
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

112

Manuscript received January 5, 2011
Manuscript revised January 20, 2011

Kannada Morphological Analyser and Generator Using Trie

Shambhavi. B. R*, Dr. Ramakanth Kumar P#, Srividya K†, Jyothi B J††, Spoorti Kundargi*, Varsha
Shastri G†††

*Department of CSE, R V College of Engineering, Bangalore
#Department of ISE, R V College of Engineering, Bangalore

† Yahoo! India Software Development Center, Bangalore
†† Oracle India Pvt Ltd, Bangalore

††† National Instruments India, Bangalore

Summary-
Morphological Analyser and Generator tool is an essential
component of any NLP application. This paper presents the
morphological analyser and generation tool for the South Indian
language of Kannada language using paradigm approach. The
application uses trie as the datastructure for the storage of
suffixes and root words. Though there have been attempts of
building a Morphological Analyser for Kannada in the recent
past, no full fledged analyser for Kannada has been built. The
performance demonstrated by our application has been really
encouraging.
Keywords-
Natural Language Processing, Morphological Analyser,
Paradigm, Trie

1. Introduction

Morphology deals with the study of internal structure of
words A Morphological Analyser takes a complete word
form as input and produces the structure, the syntactic and
morphological properties of the word. A generator, on the
other hand, does the reverse of an analyser. It generates a
word given a root and its features (affixes) . It includes
two modules namely noun generator and verb generator.
In the Noun generator, the inputs are a root noun, oblique
form, plural marker, case marker and postpositions. In the
verb generator, a root verb, tense marker, number, person,
gender marker, relative participle suffix and verbal
participle suffix are given as inputs.
Morphological analysis is a vital step for languages with
complex morphology like Kannada. Kannada is one of the
major Dravidian Languages of India. There are around 40
million speakers and is the 27th spoken language in the
world. The language exhibits a very rich and complex
system of morphology. It is a diglossic language .A lot of
distinctions exist between the written and the spoken
forms of the language. There are around 20 dialects. But
the written form is more or less the same. The tool
developed here is restricted to only the literary variety.
The paper is organized as follows. The next section
discusses the current state of the art of morphological
analysis for various languages. Section 3 will cover the

morphological details of Kannada. Design of paradigms
and Datastructure used in the application developed are
detailed in section 4 and 5 respectively. Implementation
and other features are explained in the next section
followed by a brief description of results obtained. The
final section concludes the paper along with future work.

2. Previous work

Morphological analysis work has been successfully done
for languages like English, Chinese, Arabic and European
languages. The history of morphological analysis dates
back to the ancient Indian linguist Panini, who formulated
the 3,959 rules of Sanskrit morphology. One of the
breakthrough works in English was done by John Carroll
[1] and his team. They developed a morphological
analyzer in English ‘morpha’ which was based on finite-
state techniques. Various other techniques have been
experimented for morphological analysis since then.
In the last decade, extensive work has also been done for
Indian languages with respect to grammar analysis. IIIT
Hyderabad has developed analysers for Hindi, Marathi,
Telugu, Kannada and Punjabi. It is freely available for
download from LTRC website for Linux operating system.
A paradigm based Hindi analyser and generator has been
discussed in [2]. Jisha. P Jayan et al. [3] have compared
three methods to morphological analysis namely paradigm
approach, suffix stripping and hybrid methods for
Malayalam language. An open-source analyser using finite
state technology for Bengali has been experimented in [4].
Initial work on Tamil morphological analysis was taken
up by Anusaraka group. Finite automata based approach
was adopted in [5]. Machine learning approach based on
SVM [6] along with sequence labelling for Tamil gave
accuracy of 95.45%.
Not much has been done in this research area for Kannada
language. MORPH- A network and process model for
Kannada morphological analysis/ generation was
developed by K. Narayana Murthy as part of the project
entitled "Machine Aided Translation from English to
Kannada"[7]. Vikram and Shalini [8] have attempted to

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

113

build a prototype Kannada analyser based on Finite State
Machines and can handle only 500 noun and verb stems.
Our tool is based on the paradigm based algorithm
developed by Akshar Bharati et al. [9] for morphological
analysis of Indian languages. This approach has proved to
be effective for inflectionally rich Indian languages.

3. Kannada Morphology

Kannada is a morphologically rich language in which
morphemes combine with the root words in the form of
suffixes. Kannada grammarians divide the words of the
language into three categories namely i) Declinable words
(namapada) ii) Conjugable words or Verbs (kriyapada)
and iii) Uninflected words (avyaya). Declinable words are
inflected to mark differences of case, number and gender.
Nouns, Pronouns and Adjectives are included in this class.
Verbs are inflected to mark differences of person, gender,
number, aspect, mood and tense. The class of uninflected
words include unchangeable words.

3.1 Declinable words

Morphology of declinable words, as in many Dravidian
languages is fairly simple compared to verbs. Kannada
words are of three genders- masculine, feminine and
neutral. Declinable and conjugable words have two
numbers- singular and plural. Declinable words have
seven cases as depicted in Table 1. The various inflections
of the noun stem ಉ¡ಾÍನ (udyana- ‘park’) and its meaning
with different suffixes is shown in Table 2.

Table 1: Different Cases and their corresponding Characteristic Suffixes

for Nouns

Kannada
Name

English Name Characteristic
Suffix

Prathama Nominative 0 (nu/ ru/ vu/ yu)

Dwitiya Accusative annu/ vannu/ rannu

Tritiya Instrumental iMda/ niMda/ riMda

Chaturthi Dative ge/ ige/ kke

Pachami Ablative deseyiMda

Shashti Genitive a/ ra/ da/ na

Saptami Locative alli/ nalli/ dalli/
valli

Sambhodana Vocative ee

Table 2: Inflections of a noun stem and its corresponding meanings

Inflected Nouns Meaning in
English

Type of Inflection
(Number, Case)

ಉ¡ಾÍನ – ವ� Garden Singular+Nominative

ಉ¡ಾÍನ – ವನುÇ The garden Singular+ Accusative

ಉ¡ಾÍನ – Ĩಂದ From the garden Singular+Instrumental

ಉ¡ಾÍನ – �ೆ´ To the garden Singular + Dative

ಉ¡ಾÍನ -

¡ೆ±ೆĵಂದ

Because of
garden

Singular + Ablative

ಉ¡ಾÍನ – ದ Of the garden Singular + Genitive

ಉ¡ಾÍನ – ದĹÐ In the garden Singular + Locative

ಉ¡ಾÍನ – ಗಳ� Gardens Plural + Nominative

ಉ¡ಾÍನ – ಗಳನುÇ The gardens Plural + Accusative

ಉ¡ಾÍನ – ಗĺಂದ From the
gardens

Plural+ Instrumental

ಉ¡ಾÍನ – ಗĺ�ೆ To the gardens Plural + Dative

ಉ¡ಾÍನ -

ಗಳ¡ೆ±ೆĵಂದ

Because of
gardens

Plural + Ablative

ಉ¡ಾÍನ – ಗಳ Of the gardens Plural + Genitive

ಉ¡ಾÍನ – ಗಳĹÐ In the gardens Plural + Locative

3.2 Verbs

The verb is much more complex than the nouns. There are
three persons namely first, second and third person. Tense
of verbs is past, present or future. Aspect may be simple,
continuous or perfect. Verbs occur as the last constituent
of the sentence. They can be broadly divided into finite or
non-finite forms. Finite verbs have nothing added to them
and are found in the last position of a sentence. They are
marked for tense with Person-Number-Gender (PNG)
markers. Non-finite verbs, on the other hand cannot stand
alone. They are always marked for tense without PNG
marker. The following table summarises some of the
inflections of the verb stem ¨ಾಡು.

Table 3: Few inflections of a verb stem and its corresponding

meanings
Inflected
Verb

Meaning in
English

Tense Aspect PN
G

¨ಾಡುವನು He will do. Future Simple 3SM

¨ಾಡುĦÃ¡ಾÅ£ೆ He is doing. Presen
t

Continuou
s

3SM

¨ಾģರುವಳ� She has
done.

Future Perfect 3SF

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

114

¨ಾಡುĦÃದÅಳ� She was
doing.

Past Continuou
s

3SF

¨ಾģĨĸ You did. Past Simple 2P-

¨ಾಡು�ೆÃೕ£ೆ I will do. Future Simple 1S-

¨ಾģದÅರು They did. Past Perfect 3P-

¨ಾģರುತÃ¡ೆ It did. Present Perfect 3SN

3.3 Uninflected words

Uninflected words may be classified as adverbs,
postpositions, conjunctions and interjections. Some of the
example words of this class are haage, mele, tanaka, alli,
bagge, anthu etc.

3.4 Morphophonemics

In Kannada, adjacent words are often joined and
pronounced as one word. Such word combinations occur
in two ways- Sandhi and Samasa. Sandhi
(Morphophonemics) deals with changes that occur when
two words or separate morphemes come together to form a
new word. Few sandhi types are native to Kannada and
few are borrowed from Sanskrit. We in our tool have
handled only Kannada sandhi. However we do not handle
samasa.

Table 4: Sandhi types and examples

Complex
word

Simple/inflected words Sandhi type

�ೆಂ�ಾಟ �ೆಂಡು + ಆಟ ¬ೋಪ ಸಂĩ

ಸುಂದರ®ಾದ ಸುಂದರ + ಆದ ಆಗಮ ಸಂĩ

�ೈ¡ೋಟ �ೈ + �ೋಟ ಆ¡ೇಶ ಸಂĩ

Kannada sandhi is of three types - lopa, agama and adesha
sandhi. While lopa and agama take place both in
compound words and in the junction of the crude forms of
words and suffixes, adesha sandhi occurs only in
compound words. Detailed description of sandhi types can
be found in [10]. Table 4 gives examples for the various
sandhi types handled.

4. Design of paradigms

Our application aims to accomplish the process using a
Kannada root words dictionary and rules for analysis in
the form of paradigms. The linguist or the language expert
is asked to provide different tables of word forms covering
the words in a language. All the words in a word class
either declinable or conjugable need not share the same
paradigm. For example, all verbs would not follow the

same paradigm or have the same inflectional pattern. In
Kannada language, it can be seen that most of the words
ending with ಅ and whose gender is neutral, the suffixes

take the form as vu, vannu, iMda, etc. Similarly, those
ending with ಅ and whose gender is masculine, the

suffixes take the form as nu, annu, niMda, etc. This may
not hold good for all words. There are exceptional cases as
well which have been handled appropriately. For example,
the words kaadu and pashu are neutral gender and both
end with u. But both have different suffix rules.
Continuing the analysis this way, declinable words were
classified into 21 paradigms. Most of the Kannada verbs
fall under the identified 6 paradigms. Each verb paradigm
handles 135 inflections. Paradigms are not required for
uninflected words and a dictionary would suffice. Our tool
handles around 3250 declinable stems, 350 verb stems and
100 uninflected words, totalling to around 3700 stems.
Each paradigm table would consist of a set of suffixes for
the corresponding word form and a number indicating the
number of characters to be removed from the root before
appending the suffix to it. For e.g., consider a word �ಾಡು.
If we want to append ನುÇ to obtain the accusative case, the
character ◌ು should be removed from the root �ಾಡು. Hence
the number corresponding to this table for accusative case
is 1. By following this approach we can substantially
reduce the space required to store all forms of words. We
have seen that most of the words in the language will fit in
one of these categories. However there may be exceptional
cases for which we can write separate set of rules and
update the tables.

5. Datastructure used

A trie, or prefix tree, is an ordered tree data structure that
is used to store an associative array where the keys are
usually strings. The trie data structure is used for
searching a string in a large database of strings. For the
storage of roots, trie is build from left to right rather than
backwards. A separate trie is constructed to handle
suffixes corresponding to each paradigm class. This trie is
linked to all the roots which map to the same paradigm
class.

Figure 1 depicts the trie data structure built for four root
words- raama, ramaa, kavana and kavi. Here every node
contains a Unicode character corresponding to Kannada
script. Trie enhances the searching speed.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

115

Fig. 1 Example of Trie Datastructure

6. Implementation and other Features

The application starts off with the initialization process
which creates the trie structure of roots and paradigm
tables. The user then makes a choice of either the analyser
module or the generator module. In the analyser module,
input is obtained from the user who types the Kannada
sentences in a text field provided. The segmentation
routine tokenizes the input sentence into its constituent
words delimited by white space. These words are then
given to the word analyser. In the word analyser, the input
word is searched for in the indeclinable words dictionary
and root dictionary. It is then given to noun and verb
analyser. If the word can be analysed by the noun and verb
analyser, the information corresponding to the word is
collected from the paradigm table and is displayed. Else it
is seen that the word may be a complex word and is given
to the sandhi analyser. Here we match the longest suffix
with the existing corpus, strip that suffix off the word once
it matches and continue this process until all characters in
the word are stripped off.
A similar approach is used for the generator. The
generator has two forms, namely the noun generator and
verb generator. It takes the root word and suffix
information as its input. It then searches for the root in the
dictionary of roots and if it matches, it retrieves the suffix
for the corresponding root. It then appends the
corresponding suffix to the root and displays it to the user.
For example, if root word is ªಾಮ and if we select ಪ�ĹÐಂಗ,

ಏಕವಚನ, then the output of the generator will be ªಾಮನು.
Exceptional cases are handled by hard coded rules. For
example, in the noun generator module, trying to generate
singular nominative case of ಜನ (jana, ‘people’) would be
an illegal combination. We have tried to handle many such
exceptions efficiently.
We have used the Unicode format to store the Kannada
characters in the trie structures. Also, the input is taken in

the Unicode format. We do not make use of any external
database. However text files are used for storage. The tool
used to type the Kannada characters is a virtual keyboard
which supports all Kannada characters.

7. Results

When we tested the analyser and generator components of
the application, we obtained the following results.

Morphological Analyser

• Input: ನĸಯ

• Output: [Root] ನĸ, [Type] Noun, [Gender] N,
[Case] Genitive, [Number] S

• Input: ಬªೆĨರು�ಾÃªೆ

• Output: [Root] ಬªೆ, [Type] Verb, [PNG] 3P-,
[Tense] Present, [Aspect] Perfect

• Input: �ೆಂ�ಾಟ®ಾದÅĸಂ¡ೆಂದು

• Output: �ೆಂ�ಾಟ®ಾದÅĸಂದ + ಎಂದು lopa sandhi

�ೆಂ�ಾಟ + ಆದÅĸಂದ agama sandhi

�ೆಂಡು + ಆಟ lopa sandhi

Morphological Noun Generator

• Input: root- �ಾಡು, number- plural, case- Genitive.

• Output: �ಾಡುಗಳ

Morphological Verb Generator
• Input: root- ಬªೆ, PNG- 3SF, Tense- past,

Aspect-simple.
• Output: ಬªೆದಳ�

8. Conclusion & Future Work

Development of a morph analyser and generator for
Kannada language is a challenging task as the language is
both agglutinative and morphologically very rich. Our
application is rule based with paradigm approach and in
order to permit rapid matching of suffixes and root words,
trie Datastructure has been adopted. The only
disadvantage of trie is that it consumes more memory as
each node can have at most ‘y’ children, where y is the
alphabet count of the language. The developed tool can
handle up to 3700 root words and around 88K inflected
words.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

116

Morphological analysis forms the pre-processing activity
of various NLP tools like POS tagger, spell checker,
stemmer, machine translation etc. In future we plan to
extend this work to increase the root word count to 30,000
and later develop a morpheme component based POS
tagger.

References
[1] J. Carroll, Minnen G. and D. Pearce, “Applied

morphological processing of English”, Natural Language
Engineering. 2001.

[2] Vishal Goyal, Gurpreet Singh Lehal, “Hindi Morphological
Analyzer and Generator”, Proceedings of First International
Conference on Emerging Trends in Engineering and
Technology, 2008, IEEE, pp 1156-1159

[3] Jisha. P. Jayan, Rajeev R. R, S. Rajendran, ”Morphological
Analyser for Malayalam- A Comparison of Different
Approaches”, International Journal of Computer Science
and Information Technology, Vol. 2,No. 2, Dec 2009, pp
155-160.

[4] Abu Zaher Md. Faridee, Francis M. Tyers, “Development of
a morphological analyser for Bengali”, Proceedings of the
First International Workshop on Free/Open-Source Rule-
Based Machine Translation, Spain, November 2009, pp 43-
50.

[5] Anandan. P, Ranjani Parthasarathy, Geetha
T.V.,“Morphological Analyzer for Tamil”, ICON 2002,
RCILTS-Tamil, Anna University, India.

[6] Dhanalakshmi V, Anandkumar M,Rekha R U, Arunkumar
C, Soman K P, Rajendran S, “Morphological Analyzer for
Agglutinative Languages Using Machine Learning
Approaches”, Proceedings of International Conference on
Advances in Recent Technologies in Communication and
Computing, 2009 IEEE, pp 433-435.

[7] K. Narayana Murthy, “A Network and Process Model for
Kannada morphological Analysis/ Generation”, Department
of Computer and Information Sciences, University of
Hyderabad, Hyderabad, INDIA.

[8] T.N. Vikram and Shalini R. Urs, “Development of
Prototype Morphological Analyzer for the South Indian
Language of Kannada”.

[9] Bharati, Akshar, Vineet Chaitanya and Rajeev Sangal.
(1995). Natural Language Processing: A Paninian
Perspective, Prentice-Hall of India, New Delhi.

[10] http://ccat.sas.upenn.edu/plc/kannada/

Shambhavi B R received BE degree from
Visvesvaraya Technological University in
2003 and MS from BITS, Pilani in 2007.
She is currently pursuing Ph.D under VTU
in the field of Natural Language Processing.
She is presently working as Lecturer in the
Department of CSE, RVCE, Bangalore. She
is a life member of Indian Society for

Technical Education (ISTE)

Dr. Ramakanth Kumar P completed his
Ph.D. from Mangalore University in the
area of Pattern Recognition. He has
experience of around 16 years in Academics
and Industry. His areas of interest are Image
Processing, Pattern Recognition and Natural
Language Processing. He has to his credits
03 National Journals, 15 International
Journals, 20 Conferences. He is a member

of the Computer Society of India (CSI) and a life member of
Indian Society for Technical Education (ISTE). He has
completed number of research and consultancy projects for
DRDO.

Srividya K received BE degree from
Visvesvaraya Technological University in
2010. She studied Computer Science at RV
College of Engineering, Bangalore. She is
currently working as a Software Engineer at
Yahoo! India Software Development Center.

Jyothi B J completed her B.E in Computer
Science from R.V College of Engineering
under Visvesvaraya Technological
University in 2010. She has done her
internship in HP-STSD in Bangalore and is
currently working as a Software Engineer in
Oracle India(Server Technology).

Spoorti Kundargi received B.E degree
from Vishvesvaraya Technological Institue
in 2010. She graduated with distinction from
Computer Science Department of R V
College of Enginering, Bangalore. She
successfully completed her project "TDM to
MySQL tool" during her Internship at
National Instruments.

Varsha Shastri G recieved B.E.degree at
R.V College of Engineering under
Visvesvaraya Technological University in
2010. She interned at National Instruments
India R&D at Bangalore and is currently
working there as a Software Engineer.

