
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

117

Manuscript received January 5, 2011
Manuscript revised January 20, 2011

Modeling TCP NewReno Slow Start and Congestion- Avoidance
using Simulation Approach

Saleem-ullah Lar†, Xiaofeng Liao†† and Songtao Guo†††

†College of Computer Science , Chongqing University, Chongqing, China
††Faculty of Computer Science and Engineering, Chongqing University, Chongqing, China
†††Faculty of Computer Science and Engineering, Chongqing University, Chongqing, China

Abstract
TCP steady-state Performance is affected by the congestion in the
network and to select an appropriate data for the available
capacity (bottle-neck link) is an open issue. This congestion is
mainly arises when a large amount of flow (FTP transaction) is to
be sent. The aim of this paper is to solve these issues up to the
maximum level using simulation approach in already defined
algorithms. Our measurement is able to predict more accurately
TCP send rate to avoid packet loss and increasing throughput and
saw-tooth effect in congestion window while comparing with
TCP New Reno. The simulation result shows that the proposed
schema can achieve higher throughput and lower delay, full and
always link utilization with minor packet loss which will be
controlled by using some TCP New Reno already defined
mechanism and modifying slow start and congestion avoidance
algorithms.
Key words:
Congestion Control, Slow Start, Congestion Avoidance, Multiple
Packet loss, Throughput

Introduction

Today Internet traffic is mostly carried out by transmission
control protocol (TCP). TCP in co-relation with UDP is the
core of current internet transport layer. Recent studies show
several efforts in the direction of congestion control and to
select the appropriate send rate for TCP bulk transactions.
Modern TCP implementations such as [1], [2], [3] and [4]
also suggest different congestion control schemas by using
congestion window (cwnd) and delay techniques. However,
the goal is to increase the TCP cwnd size as maximum as
possible without packet loss and select the appropriate send
rate before the congestion to be occur.
Several variant of TCP are deployed [5], it has been
recognized that standard TCP New Reno throughput
deteriorates in high-speed networks with large bandwidth-
delay product (BDP) [6], and new congestion control
algorithms have been proposed to address such
deterioration. Assuming that the proposed congestion
control schemes would be in general used in the Internet, it
is imperative to study the interaction among flows of
different schemes, in addition to the interaction among

flows using the same congestion control. Thus, we propose
a new mechanism that can assess interaction among
different congestion control proposals. By applying the
same experiment setup, including network configuration,
flow parameters, and workload of each flow, to multiple
experiment runs for the different schemes, we can assess
flow-by-flow behavior of different schemes. In addition to
such realistic simulation environment that creates
networks with multiple bottlenecks, a large number of
short-lived and long-lived flows, and a variety of RTTs.
The Internet users' demands for network quality has
increased due to services becoming progressively
diversified and sophisticated because of the remarkable
degree to which the Internet has grown, which is due in
part to access and backbone network technologies.
Applications involving real-time media delivery services,
such as VoIP, video streaming and TV meeting systems,
all of which have experienced a dramatic level of
development which require large and stable amounts of
network resources in order to maintain the Quality of
Service (QoS). For example; the quality of real-time
streaming delivery applications is highly dependent on
propagation delay and delay jitter. The available
bandwidth on the end-to-end network path is also an
important factor in order to smoothly provide rich contents,
including voice and video. There are a number of network-
layer technologies, such as IntServ and DiffServ [7], that
provide such high-quality network services over the
Internet. However, implementation of IntServ or DiffServ
architectures would require additional mechanisms to be
deployed to all routers through which traffic flows traverse
in order to sufficiently benefit from the introduction of
IntServ or DiffServ into the network. Therefore, due to
factors such as scalability and cost, we believe that these
schemes have almost no chance of being deployed on
large-scale networks. On the other hand, a number of
video streaming applications use UDP as a transport-layer
protocol, and UDP controls the data transmission rate
according to the network condition. However, these
mechanisms have a large cost when modifying the
application program for achieving application-specific
QoS requirements, and the parameter settings are very
sensitive to various network factors. Furthermore, when

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

118

such applications co-exist in the network and share the
network bottleneck resources, we cannot estimate the
performance of the network or that of the applications,
because the control mechanisms of such applications are
designed and implemented independently, without
considering the effect of interactions with other
applications. Since TCP controls the data transmission rate
according to the network condition

Related Work

Although RFC 2581[8] and its associated algorithms have
been doing an excellent job in ensuring top performance in
lieu of congestion on TCP/IP networks, there is still a lot
of work going into enhancing TCP performance and
responsiveness to congestion. During the 1990’s
researchers such as Sally Floyd, Van Jacobson, Mark
Allman, W. Richard Stevens, Jamshid Mahdavi and a host
of others start producing a massive amount of research and
experiments with TCP and related congestion control ideas.
The wealth of information in this area is really
phenomenal and it is hard to pick out some of the best
ideas to present in this paper. Nevertheless, this section is
an attempt to provide an overview of some of those
popular ideas over the last decade. TCP and congestion
control on the Internet is an area that is still actively being
researched. For more information, consult the references
noted in this paper.
The standard TCP congestion control algorithm which we
refer to as TCP Reno was developed in 1988. Reference
[9], [10], [11], [12], [13], and [14] papers explain several
enhancements in TCP Reno. Few modifications addressing
the conservative approach of TCP to update its congestion
window under congestion condition are:

 i. Loss-based TCP congestion control: HSTCP
 [15], BIC-TCP [16], STCP [17], CUBIC-TCP

[18], HTCP [19].
 ii. Delay-based congestion control: TCP-Vegas

[20], Fast-TCP [21], TCP-LP [22].
 iii. Mixed loss-delay based TCP congestion

Control: Compound TCP [23], TCP Africa [24].
 iv. Explicit congestion Notification: XCP [25].

Most of these protocols deal with modifying the window
growth function of TCP in a more scalable fashion.
Habibullah Jamal in [26] proposed a TCP-friendly
congestion control that realizes efficient data transmission
in high-speed networks, fairness with TCP Reno and fair
bandwidth allocation among flows with different RTTs. A
scheme that determines the size of congestion window
each time a new acknowledgment is received instead of

employing slow start/congestion avoidance approach is
proposed in [12].

NewReno Congestion Control Mechanisms
In TCP Reno, the window size is cyclically changed in a
typical situation. The window size continues to be
increased until packet loss occurs. TCP Reno has two
phases in increasing its window size: slow start phase and
congestion avoidance phase. When an ACK
(acknowledgment) packet is received by TCP at the sender
side at time t + t’ [sec], the current window size cwnd(t +
t’) is updated from cwnd(t) as follows

Slow Start Phase
 if () ()cwnd t ssthresh t<

 (') () 1cwnd t t cwnd t+ = + ;

Congestion Avoidance Phase

if () ()cwnd t ssthresh t>

(') () 1/ ()cwnd t t cwnd t cwnd t+ = +

Where, ssthresh(t) is a threshold value at which TCP
changes its phase from slow start phase to congestion
avoidance phase. When packet loss is detected by
retransmission timeout expiration, cwnd(t) and ssthresh(t)
are updated as,

() 1cwnd t =
() () / 2ssthresh t cwnd t= ;

On the other hand, when TCP detects packet loss by a fast
retransmit algorithm, it changes cwnd(t) and ssthresh(t) as;

() ()cwnd t ssthresh t=
() () / 2ssthresh t cwnd t=

TCP Reno then enters a fast recovery phase if the packet
loss is found by the fast retransmit algorithm. In this phase,
the window size is increased by one packet when a
duplicate ACK packet is received. On the other hand,
cwnd(t) is restored to ssth(t) when the non-duplicate ACK
packet corresponding to the retransmitted packet is
received.
We have seen that TCP connection starts up in slow start
mode and exponentially increase the congestion window
(cwnd_) until it cross the slow start threshold (ssthresh_).
Once cwnd_ is greater than ssthresh_, TCP moves to
congestion avoidance phase. In this mode the primary
objective is to maintain high throughput without causing
congestion. If TCP detects any segment loss, this is a
strong indication that network is congested, so as a
corrective action TCP reduces its data flow rate by

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

119

reducing cwnd_ after that it again goes back to slow start
phase.
Having some deeper look on working mechanism, we
choose ssthresh_ = 65535 bytes and cwnd_ = 512 bytes (1
segment).
Since cwnd_ < ssthresh_ TCP state is slow start. TCP
cwnd_ grows from 512 bytes to 64947 bytes also it has
been assumed that no segment loss during slow start phase.
During slow start cwnd_ is incremented by 1 segment on
every successful acknowledgment from the receiver. When
cwnd_=65459 + 512 > 65535, at this point TCP changes
its state to congestion avoidance phase, and the primary
objective in this phase is to get the higher throughput. If
during this phase any three duplicate ACKS received the
TCP moves to the fast retransmit without waiting for the
retransmit timer out and then after it moves to the fast
recovery phase.

TCP VEGAS

As described in the previous subsection, in TCP Reno (and
the older version, TCP Tahoe), the window size continues
to be increased until packet loss occurs due to congestion.
When the window size is throttled because of packet loss,
the throughput of the connection would be degraded. It
cannot be avoided because of an essential nature of the
congestion control mechanism adopted in TCP Reno; it
can detect network congestion only by packet loss.
However, throttling the window size is not adequate when
the TCP connection itself causes the congestion because of
its too large window size. If the window size is
appropriately controlled such that the packet loss does not
occur in the network, the throughput degradation due to
the throttled window can be avoided. This is a key idea of
TCP Vegas.
TCP Vegas controls its window size by observing RTTs
(round-trip times) of packets that the sender host has sent
before. If observed RTTs become large, TCP Vegas
recognizes that the network begins to be congested, and
throttles the window size. If RTTs become small, on the
other hand, the sender host of TCP Vegas determines that
the network is relieved from the congestion, and increases
the window size again. Hence, the window size in an ideal
situation is expected to be converged to an appropriate
value. More specifically, in congestion avoidance phase,
the window size is updated as

if (/ _)diff base rttα< (1)

(') () 1cwnd t t cwnd t+ = +

If (/ _ / _)base rtt diff base rttα β<= <= (2)

(') ()cwnd t t cwnd t+ =

if (_)diff base rtt> (3)

 (') () 1cwnd t t cwnd t+ = +

Where,

(() / _) () / ()diff cwnd t base rtt cwnd t rtt obs= − (4)

where rtt(obs) is an observed round trip time, base_rtt is
the smallest value of observed RTTs, and and are
some constant.
TCP Vegas has another feature in its congestion control
algorithm: a slow-start mechanism. The rate of increasing
its window size in slow start phase is one half of that in
TCP Tahoe and TCP Reno. Namely, the window size is
incremented every other time an ACK packet is received.
Note that the congestion control mechanism used by TCP
Vegas (equation 4) indicates that if observed RTTs of the
packets are identical, the window size remains unchanged.
Suppose that ACK is received at source at time (Ta) by
denoting that Ra bytes received at the receiver, we can
measure the following sample bandwidth by using
Bk=Ra/∆a, where ∆a=(Ta – 1) – 1 and Ta – 1 is the time of
previous ACK received. The discrete time filter is used
which is obtained by low-pass filter using Tustin-
approximation [27].
B’k = akB’k-1 +(1-ak)(Bk+Bk-1)/2
Where B’k is the filtered estimation of the available
bandwidth at time T=Ta, ak=(2τ-∆a)/ (2τ+∆a), where 1/τ is
the cut-off frequency filter.
The pseudo code of the algorithm for n-duplicate
acknowledgment is given as.

Pseudo Code for n-duplicate Ack

If (n dup_ack received)

 ssthresh= (BWE*RTT)/MSS;

if (cwin>ssthresh)

 cwin=ssthresh;

end if

end if

Here MSS denotes the maximum segment size in bits,
which is length of TCP Payload, BWE stands for
bandwidth estimation.

Similarly the pseudo code for ACK time out expiry is
given as.

Pseudo Code for TIME-OUT Expiry

if (timeout_expires)
 ssthresh= (BWE*RTT)/MSS;
 if (ssthresh<2)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

120

 ssthresh=2;
end if
cwin=1;

end if

TCP Vegas can achieve over 40% higher throughput than
TCP Reno. However, it is not clear whether TCP Vegas
works well with TCP Reno or not. Our contribution in this
paper is that we compare throughput performances of two
versions where those share the bottleneck link, in order to
discuss the possibility on the deployment of TCP Vegas in
the future Internet.

Proposed Mechanism

Modification in Slow Start and congestion
avoidance working Mechanism

It is possible that no packet loss even if congestion
window is greater than threshold, keeping this point
throughput of the system can increase and will be showed
in the simulation section. The reason is that it is possible
that network is not congested even if the congestion
window is greater than slow start threshold, so in this case
we have to check the packet loss along with this condition
before going to congestion avoidance phase. The
following condition is to check the attributes and continue
exponential increase congestion window by checking in a
more appropriate way to get throughput as maximum as
possible. The pseudo code of the algorithm is given as.

Algorithm 1: Appropriate Selection of Congestion Window
void TcpAgent::opencwnd()
{
If ((cwnd_ ≤ ssthresh_) || (cwnd_ > ssthresh_ &&
dupack_ !=3)) {

//Slow start phase (Exponential increase of congestion
window
 cwnd_ = cwnd_ + MSS;
} else

{
 ssthresh_= cwnd_ – MSS;
 cwnd_= ssthresh_ / 2;
 }
//MSS (Maximum segment size=512 bytes)

Improving Delay & Throughput Attributes
According to TCP New-Reno fast retransmit process the
three duplicate asks has to be required to retransmit the
loss packets, which seems to be inconvenient and it has to

be observe that 85% of the packets loss after two duplicate
asks due to congestion or transmission error. So, why not
we use double acknowledgments to denote packet loss
instead of three? Therefore, in our simulation we modify
the existing behavior from three duplicate
acknowledgments to two duplicate acknowledgments and
the result shows better performance in terms of delay and
it reduced to 27%. As the delay decreases system
throughput automatically increases in terms of packets
delivered/seconds. The modification of duplicate
acknowledgments is done by already defined TCP parameter i.e.
tcprexmttthresh_ 2.

Send Bursty Traffic
To Send Bursty data in a more appropriate way to reduce
the packet loss as well, the propose mechanism can be also
be used for this purpose.

Algorithm 2: Sent Huge Traffic in an Intelligent Way

if (valid_ack || aggressive_maxburst_)
if (dupacks_ == 0)

 send_much(0, 0, maxburst_);
else if (dupacks_ > numdupacks_ - 1 &&

newreno_changes_ == 0)
 send_much (0, 0, 2);
if (cwnd_<=ssthresh_ && dupacks_!=3)
 send_much (0,0,maxburst_);

else if (cwnd_>ssthresh_ && newreno_changes_== 0)
 send_much (0,0,2);
end if
end if
end if

Experimental Setup
Our proposed model focuses on two basic algorithms, slow
start congestion avoidance and a little bit modification in
default behavior of packet loss indication as discussed
earlier. We uses following topology in our NS-2
simulation.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

121

 Fig. 1. Simulation Model (Dumb bell)

Other major design parameters defined in the simulation
are as follows.

(i) Packet Size was defined 1500bytes
(ii) Rate defined for FTP is 8000kb and for

UDP is 1Mb.
(iii) Minimum and maximum Simulation

time goes from 50 seconds to 1 hour
respectively.

(iv) To saturate the bottleneck link, the size
of congestion window was large enough
to 83000 packets.

(v) Both routers of the topology uses Drop
Tail buffers and FIFO queuing.

(vi) All tests are repeated at least 3 times.
(vii) RTT in the range of 10ms ~ 300ms.
(viii) Bandwidth of 2Mbps and 5Mbps.
(ix) Queuing Size of 20% ~ 100% of BDP.

The performance metrics of the topology are effect of
congestion window, throughput, and packet loss.

Simulation Results & Performance Analysis
Packet Loss:
Packet loss can be caused by a number of factors,
including signal degradation over the network medium due
to multi-path fading, packet drop because of channel
congestion, corrupted packets rejected in-transit, faulty
networking hardware, faulty network drivers or normal
routing routines.
In addition to this, packet loss probability is also affected
by signal-to-noise ratio and distance between the
transmitter and receiver.
We have checked the Packet loss results both for multi
(Bursty data) file and mono-file cases.

Fig. 2. Packet loss in a Multi files Scenario

Figure 2 shows that, while sending bulk of files at the
same time TCP NewReno (red lines) loss the packets in a
greater ratio then the proposed mechanism (green lines), in
this case the congestion window is bigger than the
proposed but a decrease in congestion window is also
clearly observed which may also lead to the higher delay
and lowering the overall throughput of the system. But the
saw-tooth effect of proposed scheme remain same almost
91% as compared to the NewReno haphazard and
randomized effect. While in a mono-file scenarios the
difference is not too high, but today due to the rapid
increase and merging of latest technologies with the
internet cause to send huge amount of data simultaneously
from different geographical regions. Therefore the
proposed mechanism shows the better performance than
the NewReno. Packet loss ratio can also be calculated by
the following formula

Packet loss %age =NLP / (NLP + NPRS)
Where,
NLP=Number of Lost Packets.
NPRS=Number of packet received successfully.
When packet loss caused by network problems, lost or
dropped packets can result in highly noticeable
performance issues or jitter with streaming technologies,
voice over IP, online gaming and videoconferencing, and
will affect all other network applications to a degree.
However, it is important to note that packet loss does not
always indicate a problem. If the latency and the packet
loss at the destination hop are acceptable then the hops
prior to that one don't matter.

Throughput:
Our proposed mechanism is 100% suitable while
transferring mono file (UDP or FTP), the result in figure 3

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

122

clearly shows the difference between the two. If we
observe carefully the condition in algorithm 1, which is “If
((cwnd_ ≤ ssthresh_) || (cwnd_ > ssthresh_ &&
dupack_ !=3))”. By tracing and observing it has been
found that this statement plays a very significant role by
carefully and correctly selecting the congestion window.
The parameters dupack_!=3 is an addition in the check,
which also co-relate with the tcprexmttthresh_ 2 a global
parameter which changes the default behavior of TCP
from three duplicate acknowledgments to two.

Fig. 3. System Throughput

Effect of Congestion Window:
In TCP, the congestion window is one of the factors that
determine the number of bytes that can be outstanding at
any time. Maintained on the sender, this is a means of
stopping the link between two places from getting
overloaded with too much traffic. The size of this window
is calculated by estimating how much congestion there is
between the two places. The sender maintains the
congestion window. When a connection is set up, the
congestion window is set to the maximum segment size
(MSS) allowed on that connection. Further variance in the
collision window is dictated by an Additive
Increase/Multiplicative Decrease approach [28]. This
means that if all segments are received and the
acknowledgments reach the sender on time, some constant
is added to the window size. The window keeps growing
linearly until a timeout occurs or the receiver reaches its
limit. If a timeout occurs, the window size is halved.
Figure 4 describe the effects of cwnd, as the propose
mechanism in green lines, while red describe NewReno.
.

Fig. 4. Effect of cwnd

After separating and expanding the graph, the difference
between the two is clearly observed. Our proposed
mechanism (figure 5) outperforms the NewReno (figure 6).

Fig. 5 Effect of cwnd (Proposed Mechanism)

We have tested this idea with the same network to
compare the performance of the connections with the
modified TCP NewReno. It is easy to see from figure 5
that the saw-tooth effect is more evenly distributed than in
the figure 6.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

123

Fig. 6 Effect of cwnd (New Reno)

Conclusion and Future Work

Most new TCP variants showed good link utilization
however had still unfairness and aggressiveness problems
over standard TCP Reno. When we using multiple flows
of a new TCP variant with different RTTs, queuing delay
can be an issue as much as a bandwidth aspect. Some new
TCP variants seemed to be sensitive to network conditions.
Therefore a careful modification in the algorithms leads to
better outcomes.
Through results presented in this paper, actual analysis and
observations of packet loss and throughput in multi file
cases shows a clear difference while comparing results
with already defined TCP Reno algorithms. The effect of
congestion window mostly remains double then the
previous, which shows that values of congestion window
are chosen intelligently in the algorithm.
 It has also been seen that mostly routers and other
network devices are using algorithms whose complexity is
very high. So if this approach is selected for the routers as
well, a better performance will be achieved in the intranet.
In future both analytical (Engineering) and simulation
approaches will be used to enhance this approach. This
research is actually an initial stage of my study and in
future I will try my maximum efforts to expand the idea
and results at a global level.
Acknowledgment
The author would like to thank the anonymous reviewers
and the editors for insightful comments and suggestions.

References
[1] T.V. Lakshman and Upamnayu Madhow “The Performance

of TOP/IP for Networks with high BDP and Random Loss”
IEEE/ACM Transactions. Volume (05)-03, June 1997.

[2] Jitendra Padhye, VictorFiroiu, “Modeling TCP Reno
Performance A simple model & its Empirical Validation”
IEEE/ACM Transactions Vol.ume(8)-02 April 2000.

[3] Jim Martin, Arne Nilson and Injong Rhee “Delay Based
Congestion Avoidance for TOP” IEEE/ACM Transactions.
Volume (11)-03, June 2003.

[4] Celio Albuquerque, Brett J Vickers “Preventing Congestion
Collapse and promoting fairness in Internet”IEEE/ACM
Transactions, Volume (12)-01, Feb 2004.

[5] en.wikipedia.org/wiki/Transmission_Control_Protocol.
[6] Dina Kitabi, Mark Handley and Charlie Rohrs “Congestion

Control for High BDP Networks”
[7] Matt Lepinski and Peter Portante “DiffServ and IntServ”

Special Notes, December 2001.
[8] www.ietf.org/rfc/rfc2581.txt
[9] Mohamed Tekala and Robert Szabo “Modeling Scalable

TCP Friendliness to NewReno TCP”IJCSNS-Volume (07)-
03, PP: 89—96.

[10] R. Wang, K. Yamada, M.Y.Sanadidi and M. Gerla, “TCP
with sender side intelligence to handle Dynamic, Large,
Leaky Pipes”, IEEE Journal on Selected Areas in
Communications, Volume(23)-02, Feb 2005

[11] Dongmin Kim, Beomjoon Kim, Jechan Han and Jaiyong
Lee “Enhancement to the Fast Recovery Algorithm of TCP
NewReno,ICOIN 2004, LNCS 3090, pp 332-341.”

[12] Andrea De Vendictis, Andrea Baiocchi, and Michela
Bonacci, “Analysis and enhancement of TCP Vegas
congestion control in a mixed TCP Vegas and TCP Reno
network scenario”, ACM Volume(53)03-04, Aug 2003.

[13] Xiao Lu, Ke Zhang, Cheng Peng Fu, and Chuan Heng Foh,
“A Sender Side TCP Enhancement for Start-up
Performance in High Speed Long Delay Networks”, IEEE
Communication Society, WCNC 2010 Proceedings.

[14] Sourabh Ladha, Paul D. Amer, Armando Caro Jr.,
Janardhan R lyengar, “On the prevalence and Evaluation of
Recent TCP Enhancements”, web1.fandm.edu/
jiyengar/papers/tbit+-globecom2004.pdf

[15] Sally Floyd, Sylvia Ratnassamy and Scott Shenker,
“Modified TCP’s Congestion Control for High Speeds”
May 05, 2002.

[16] L. XU, K. Harfoush and I. Rhee, “Binary Increase
Congestion Control for Fast Long Distance Network” In
Proceeding of the IEEE INFOCOM March 2004.

[17] Tom Kelly, “Scalable TCP Improving Performance in High
Speed WAN” http://www.lce.eng.cam.ac.uk/~
ctk21/scalable/.

[18] Injong Rhee and Lisong Xu, “Cubic: A new Friendly High
Speed TCP Variant”

[19] en.wikipedia.org/wiki/H-TCP.
[20] Richard J. La, Jean Walrand, and Venkat Anantharam,

“Issues in TOP Vegas”, Department of Electrical
Engineering, University of California-Berkeley.

[21] C. Jin, D. Wei, S. H. Low, “FAST TCP, From Theory to
Eexperiments”, http://netlab.caltech.edu/FAST/

[22] Aleksandar Kuzmanovic and Edward W. Knightly, “TCP-
LP: A Distributed Algorithm for Low Priority Data
Transfer”,citeseerx.ist.psu.edu/viewdoc/ download? doi=
10.1.1.13.8070&representante

[23] Alberto Blanc, Konstantin Avrachenkov, Denis Collange
and Giovanni Neglia, “Compound TCP with Random
Losses”, LNCS, 2009, Volume 5550/2009, 482-494.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

124

[24] King, R.; Baraniuk, R.; Riedi, R., “TCP-Africa: an
adaptive and fair rapid increase rule for scalable TCP”,
INFOCOM 2005. 24th Annual Joint Conference of the
IEEE Computer and Communications Societies,
Proceedings IEEE

[25] http://icir.org/floyd/ecn.html
[26] Habibullah Jamal and Kiran Sultan, “Performance Analysis

of TCP Congestion Control Algorithms”, International
Journal of Computers and Communications, Volume (02)-
01, 2008.

[27] en.wikipedia.org/wiki/Tustin
[28] Lin cai, Xuemin Shen, Jianping Pan and Jon W. mark,

“Performance Analysis of TCP Friendly Algorithm”, IEEE
Transactions on Multimedia, Volume(07)-02, Apr 2005.

Saleem-ullah Lar was born on Mar 1983 in AhmedPur East
(Pakistan). He received his BSc and MIT degrees in Computer
Science from Islamia University Bahawalpur and Bahauddin
Zakariya University (Multan) in 2003 and 2005 respectively. He
has worked for four years as a Network administrator. His
research interests include TCP/IP Performance, Quality of
Service and Network Congestion Control.

Xiaofeng Liao was born in Sichuan Province (China) in 1964.
He received his B.S. and M.S. degrees in Mathematics from
Sichuan University, and the Ph.D degree in circuits and systems
from University of Electronic Science and Technology of china
in 1997. From 1999-2001 he was doing Postdoctoral research at
Chongqing University. At present, he is a professor at Chongqing
University and university of Electronic Science and Technology
of china. From Nov 1997 to Apr 1998, he was a research
associate at China University of Hong Kong. From Oct 1999 to
Oct 2000, he was a research associate at City University of Hong
Kong. From Mar 2001 to Jun 2001 and Mar 2002 to Jun 2002 he
remains senior associate at City of University of Hong Kong. He
has published over 150 academic journal and conference papers.
Currently, his main interests include neural networks. Nonlinear
dynamical systems. Bifurcation and chaos, synchronization and
control of chaos, and signal processing.

Songtao Guo was born in Henan province (China) in 1976. He
received his BS and MS degrees in computer software and theory
from Chongqing University (china) in 1999 and 2003
respectively. His research interests include network congestion
control, stability analysis, bifurcation control and its
synchronization, and controlling the chaos of nonlinear systems
with time delays.

