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Abstract 
TCP steady-state Performance is affected by the congestion in the 
network and to select an appropriate data for the available 
capacity (bottle-neck link) is an open issue. This congestion is 
mainly arises when a large amount of flow (FTP transaction) is to 
be sent. The aim of this paper is to solve these issues up to the 
maximum level using simulation approach in already defined 
algorithms. Our measurement is able to predict more accurately 
TCP send rate to avoid packet loss and increasing throughput and 
saw-tooth effect in congestion window while comparing with 
TCP New Reno. The simulation result shows that the proposed 
schema can achieve higher throughput and lower delay, full and 
always link utilization with minor packet loss which will be 
controlled by using some TCP New Reno already defined 
mechanism and modifying slow start and congestion avoidance 
algorithms. 
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Introduction 

Today Internet traffic is mostly carried out by transmission 
control protocol (TCP). TCP in co-relation with UDP is the 
core of current internet transport layer. Recent studies show 
several efforts in the direction of congestion control and to 
select the appropriate send rate for TCP bulk transactions. 
Modern TCP implementations such as [1], [2], [3] and [4] 
also suggest different congestion control schemas by using 
congestion window (cwnd) and delay techniques. However, 
the goal is to increase the TCP cwnd size as maximum as 
possible without packet loss and select the appropriate send 
rate before the congestion to be occur. 
Several variant of TCP are deployed [5], it has been 
recognized that standard TCP New Reno throughput 
deteriorates in high-speed networks with large bandwidth-
delay product (BDP) [6], and new congestion control 
algorithms have been proposed to address such 
deterioration. Assuming that the proposed congestion 
control schemes would be in general used in the Internet, it 
is imperative to study the interaction among flows of 
different schemes, in addition to the interaction among 

flows using the same congestion control. Thus, we propose 
a new mechanism that can assess interaction among 
different congestion control proposals. By applying the 
same experiment setup, including network configuration, 
flow parameters, and workload of each flow, to multiple 
experiment runs for the different schemes, we can assess 
flow-by-flow behavior of different schemes. In addition to 
such realistic simulation environment that creates 
networks with multiple bottlenecks, a large number of 
short-lived and long-lived flows, and a variety of RTTs. 
The Internet users' demands for network quality has 
increased due to services becoming progressively 
diversified and sophisticated because of the remarkable 
degree to which the Internet has grown, which is due in 
part to access and backbone network technologies. 
Applications involving real-time media delivery services, 
such as VoIP, video streaming and TV meeting systems, 
all of which have experienced a dramatic level of 
development which require large and stable amounts of 
network resources in order to maintain the Quality of 
Service (QoS). For example; the quality of real-time 
streaming delivery applications is highly dependent on 
propagation delay and delay jitter. The available 
bandwidth on the end-to-end network path is also an 
important factor in order to smoothly provide rich contents, 
including voice and video. There are a number of network-
layer technologies, such as IntServ and DiffServ [7], that 
provide such high-quality network services over the 
Internet. However, implementation of IntServ or DiffServ 
architectures would require additional mechanisms to be 
deployed to all routers through which traffic flows traverse 
in order to sufficiently benefit from the introduction of 
IntServ or DiffServ into the network. Therefore, due to 
factors such as scalability and cost, we believe that these 
schemes have almost no chance of being deployed on 
large-scale networks. On the other hand, a number of 
video streaming applications use UDP as a transport-layer 
protocol, and UDP controls the data transmission rate 
according to the network condition. However, these 
mechanisms have a large cost when modifying the 
application program for achieving application-specific 
QoS requirements, and the parameter settings are very 
sensitive to various network factors. Furthermore, when 
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such applications co-exist in the network and share the 
network bottleneck resources, we cannot estimate the 
performance of the network or that of the applications, 
because the control mechanisms of such applications are 
designed and implemented independently, without 
considering the effect of interactions with other 
applications. Since TCP controls the data transmission rate 
according to the network condition 

Related Work 

Although RFC 2581[8] and its associated algorithms have 
been doing an excellent job in ensuring top performance in 
lieu of congestion on TCP/IP networks, there is still a lot 
of work going into enhancing TCP performance and 
responsiveness to congestion. During the 1990’s 
researchers such as Sally Floyd, Van Jacobson, Mark 
Allman, W. Richard Stevens, Jamshid Mahdavi and a host 
of others start producing a massive amount of research and 
experiments with TCP and related congestion control ideas. 
The wealth of information in this area is really 
phenomenal and it is hard to pick out some of the best 
ideas to present in this paper. Nevertheless, this section is 
an attempt to provide an overview of some of those 
popular ideas over the last decade. TCP and congestion 
control on the Internet is an area that is still actively being 
researched. For more information, consult the references 
noted in this paper. 
The standard TCP congestion control algorithm which we 
refer to as TCP Reno was developed in 1988. Reference 
[9], [10], [11], [12], [13], and [14] papers explain several 
enhancements in TCP Reno. Few modifications addressing 
the conservative approach of TCP to update its congestion 
window under congestion condition are: 
 
       i.  Loss-based TCP congestion control: HSTCP  
 [15], BIC-TCP [16], STCP [17], CUBIC-TCP  

[18], HTCP [19].  
      ii. Delay-based congestion control: TCP-Vegas  

[20], Fast-TCP [21], TCP-LP [22].  
      iii.   Mixed loss-delay based TCP congestion  

Control: Compound TCP [23], TCP Africa [24]. 
      iv. Explicit congestion Notification: XCP [25].  
 
Most of these protocols deal with modifying the window 
growth function of TCP in a more scalable fashion. 
Habibullah Jamal in [26] proposed a TCP-friendly 
congestion control that realizes efficient data transmission 
in high-speed networks, fairness with TCP Reno and fair 
bandwidth allocation among flows with different RTTs. A 
scheme that determines the size of congestion window 
each time a new acknowledgment is received instead of 

employing slow start/congestion avoidance approach is 
proposed in [12]. 
 
NewReno Congestion Control Mechanisms 
In TCP Reno, the window size is cyclically changed in a 
typical situation. The window size continues to be 
increased until packet loss occurs. TCP Reno has two 
phases in increasing its window size: slow start phase and 
congestion avoidance phase. When an ACK 
(acknowledgment) packet is received by TCP at the sender 
side at time t + t’ [sec], the current window size cwnd(t + 
t’) is updated from cwnd(t) as follows       
 
Slow Start Phase 
    if ( ) ( )cwnd t ssthresh t<   

  ( ') ( ) 1cwnd t t cwnd t+ = + ; 

 
Congestion Avoidance Phase 

if ( ) ( )cwnd t ssthresh t>  

( ') ( ) 1/ ( )cwnd t t cwnd t cwnd t+ = +  

 
Where, ssthresh(t) is a threshold value at which TCP 
changes its phase from slow start phase to congestion 
avoidance phase. When packet loss is detected by 
retransmission timeout expiration, cwnd(t) and ssthresh(t) 
are updated as,    

( ) 1cwnd t =        
( ) ( ) / 2ssthresh t cwnd t= ; 

 
On the other hand, when TCP detects packet loss by a fast 
retransmit algorithm, it changes cwnd(t) and ssthresh(t) as; 
 

( ) ( )cwnd t ssthresh t=  
( ) ( ) / 2ssthresh t cwnd t=  

TCP Reno then enters a fast recovery phase if the packet 
loss is found by the fast retransmit algorithm. In this phase, 
the window size is increased by one packet when a 
duplicate ACK packet is received. On the other hand, 
cwnd(t) is restored to ssth(t) when the non-duplicate ACK 
packet corresponding to the retransmitted packet is 
received.  
We have seen that TCP connection starts up in slow start 
mode and exponentially increase the congestion window 
(cwnd_) until it cross the slow start threshold (ssthresh_). 
Once cwnd_ is greater than ssthresh_, TCP moves to 
congestion avoidance phase. In this mode the primary 
objective is to maintain high throughput without causing 
congestion. If TCP detects any segment loss, this is a 
strong indication that network is congested, so as a 
corrective action TCP reduces its data flow rate by 
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reducing cwnd_ after that it again goes back to slow start 
phase. 
Having some deeper look on working mechanism, we 
choose ssthresh_ = 65535 bytes and cwnd_ = 512 bytes (1 
segment). 
Since cwnd_ < ssthresh_ TCP state is slow start. TCP 
cwnd_ grows from 512 bytes to 64947 bytes also it has 
been assumed that no segment loss during slow start phase. 
During slow start cwnd_ is incremented by 1 segment on 
every successful acknowledgment from the receiver. When 
cwnd_=65459 + 512 > 65535, at this point TCP changes 
its state to congestion avoidance phase, and the primary 
objective in this phase is to get the higher throughput. If 
during this phase any three duplicate ACKS received the 
TCP moves to the fast retransmit without waiting for the 
retransmit timer out and then after it moves to the fast 
recovery phase. 

TCP VEGAS 

As described in the previous subsection, in TCP Reno (and 
the older version, TCP Tahoe), the window size continues 
to be increased until packet loss occurs due to congestion. 
When the window size is throttled because of packet loss, 
the throughput of the connection would be degraded. It 
cannot be avoided because of an essential nature of the 
congestion control mechanism adopted in TCP Reno; it 
can detect network congestion only by packet loss. 
However, throttling the window size is not adequate when 
the TCP connection itself causes the congestion because of 
its too large window size. If the window size is 
appropriately controlled such that the packet loss does not 
occur in the network, the throughput degradation due to 
the throttled window can be avoided. This is a key idea of 
TCP Vegas. 
TCP Vegas controls its window size by observing RTTs 
(round-trip times) of packets that the sender host has sent 
before. If observed RTTs become large, TCP Vegas 
recognizes that the network begins to be congested, and 
throttles the window size. If RTTs become small, on the 
other hand, the sender host of TCP Vegas determines that 
the network is relieved from the congestion, and increases 
the window size again. Hence, the window size in an ideal 
situation is expected to be converged to an appropriate 
value. More specifically, in congestion avoidance phase, 
the window size is updated as     
 
if  ( / _ )diff base rttα<    (1) 

( ') ( ) 1cwnd t t cwnd t+ = +                  

If  ( / _ / _ )base rtt diff base rttα β<= <=  (2) 

( ') ( )cwnd t t cwnd t+ =  

if  ( _ )diff base rtt>     (3) 

 ( ') ( ) 1cwnd t t cwnd t+ = +  

Where, 

( ( ) / _ ) ( ) / ( )diff cwnd t base rtt cwnd t rtt obs= −  (4) 

where rtt(obs) is an observed round trip time, base_rtt is 
the smallest value of observed RTTs, and and are 
some constant. 
TCP Vegas has another feature in its congestion control 
algorithm: a slow-start mechanism. The rate of increasing 
its window size in slow start phase is one half of that in 
TCP Tahoe and TCP Reno. Namely, the window size is 
incremented every other time an ACK packet is received. 
Note that the congestion control mechanism used by TCP 
Vegas (equation 4) indicates that if observed RTTs of the 
packets are identical, the window size remains unchanged.  
Suppose that ACK is received at source at time (Ta) by 
denoting that Ra bytes received at the receiver, we can 
measure the following sample bandwidth by using 
Bk=Ra/∆a, where ∆a=(Ta – 1) – 1 and Ta – 1 is the time of 
previous ACK received. The discrete time filter is used 
which is obtained by low-pass filter using Tustin-
approximation [27]. 
B’k = akB’k-1 +(1-ak)(Bk+Bk-1)/2 
Where B’k is the filtered estimation of the available 
bandwidth at time T=Ta, ak=(2τ-∆a)/ (2τ+∆a), where 1/τ is 
the cut-off frequency filter. 
The pseudo code of the algorithm for n-duplicate 
acknowledgment is given as. 
 

Pseudo Code for n-duplicate Ack 

If (n dup_ack received) 

 ssthresh= (BWE*RTT)/MSS; 

if (cwin>ssthresh) 

 cwin=ssthresh; 

end if 

end if 

Here MSS denotes the maximum segment size in bits, 
which is length of TCP Payload, BWE stands for 
bandwidth estimation. 

Similarly the pseudo code for ACK time out expiry is 
given as. 

Pseudo Code for TIME-OUT Expiry 

if (timeout_expires) 
 ssthresh= (BWE*RTT)/MSS; 
      if (ssthresh<2) 
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 ssthresh=2; 
end if 
cwin=1; 

end if 

TCP Vegas can achieve over 40% higher throughput than 
TCP Reno. However, it is not clear whether TCP Vegas 
works well with TCP Reno or not. Our contribution in this 
paper is that we compare throughput performances of two 
versions where those share the bottleneck link, in order to 
discuss the possibility on the deployment of TCP Vegas in 
the future Internet. 

Proposed Mechanism 

Modification in Slow Start and congestion 
avoidance working Mechanism 
 
It is possible that no packet loss even if congestion 
window is greater than threshold, keeping this point 
throughput of the system can increase and will be showed 
in the simulation section. The reason is that it is possible 
that network is not congested even if the congestion 
window is greater than slow start threshold, so in this case 
we have to check the packet loss along with this condition 
before going to congestion avoidance phase. The 
following condition is to check the attributes and continue 
exponential increase congestion window by checking in a 
more appropriate way to get throughput as maximum as 
possible. The pseudo code of the algorithm is given as. 
 
Algorithm 1:  Appropriate Selection of Congestion Window 
void TcpAgent::opencwnd() 
{ 
If ((cwnd_ ≤ ssthresh_) || (cwnd_ > ssthresh_ && 
dupack_ !=3)) { 
 
//Slow start phase (Exponential increase of congestion 
window 
 cwnd_ = cwnd_ + MSS; 
} else  

{ 
  ssthresh_= cwnd_ – MSS;    
 cwnd_= ssthresh_ / 2; 
 } 
//MSS (Maximum segment size=512 bytes) 
 
Improving Delay & Throughput Attributes 
According to TCP New-Reno fast retransmit process the 
three duplicate asks has to be required to retransmit the 
loss packets, which seems to be inconvenient and it has to 

be observe that 85% of the packets loss after two duplicate 
asks due to congestion or transmission error. So, why not 
we use double acknowledgments to denote packet loss 
instead of three? Therefore, in our simulation we modify 
the existing behavior from three duplicate 
acknowledgments to two duplicate acknowledgments and 
the result shows better performance in terms of delay and 
it reduced to 27%. As the delay decreases system 
throughput automatically increases in terms of packets 
delivered/seconds. The modification of duplicate 
acknowledgments is done by already defined TCP parameter i.e. 
tcprexmttthresh_ 2. 
 
Send Bursty Traffic 
To Send Bursty data in a more appropriate way to reduce 
the packet loss as well, the propose mechanism can be also 
be used for this purpose. 
 
Algorithm 2:  Sent Huge Traffic in an Intelligent Way 

if (valid_ack || aggressive_maxburst_) 
if (dupacks_ == 0)  

 send_much(0, 0, maxburst_); 
else if (dupacks_ > numdupacks_ - 1 && 

newreno_changes_ == 0) 
 send_much (0, 0, 2); 
if (cwnd_<=ssthresh_ && dupacks_!=3) 
 send_much (0,0,maxburst_); 

else if (cwnd_>ssthresh_ && newreno_changes_== 0) 
 send_much (0,0,2); 
end if 
end if 
end if 

Experimental Setup 
Our proposed model focuses on two basic algorithms, slow 
start congestion avoidance and a little bit modification in 
default behavior of packet loss indication as discussed 
earlier. We uses following topology in our NS-2 
simulation. 
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  Fig. 1. Simulation Model (Dumb bell) 
 
Other major design parameters defined in the simulation 
are as follows. 

(i) Packet Size was defined 1500bytes 
(ii) Rate defined for FTP is 8000kb and for 

UDP is 1Mb. 
(iii) Minimum and maximum Simulation 

time goes from 50 seconds to 1 hour 
respectively. 

(iv) To saturate the bottleneck link, the size 
of congestion window was large enough 
to 83000 packets. 

(v) Both routers of the topology uses Drop 
Tail buffers and FIFO queuing. 

(vi) All tests are repeated at least 3 times. 
(vii) RTT in the range of 10ms ~ 300ms. 
(viii) Bandwidth of 2Mbps and 5Mbps. 
(ix) Queuing Size of 20% ~ 100% of BDP. 

 
The performance metrics of the topology are effect of 
congestion window, throughput, and packet loss.  
 
Simulation Results & Performance Analysis 
Packet Loss: 
Packet loss can be caused by a number of factors, 
including signal degradation over the network medium due 
to multi-path fading, packet drop because of channel 
congestion, corrupted packets rejected in-transit, faulty 
networking hardware, faulty network drivers or normal 
routing routines. 
In addition to this, packet loss probability is also affected 
by signal-to-noise ratio and distance between the 
transmitter and receiver. 
We have checked the Packet loss results both for multi 
(Bursty data) file and mono-file cases. 

 

 
Fig. 2. Packet loss in a Multi files Scenario 

 
Figure 2 shows that, while sending bulk of files at the 
same time TCP NewReno (red lines) loss the packets in a 
greater ratio then the proposed mechanism (green lines), in 
this case the congestion window is bigger than the 
proposed but a decrease in congestion window is also 
clearly observed which may also lead to the higher delay 
and lowering the overall throughput of the system. But the 
saw-tooth effect of proposed scheme remain same almost 
91% as compared to the NewReno haphazard and 
randomized effect. While in a mono-file scenarios the 
difference is not too high, but today due to the rapid 
increase and merging of latest technologies with the 
internet cause to send huge amount of data simultaneously 
from different geographical regions. Therefore the 
proposed mechanism shows the better performance than 
the NewReno. Packet loss ratio can also be calculated by 
the following formula 
 
Packet loss %age =NLP / (NLP + NPRS) 
Where, 
NLP=Number of Lost Packets. 
NPRS=Number of packet received successfully. 
When packet loss caused by network problems, lost or 
dropped packets can result in highly noticeable 
performance issues or jitter with streaming technologies, 
voice over IP, online gaming and videoconferencing, and 
will affect all other network applications to a degree. 
However, it is important to note that packet loss does not 
always indicate a problem. If the latency and the packet 
loss at the destination hop are acceptable then the hops 
prior to that one don't matter. 
 
Throughput: 
Our proposed mechanism is 100% suitable while 
transferring mono file (UDP or FTP), the result in figure 3 
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clearly shows the difference between the two. If we 
observe carefully the condition in algorithm 1, which is “If 
((cwnd_ ≤ ssthresh_) || (cwnd_ > ssthresh_ && 
dupack_ !=3))”. By tracing and observing it has been 
found that this statement plays a very significant role by 
carefully and correctly selecting the congestion window. 
The parameters dupack_!=3 is an addition in the check, 
which also co-relate with the tcprexmttthresh_ 2 a global 
parameter which changes the default behavior of TCP 
from three duplicate acknowledgments to two. 
 

 
Fig. 3. System Throughput 

 
Effect of Congestion Window: 
In TCP, the congestion window is one of the factors that 
determine the number of bytes that can be outstanding at 
any time. Maintained on the sender, this is a means of 
stopping the link between two places from getting 
overloaded with too much traffic. The size of this window 
is calculated by estimating how much congestion there is 
between the two places. The sender maintains the 
congestion window. When a connection is set up, the 
congestion window is set to the maximum segment size 
(MSS) allowed on that connection. Further variance in the 
collision window is dictated by an Additive 
Increase/Multiplicative Decrease approach [28]. This 
means that if all segments are received and the 
acknowledgments reach the sender on time, some constant 
is added to the window size. The window keeps growing 
linearly until a timeout occurs or the receiver reaches its 
limit. If a timeout occurs, the window size is halved. 
Figure 4 describe the effects of cwnd, as the propose 
mechanism in green lines, while red describe NewReno. 
.   

 
Fig. 4. Effect of cwnd 

 
After separating and expanding the graph, the difference 
between the two is clearly observed. Our proposed 
mechanism (figure 5) outperforms the NewReno (figure 6). 

 
                 

Fig. 5 Effect of cwnd (Proposed Mechanism) 
 
We have tested this idea with the same network to 
compare the performance of the connections with the 
modified TCP NewReno. It is easy to see from figure 5 
that the saw-tooth effect is more evenly distributed than in 
the figure 6. 
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Fig. 6 Effect of cwnd (New Reno) 

Conclusion and Future Work 

Most new TCP variants showed good link utilization 
however had still unfairness and aggressiveness problems 
over standard TCP Reno. When we using multiple flows 
of a new TCP variant with different RTTs, queuing delay 
can be an issue as much as a bandwidth aspect. Some new 
TCP variants seemed to be sensitive to network conditions. 
Therefore a careful modification in the algorithms leads to 
better outcomes. 
Through results presented in this paper, actual analysis and 
observations of packet loss and throughput in multi file 
cases shows a clear difference while comparing results 
with already defined TCP Reno algorithms. The effect of 
congestion window mostly remains double then the 
previous, which shows that values of congestion window 
are chosen intelligently in the algorithm. 
 It has also been seen that mostly routers and other 
network devices are using algorithms whose complexity is 
very high. So if this approach is selected for the routers as 
well, a better performance will be achieved in the intranet.  
In future both analytical (Engineering) and simulation 
approaches will be used to enhance this approach. This 
research is actually an initial stage of my study and in 
future I will try my maximum efforts to expand the idea 
and results at a global level. 
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