It can be seen that there are some 
changes to the membership functions after the learning 
process covering the interval [-10, 10]. In Fig. 14 we 
showed the whole control performances of the proposed 
algorithm to demonstrate how the fuzzy controller 
responds at different initial angles. The simulation shows 
that the fuzzy controller has no problem in balancing the 
pole either in small or large angles and this clearly proves 
the control quality of the proposed learning. 
 
The simulation is also repeated with other learning 
algorithm such as the conventional reinforcement learning 
method and the guided local search method. Comparison 
is also  carried   out   with   no   learning  fuzzy  (indicated 
as  
Table 4: Simulation results of the fuzzy controller for 
several initial angles. 

Angle 
(degree) Normal 

Reinforce-
ment 

Learning 
(RL) 

Guided 
Local 
Search 
(GLS) 

Proposed
Hybrid  
Method 

10 success success success success 
20 fault success success success 
30 fault success success success 
40 fault success success success
50 fault success success success
60 fault success fault success
70 fault fault fault success 
80 fault fault fault success 

 
normal). The obtained results as listed in Table 4 show 
that   among the four methods, the proposed hybrid 
reinforcement learning combined with perturbation 
method shows the best performance. By using the 
proposed learning method, the pole returns to the balance 
state for even the largest angle. This goes to show that by 
using the proposed learning, we can avoid the vigorous 
reinforcement learning and canonical guided local search.  
During the simulation, a temporary increase in error was 
noticed and this temporary observation was the result of 
the changes done to escape a local pit when it comes 
across. 
 

6. Conclusion 

In this paper, we proposed a hybrid learning method by 
combining the reinforcement learning and a perturbation 
method for controlling the unidirectional linear response 

fuzzy controller. Firstly, one of the reinforcement learning   
methods, i.e. Q-learning was implemented to achieve a 
steady state. Once the Q-learning method resulted in a 
local optimal solution for the problem, the perturbation 
method was implemented; actually a gradient ascent 
learning phrase was carried out. The two phrases were 
repeated until a better solution was found. The proposed 
hybrid learning method was utilized to adapt the 
parameters in the inverted pendulum system. Simulation 
results revealed that the proposed learning system could 
control the inverted pendulum system better than other 
traditional methods, such as the normal learning, the pure 
reinforcement learning and the guided local search. 
 
In the future, we plan to apply the proposed hybrid method 
to other engineering problems, such as the job shop 
scheduling problems. Furthermore, some other heuristics 
involving the stochastic jump noisy, the chaotic dynamic 
mechanism, and the estimation distribution algorithm can 
also be incorporated into the reinforcement learning to 
achieve a better performance. 
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