
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

125

Manuscript received January 5, 2011
Manuscript revised January 20, 2011

A*-based Pathfinding in Modern Computer Games

Xiao Cui and Hao Shi

School of Engineering and Science, Victoria University, Melbourne, Australia

Summary
Pathfinding in computer games has been investigated for many
years. It is probably the most popular but frustrating game
artificial intelligence (AI) problem in game industry. Various
search algorithms, such as Dijkstra’s algorithm, bread first
search algorithm and depth first search algorithm, were created
to solve the shortest path problem until the emergence of A*
algorithm as a provably optimal solution for pathfinding. Since
it was created, it has successfully attracted attention of
thousands of researchers to put effort into it. A long list of
A*-based algorithms and techniques were generated. This
paper reviews a number of popular A*-based algorithms and
techniques from different perspectives. It aims to explore the
relationship between various A*-based algorithms. In the first
section, an overview of pathfinding is presented. Then, the
details of A* algorithm are addressed as a basis of delivering a
number of optimization techniques from different angles.
Finally, a number of real examples of how the pathfinding
techniques are used in real games are given and a conclusion is
drawn.
Key words: Pathfinding, A*, A* optimization, Computer game

1. Introduction

Pathfinding generally refers to find the shortest route
between two end points. Examples of such problems
include transit planning, telephone traffic routing, maze
navigation and robot path planning. As the importance of
game industry increases, pathfinding has become a
popular and frustrating problem in game industry. Games
like role-playing games and real-time strategy games
often have characters sent on missions from their current
location to a predetermined or player determined
destination. The most common issue of pathfinding in a
video game is how to avoid obstacles cleverly and seek
out the most efficient path over different terrain.
Early solutions to the problem of pathfinding in
computer games, such as depth first search, iterative
deepening, breadth first search, Dijkstra’s algorithm, best
first search, A* algorithm, and iterative deepening A*,
were soon overwhelmed by the sheer exponential growth
in the complexity of the game. More efficient solutions
are required so as to be able to solve pathfinding
problems on a more complex environment with limited
time and resources.
Because of the huge success of A* algorithm in path
finding [1], many researchers are pinning their hopes on
speeding up A* so as to satisfy the changing needs of the

game. Considerable effort has been made to optimize this
algorithm over the past decades and dozens of revised
algorithms have been introduced successfully. Examples
of such optimizations include improving heuristic
methods, optimizing map representations, introducing
new data structures and reducing memory requirements.
The next section provides an overview of A* techniques
which are widely used in current game industry.

2. A* algorithm

A* is a generic search algorithm that can be used to find
solutions for many problems, pathfinding just being one
of them. For pathfinding, A* algorithm repeatedly
examines the most promising unexplored location it has
seen. When a location is explored, the algorithm is
finished if that location is the goal; otherwise, it makes
note of all that location’s neighbors for further
exploration. A* is probably the most popular path finding
algorithm in game AI (Artificial Intelligence) [2].

1. Add the starting node to the open list.
2. Repeat the following steps:

a. Look for the node which has the lowest
f on the open list. Refer to this node
as the current node.

b. Switch it to the closed list.
c. For each reachable node from the current

node
i. If it is on the closed list, ignore

it.
ii. If it isn’t on the open list, add it

to the open list. Make the current
node the parent of this node. Record
the f, g, and h value of this node.

iii. If it is on the open list already,
check to see if this is a better
path. If so, change its parent to the
current node, and recalculate the f
and g value.

d. Stop when
i. Add the target node to the closed

list.
ii. Fail to find the target node, and the

open list is empty.
3. Tracing backwards from the target node to the

starting node. That is your path.

Fig. 1 Pseudocode of A* [3].

In the standard terminology used when talking about A*,
g(n) represents the exact cost from starting point to any

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

126

point n, h(n) represents the estimated cost from point n to
the destination, and f(n)=g(n)+h(n). Fig. 1 lays out the
algorithm step-by-step.
A* has several useful properties which have been proved
by Hart, Nilsson and Raphael in 1968 [4]. First, A* is
guaranteed to find a path from the start to the goal if
there exists a path. And it is optimal if h(n) is an
admissible heuristic, which means h(n) is always less
than or equal to the actual cheapest path cost from n to
the goal. The third property of A* is that it makes the
most efficient use of the heuristic. That is, no search
method which uses the same heuristic function to find an
optimal path examines fewer nodes than A*.
Although A* is the most popular choice for pathfinding
in computer games, how to apply it in a computer game
depends on the nature of the game and its internal
representation of the world. For example, in a
rectangular grid of 1000×1000 squares, there are 1
million possible squares to search. To find a path in that
kind of map simply takes a lot of work. Thus, reducing
the search space may significantly speed up A*. Several
optimizations are discussed in Section 3.

3. A* Optimizations

The following sub-sections discuss several potential
optimizations of A* from four different perspectives and
reviews some popular A*-based algorithms.

3.1 Search Space

In any game environment, AI characters need to use an
underlying data structure – a search space representation
– to plan a path to any given destination. Finding the
most appropriate data structure to represent the search
space for the game world is absolutely critical to
achieving realistic-looking movement and acceptable
pathfinding performance. As you can see in the above
example, a simpler search space will mean that A* has
less work to do, and less work will allow the algorithm to
run faster. Examples of such representations include
rectangular grid (Fig. 2a), quadtree (Fig. 2c), convex
polygons (Fig. 2d), points of visibility (Fig. 2e), and
generalized cylinders (Fig. 2f).
The following sub-sections review two popular A*-based
algorithms which optimize A* algorithm by reducing the
search space.

3.1.1 Hierarchical Pathfinding A* (HPA*)

Hierarchical pathfinding is an extremely powerful
technique that speeds up the pathfinding process. The
complexity of the problem can be reduced by breaking
up the world hierarchically. Consider the problem of
travelling from Los Angeles to Toronto. Given a detailed

roadmap of North America, showing all roads annotated
with driving distances, an A* implementation can
compute the optimal travel route but this might be an
expensive computation because of the sheer size of the
roadmap. However, a hierarchical path finding would
never work at such a low level of detail. Using
abstraction can quickly find a route. The problem
described above might be solved more efficiently by
planning a large-scale route at the city level first and then
planning the inter routes at each city passing through.

Fig. 2 Five ways to represent search space [5].

A much faster A*-based search algorithm giving nearly
solutions named HPA* is described in [6]. This is a
domain-independent approach. The hierarchy can be
extended to more than two levels, making it more
scalable for large problem spaces. A three-step process is
applied. The first step is to travel to the border of the
neighborhood that contains the start location. Then, the
second step is to search for a path from the border of the
start neighborhood to the border of the goal
neighborhood. This step is done at an abstract level,
where search is simpler and faster. The last step is to
complete the path by travelling from the border of the
goal neighborhood to the goal position. HPA* has been
proved that it is 10 times faster than a low-level A* in [6].
The potential problem of this technique is that the cost
increases significantly when adding a new abstraction
layer.

3.1.2 Navigation Mesh (NavMesh)

NavMesh is another popular technique for AI pathfinding
in 3D worlds. A NavMesh is a set of convex polygons
that describe the “walkable” surface of a 3D environment.
It is a simple, highly intuitive floor plan that AI
characters can use for navigation and pathfinding in the
game world.
Fig. 3b shows an example of NavMesh. A character
moves from the starting point in pol2 to the desired
destination in pol4. In this case, the starting point is not

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

127

in the same polygon as the desired point. Thus, the
character needs to determine the next polygon it will go
to. Repeat this step until both the character and the goal
are located in the same polygon. Then, the character can
move to the destination in a straight line.
Compared with a waypoint graph as shown in Fig. 3a,
NavMesh approach is guaranteed to find a near optimal
path by searching much less data. And the pathfinding
behavior in a NavMesh is superior to that in a waypoint
graph [7].

Fig. 3 Different representations of waypoint graph and NavMesh [7]

Creating navigation meshes that are highly simplified
and easy for pathfinding is critical to achieving a good
pathfinding. Tozour [9] describes how to construct a
good navigation mesh and proposes a number of
optimization techniques for navigation mesh.

3.2 Heuristic Function

The secret to the success of A* is that it extends
Dijkstra’s algorithm by introducing heuristic approach.
Dijkstra’s algorithm is guaranteed to find a shortest path
in a connected weighted graph as long as none of the
edges has a negative value but it is not efficient enough
because all the possible states must be examined.
However, A* algorithm improves the computational
efficiency significantly by introducing a heuristic
approach. Using a heuristic approach means, rather than
an exhaustive expansion, only the states that look like
better options are examined. The heuristic function used
in A* algorithm is to estimate the cost from any nodes on
the graph to the desired destination. If the estimated cost
is exactly equal to the real cost, then only the nodes on
the best path are selected and nothing else is expanded.
Thus, a good heuristic function which can accurately
estimate the cost may make the algorithm much quicker.
On the other hand, using a heuristic that overestimates
the true cost a little usually results in a faster search with
a reasonable path [10]. Fig. 4 shows the growth of the

search using various heuristic costs while trying to
overcome a large obstacle.
When the heuristic equals to zero (shown in Fig. 4a), A*
algorithm turns to Dijkstra’s algorithm. All the
neighboring nodes are expanded. When the heuristic uses
the Euclidean distance to the goal (shown in Fig. 4b),
only the nodes that look like better options are examined.
When the heuristic is overestimated a little (shown in Fig.
4c), the search pushes hard on the closest nodes to the
goal. Thus, overestimating the heuristic cost a little may
result in exploring much fewer nodes than
non-overestimation heuristic approaches. However, how
much should the cost be overestimated is a tricky
problem. No general solution exists at present.

3.3 Memory

Although A* is about as good a search algorithm as you
can find so far, it must be used wisely; otherwise, it
might be wasteful of resources. A* algorithm requires a
huge amount of memory to track the progress of each
search especially when searching on large and complex
environments. Reducing the required memory for
pathfinding is a tricky problem in game AI. There has
been a lot of work on this area.

Fig. 4 Comparison between different heuristics [10].

The most popular way to avoid memory waste is to
pre-allocate a minimum amount of memory [10]. The
general idea is to dedicate a piece of memory (Node
Bank) before A* starts execution. During the execution,
if all the memory gets exhausted, create a new buffer to
progress the search. The size of this buffer is allowed to
change so that less memory is wasted. The size of the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

128

minimum memory mainly depends on the complexity of
the environment. Thus, tuning is required before this
strategy is applied to a particular application.
Another alternative to reduce space requirements in A* is
to compute the whole path in small pieces. This is the
core concept behind IDA* (Iterative Deepening A*),
which is a very popular variant of A* algorithm. In IDA*,
a path is cut off when its total cost f(n) exceeds a
maximum cost threshold. IDA* starts with a threshold
equal to f(start_node), in this case, the threshold is equal
to h(start_node) because g(start_node)=0. Then,
neighboring nodes are expanded until either a solution is
found that scores below the threshold or no solution is
found. In this case, the threshold is increased by one, and
another search is triggered. The main advantage of IDA*
over A* is that memory usage is significantly reduced.

3.4 Data Structure

Once a node has been initialized from the Node Bank
(see Section 3.3), it needs to be put somewhere for fast
retrieval. A hash table might be the best choice because it
allows constant time storing and looking up of data. This
hash table allows us to find out if a particular node is on
the CLOSED list or the OPEN list instantaneously.
A priority queue is the best way to maintain an OPEN list.
It can be implemented by a binary heap. There is little
work on introducing new data structures to maintain
OPEN list and CLOSED list more efficiently. Probably
introducing a new data structure to store the data can
help speed up A* significantly.

4. Relevant Applications in Computer
Games

As a popular pathfinding algorithm in game industry, A*
algorithm has been applied to a wide range of computer
games. Although the algorithm itself is easy to
understand, implementation in a real computer game is
non-trivial. This section discusses several popular
computer games in terms of pathfinding and uses a
popular online game as an example to show how the
different map representations can impact on the
performance of pathfinding.

4.1 Pathfinding Challenge in Game Industry

Age of Empires is a classic real-time strategy game. It
uses grids to represent map locations. A 256×256 grid
yields 65,536 possible locations. The movement of the
military unit can be simplified as if moving an object
through a maze. A* algorithm is applied to Age of
Empires. Although it looks perfect theoretically, many
Age of Empires players are annoyed by the terrible
pathfinding. An example of such problems is that when a

group of units goes around forest to get to another
position, half of them get stuck in the trees as shown in
Fig. 5. Such situations always happen especially when
the density of forest increases.

Fig. 5 A screenshot of Age of Empires II. [11]

Another strategy game Civilization V uses hexagonal
tiles to represent map locations as shown in Fig. 6. A
pathfinding algorithm is applied to control the military
unit moving to the desired location through a group of
“walkable” hexagonal tiles. Similar to Age of Empires,
Civilization V still suffers with bad pathfinding although
it is the latest game of Civilization series which was
released in November 2010.

Fig. 6 A screenshot of Civilization V. [12]

However, compared with strategy games which involve
hundreds and thousands of units simultaneously, A*
works much better in first-person shooter games like
Counter-Strike which only involves a few units moving
around at the same time. An explanation might be that
the exponential growth in the number of units moving
around at the same time makes the game environment
much more dynamic and it is hard to provide optimal
paths for hundreds and thousands of units in real time
using limited CPU and memory resources. Massively

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

129

multiplayer online is another example which involves
real-time pathfinding intensively, like World of
WardCraft.

4.2 Comparison between Map Representations

Waypoint graph is a popular technique to represent map
locations. Waypoints are a set of points that refer to the
coordinates in the physic space. It is designed for
navigation purpose and has been applied to a wide range
of areas. Most game engines support pathfinding on a
waypoint graph. Although it works well for most 2D
games, it requires tons of waypoints to achieve an
adequate movement in a 3D game because of the
complexity of the environment. Thus, a new technique
called NavMesh is created. As mentioned in Section
3.1.2, NavMesh only requires a couple of polygons to
represent the map. It results in a much more quickly
pathfinding because less data is examined.
Five reasons why NavMesh works better than waypoint
approaches in 3D games using World of WarCraft as an
example are addressed by Tozour in 2008 [8]. It shows
the difference between waypoints approaches and
NavMesh when representing a complex 3D environment.
It uses the town of Halaa in World of WarCraft as an
example as shown in Fig. 7. In Fig. 7a, it uses 28
waypoints to represent the possible locations while on
the other hand, as shown in Fig. 7b, only 14 convex
polygons are used. The movement in Fig. 7b also acts
much more like an actual human than the movement in
Fig. 7a.

5. Conclusion

This paper systematically reviews several popular
A*-based algorithms and techniques according to the
optimization of A*. It shows a clearly relational map
between A* algorithm and its variants. The core of
pathfinding algorithm is only a small piece of the puzzle
in game AI. The most challenge is how to use the
algorithm to solve tricky problems. A* algorithm is the
most popular algorithm in pathfinding. It is hard-pressed
to find a better algorithm since A* is provably optimal. A
lot of effort has been put into speeding it up by
optimizing it from different perspectives. The ways to
improve the performance of A* search include
optimizing the underlying search space, reducing the
memory usage, improving heuristic functions and
introducing new data structures.
 A potential research is to continue optimizing A*
algorithm from these perspectives or to combine multiple
optimization techniques into one single solution. Another
way to make some contribution to the game AI
community is to apply these techniques described above
to the real computer games because not all of the

techniques described in this paper have been widely used
in current game industry. The reason why they are
reviewed in this paper is that they are the hottest topics in
the academic domain of pathfinding and many
researchers are struggling to bring them into real games.
It is expected that this research help game industry has a
basic understanding about the future research direction in
pathfinding.

(a) Navigating from A to B using waypoint graph.

(b) Navigating from A to B on NavMesh.

Fig. 7 Comparison between wapoing graph and NavMesh [8].

References
[1] B. Stout, “Smart moves: intelligent path-finding,” in Game

Developer Magazine, pp.28-35, 1996.
[2] Stanford Theory Group, “Amit’s A* page”,

http://theory.stanford.edu/~amitp/GameProgramming/ASta
rComparison.html, accessed October 12, 2010.

[3] N.Nilsson, Artificial Intelligence: A New Synthesis,
Morgan Kaufmann Publishers, San Francisco, 1998.

[4] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE
Trans.Syst.Sci.Cybernet., vol.4, no.2, pp.100-107, 1968

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

130

[5] B. Stout, “The basics of A* for path planning,” in Game
Programming GEMS, pp.254-262, Charles River Meida,
America, 2000.

[6] A.Botea, M.Mueller, and J.Schaeffer, “Near optimal
hierarchical path-finding,” J. GD, vol.1, no.1, pp.7-28,
2004.

[7] Unreal Developer Network, “Navigation mesh reference”,
http://udn.epicgames.com/Three/NavigationMeshReferenc
e.html, accessed Jan.13, 2011.

[8] Game/AI, “Fixing pathfinding once and for all”,
http://www.ai-blog.net/archives/000152.html, accessed
September 23, 2010.

[9] P. Tozour, “Building a near-optimal navigation mesh,” in
AI Game Programming Wisdom, pp.171-185, Charles
River Media, America, 2002.

[10] S. Rabin, “A* speed optimizations,” in Game
Programming GEMS, pp.264-271, Charles River Media,
America, 2000.

[11] Microsoft Games, “Microsoft Age of Empires”,
http://www.microsoft.com/games/empires, accessed
October 24, 2010.

[12] Firaxis Games, “Sid Meier’s Civilization V”,
http://www.civilization5.com, accessed October 24, 2010.

Xiao Cui is a Ph.D student in School
of Engineering and Science at Victoria
University, Australia. He completed his
master degree in the area of Software
Engineering at Australian National
University and obtained his Bachelor of
Computer Science degree at Victoria
University. His research interests
include Object-Oriented Software
Engineering, Pathfinding Algorithms,

Database Management and Game Programming.

Hao Shi is an Associate Professor in
School of Engineering and Science at
Victoria University, Australia. She
completed her PhD in the area of
Computer Engineering at University of
Wollongong and obtained her Bachelor
of Engineering degree at Shanghai Jiao
Tong University, China. She has been
actively engaged in R&D and external
consultancy activities. Her research

interests include p2p Network, Location-Based Services, Web
Services, Computer/Robotics Vision, Visual Communications,
Internet and Multimedia Technologies.

