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Summary 
The synthesis of the radiation pattern of linear antenna arrays is 
an interesting problem in radiating systems. A complex-valued 
genetic algorithm (GA) for optimization of beam forming in 
linear array antennas is presented in this paper. Unlike 
conventional GA using binary coding, this method directly 
represents the array excitation weighting vectors as complex 
number chromosomes and improves genetic operator methods 
based on the complex-valued encoding. The algorithm enhances 
searching efficiency greatly, and avoids effectively premature 
convergence. Numerical results are presented to illustrate the 
advantages of the proposed technique over conventional pattern 
synthesis methods. 
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1. Introduction 

Array antenna constitutes one of the most versatile classes 
of radiators due to their capacity for beam shaping, beam 
steering and high gain [1]. In array-pattern synthesis, the 
main concern is to find an appropriate weighting vector to 
yield the desired radiation pattern. Various analytical and 
numerical techniques have been developed to meet this 
challenge. Examples of analytical techniques include the 
well-known Taylor method and Chebyshev method [2]. In 
recent years, there are several methods which are 
developed to from nulls in the antenna pattern in the 
directions of interference signals in the literature [3-10]. 
The most widely used optimization techniques in antenna 
array pattern synthesis are steepest decent algorithms [5], 
genetic algorithms [9], ant colony optimization [10], and 
so on.  
In this paper, an effective method based on genetic 
algorithm [11] (GA) is proposed for synthesizing a linear 
antenna array. As an excellent search and optimization 
algorithm, GA has gained more and more attention and has 
very wide applications [12, 13]. In recent years, genetic 
algorithms have also been applied to array beamforming. 
Haupt [14] applied GA to determine which element should 
be turned on, in thinned linear and planar arrays to obtain 

low sidelobe. Yan and Lu [15] used a GA for array pattern 
synthesis, where the phase and magnitude are restricted to 
certain discredited values for easy implementation. Yeo 
and Lu [16] used an improved GA for the correction of the 
failure of array. Mahanti etc. [17] proposed floating-point 
Genetic algorithm for the design of a reconfigurable 
antenna arrays by phase-only control. Li [18] used hybrid 
genetic algorithm to synthesize the shaped-beam array 
antennas. In this paper, an improved GA based on the 
reference [19] is applied to synthesis of the linear antenna 
array. Since the conventional GA easily gets stuck in local 
minima and result in prematurity because of the single 
crossover method, in this paper we expend the coding 
space of simple GA, and propose an improved 
complex-valued genetic algorithm. Numerical examples 
based on single null and multi-nulls are presented to show 
the effectiveness of this approach. 
We arranged the rest of the paper as follows: Section 2 
described the problem formulation of the linear array 
synthesis. In section 3, the improved complex-valued 
genetic algorithm based on the problem of synthesis of 
array was given. Numerical simulation experiments and 
results were presented and comparisons with real-coded 
GA were made in section 4. Finally, we presented 
conclusions in section 5. 

2. Overview of linear array synthesis 

We consider a linear array of 2N isotropic antennas, 
symmetrically and equally spaced a distance d apart along 
the x-axis with its center at the origin. It is shown in Fig. 1. 
 

 
Figure 1: The structure of a 2N-element radiation antenna array. 
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The free space far-field pattern F(Ф) in azimuth plane (x-y 
plane) with symmetric amplitude distributions is given by 
Eqn. (1): 

N jkd(i-1)cos
ni=1

F( )= I e ΦΦ ∑          (1)  
 
Here the elements are numbered from the array center and 
array center is at the origin. 
Where n is element number, d is element spacing and 
equals to 0.5λ, k=2π/λ, represents the wave number, λ is 
wavelength, Ф denotes azimuth angle of the far-field point 
measured from x-axis, In is excitation amplitude of the nth 
element. All the elements have the same excitation phase. 
Normalized power pattern, P(Ф) in dB can be expressed as 
follows: 
 

2

m ax m ax

|F ( )| |F ( )|P ( )= 1 0 lo g 1 0 [ ] = 2 0 lo g 1 0 [ ]
|F ( ) | |F ( ) |

Φ Φ
Φ

Φ Φ (2) 
 
Then maximum sidelobe level (MSLL) can be computed 
by: 

sMSLL=max {F( )}Φ∈ Φ         (3) 
where, S is the sidelobe area of pattern, if the width of 
zero-power of main beam is 2θ0,  
 

thenS={ |0 90 -  or 90 + 180 }θ θ θ θ θ≤ ≤ ° ° ≤ ≤ ° .  
 
When it is calculated practically, S should be dispersed by 
a certain interval (e.g. 0.4°). 

3. Complex-valued genetic algorithms for 
antenna arrays  

Natural evolution is a search for the fittest in the species 
space. The success of life on earth demonstrates the 
effectiveness of this search process. Based on natural 
evolution [20], genetic algorithms capitalize on tools that 
work well in nature. It is considered a sophisticated search 
algorithm for complex, poorly understood mathematical 
search spaces. Living beings are encoded by chromosomes, 
with GA’s one encodes the possible solutions in the form 
of data structures. Thus GAs are capable of arriving at an 
optimal salutation without the benefit of explicit 
knowledge concerning the solution space. 
As a complex-number coded GA (CGA), it is not needed 
to transform the variable to binary string. Differing from 
real-coded GA, complex number coded GA uses complex 
number to represent the variables which are needed to be 
optimized.  
 
 
 

A. Coding of chromosomes 
Most GAs use binary coding and binary genetic operations 
[12]. The proposed approach, however, applies complex 
number genetic operations on array weighting vectors. 
Hence, each chromosome is a vector of complex number 
and dimension of the vector is equivalent to the number of 
array elements. Chromosomes can be showed as: 
 

W=[w1, w2, …, wN]            (4) 
 
where, complex number chromosomes wn (Wn=an+ibn) are 
gene of nth elements, gene an and bn are the real part and 
imaginary part of the nth complex-number chromosomes, 
respectively. They respond to the value of current 
amplitude and phase of antenna array respectively.  
 

B. Initialization of population 
There are a lot of methods of choosing the initialization of 
population in the literature, such as minimum mean square 
error (MMSE), windows method (e.g. Chebyshev window), 
etc. In this paper, considering the universality of algorithm, 
we choose the random numbers as initial population. 
 

A = Rand popsize*N           (5) 
B = Rand popsize*N          

 
where popsize is the size of population, N is the number of 
elements. Rand popsize*N is a real number random matrix, 
A=[A1, A2, …, Apopsize]T and B=[B1, B2, …, Bpopsize]T is 
popsize*N directions initial real part and imaginary part 
matrix. 
 

C. Selection operator 
We used elitist selection and roulette wheel selection, that 
is to say, retaining the best individuals in every generation 
unchanged to the next generation, and other individuals of 
population were chose by fitness proportionate selection. 
In this paper, that means for the random number ri and the 
cumulative probability qi, if it is qi-1≤ri≤qi, the ith real 
part chromosome Ai and imaginary part chromosome Bi 
are chose meanwhile. 
 

D. Reproduction operator 
In the reproduction operator, we used the crossover 
operator and mutation operator which had been described 
in the literature [19]. That is to say, the arithmetic 
crossover was used in real-part and imaginary part 
respectively, and the adaptive mutation was used in 
real-part and Muhlenbein mutation was used in 
imaginary-part for mutation operator. 
 
E. Fitness function 
In general, it is desired that the generation of the null with 
the depth of NLVL in given Nn directions Фi (i=1,2,…,Nn), 
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and achievement in MSLL approach with a certain number 
SLVL is the objective of the problem. So the fitness 
function to be minimized for optimal synthesis of array 
can be defined in Eqn. (6) 
 
Fitness= |MSLL-SLVL|+ |MNL-NLVL|α β  (6) 

ni=1~NMNL= max {F( )}Φ
              (7) 

 
Where, α and β are weighting coefficients to control the 
relative importance given to each term of Eqn. (4), α=0.8, 
β=0.2. 
 
F. The parameter of genetic operator 
Table 1 gives the main parameters’ meaning and values of 
the proposed complex-valued genetic algorithm adopted in 
the following simulations results. And the parameters of 
real-valued genetic algorithm for comparison are taken 
from the literature [21]. 
 
Table 1: The meaning of parameters and their values of CGA adopted in 
simulation  
Parameter Meaning Value 
N Population size 50 
Pc Probability of crossover 0.5 

 Mutation precision 15 
λ Adaptive mutation 2 

fmax 
The largest value of current 
fitness 0.001 

nelite 
The number of best individuals 
which are retained in elite 
selection 

2 

4. Simulation results 

To illustrate the effectiveness of the proposed algorithm, 
simulations are presented here. Considering a uniform 
array antenna composed with 10 elements, the element 
space is λ/2. Using complex number chromosome 
represent elements’ excitation, GA can be used to optimize 
the pattern by adjust the element’s excitation.  
 
4.1 Experiment1: one nulls  
 
Considering a uniform array antenna was composed with 
10 elements, the element space was λ/2, and the current 
amplitude of element In ∊ (0.0,10.0), i.e. the feasible 
solution Ω={(I1, I2, …,I10)|0.0≤Ii≤10.0, i=1, 2, …,10}. To 
generate a null in 70°, the width of zero-power was in 
pattern 2θ0=20° and in the objective function had been 
expressed by Eqn.(6), SLVL=-35.0dB, NLVL=-80.0dB. 

Figure 2 depicted the fitness progress curves of RGA and 
CGA, obtained by the same original values when null 
direction is 70°. Notice that the convergence was observed 
for CGA when the iteration reached about 130 generations 
and converges at the generation 392. AS shown in Fig. 3, 
the pattern of antenna array in case of number of null 
direction was 70°. From this figure, the direction of both 
of RGA and CGA achieved the null in 70°, but the side 
level which CGA gained was less than the RGA gained.    
In order to make the comparison more obviously, a log file 
of the GA progress was recorded. From the results which 
were shown in table 2, we can see that for our CGA model, 
the depth of null was -80.042821dB. It was better than the 
desire which null depth was -80dB basically and better 
than the RGA’s -79.808699. Moreover, the maximum 
sidelobe level (MSLL) was  -34.998549dB which was 
gained in the direction of 56.2º, the value was near the 
desire value -35dB. While in RGA the value of MSLL was 
-31.739991dB which was gained in 74.1º. The other one 
which is worth to be noticed is success rate. Success rate 
indicates an algorithm’s robustness. In simulation 
experiments, both RGA and CGA were excluded 100 
times independently, and the times of success (fval<0.001) 
were recorded. The success rate of CGA was 82% while 
the RGA was 15%. So it can be said that, the proposed 
algorithm had a better adapting performance for antenna 
array synthesis problem. 
 
4.2 Experiment 2: multi-nulls 
 
To illustrate the effectiveness of the proposed algorithm, 
some computer simulations were presented in the 
following.  
 

1. Number of nulls Nn=3, Nulls direction φ=64, 70 
and 76.  

2. Number of nulls Nn=4, Null direction φ=44 110 
138 157. 

3. Number of nulls Nn=6, Null direction φ=23.5 43.4 
50.4 55 64.8 69.8. 
 
In the simulation experiments 1 and 2, SLVL=-35 and 
NLVL=-80. The current amplitude of elements In ∊
(0.0,10.0), i.e. the feasible solution Ω={(I1, I2, 
…,I10)|0.0≤Ii≤10.0, i=1, 2, …,10}. 
 
In the simulation experiment 3, SLVL=-35 and NLVL=-80. 
The current amplitude of elements In∊(0.0,16.0), i.e. the 
feasible solution Ω={(I1, I2, …,I10)|0.0≤Ii≤10.0, i=1, 2, 
…,16}. 
 
Table 3 gave the quantitative value of simulation 
experiment 2. Table 4 gave the normalized excitation 
current amplitudes of elements. In figure 4, (a), (b) and (c) 
showed three patterns of antenna arrays which were 
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synthesized by the proposed algorithm. Here, the dot line 
in (a) is the results which came from the literature [21]. In 
literature [21], the maximum null was -75.265dB, and the 
maximum sidelobe level was -30.3657dB. 
From the tables and figures, we can see that nerveless the 
number of null were, the proposed complex-valued can 
satisfy the requirements of the synthesis of antenna array, 
not only reached the depth of nulls in prescribed direction 
but also made the sidelobe level under the certain level.   

5. Conclusion 

We improved synthesis of antenna array technique by 
traditional genetic algorithm, and used complex-valued 
genetic algorithm to synthesize the linear antenna array for 
confirming current amplitude of elements. It included the 
generation of nulls and the achievement of the sidelobe 
level together with the depth of null reaching the desired 
value. In this paper, the proposed complex-valued genetic 
algorithm was utilized as an array pattern synthesis 
method. Four simulation experiments were implemented 
along with the number of nulls was 1, 3, 4 and 6 
respectively. Simulation results indicated that the proposed 
algorithm could enlarge the optimal space, thus improving 
the performance of global search in the genetic algorithm. 
Consequently, promising results could be gained by the 
proposed complex-valued genetic algorithm. 
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Figure 2: Convergence curve for RGA and CGA (φ=70º). 

 
Figure 3: Pattern of antenna array (φ=70º). 

Table 2: The comparison value in synthesis of antenna array (φ=70º). 
 RGA CGA 

generation 1000 392 
fval 2.6463 0.0097 

MNL (dB) -79.808699 -80.042821 
MSLL (dB) -31.739991 -34.998549 

Success rate (%) 15 82 

Table 3: The quantitative value of simulation experiment 2 
 nn=3 nn=4 nn=6 

fval 0.0093 0.2719 0.3524 
MNL -79.9684 -80.0001 -79.9977 
MSLL -34.9963 -34.6601 -29.5602 

Table 4: normalized excitation current amplitudes of elements 
 Nn=3 Nn=4 Nn=6 

1,20 1.0000 1.0000 1.0000 
2,19 1.9621 1.8675 5.3636 
3,18 2.4086 2.5010 6.0744 
4,17 3.0098 3.1545 6.5346 
5,16 4.7149 3.5521 8.4952 
6,15 4.8847 3.7293 8.5384 
7,14 5.3780 4.4026 9.5122 
8,13 5.4123 4.9406 12.9176 
9,12 5.5018 5.5171 13.0280 
10,11 5.5363 5.5565 14.3470 

 

 

 

 
Figure 4: Pattern of antenna array. (a) Nn=3, (b) Nn=4, (c) Nn=6; 
Here, the dot line in (a) is the results which came from the literature 

[21]. 

(b)

(c)

(a)
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