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Abstract 
Gokhale and Trivedi (1998) have proposed the Log-logistic 
software reliability growth model that can capture the increasing/ 
decreasing nature of the failure occurrence rate per fault. In this 
paper, we will first show that a Log-logistic testing-effort 
function (TEF) can be expressed as a software 
development/testing-effort expenditure curve. We investigate 
how to incorporate the Log-logistic TEF into inflection S-shaped 
software reliability growth models based on non-homogeneous 
Poisson process (NHPP). The models parameters are estimated 
by least square estimation (LSE) and maximum likelihood 
estimation (MLE) methods. The methods of data analysis and 
comparison criteria are presented. The experimental results from 
actual data applications show good fit. A comparative analysis to 
evaluate the effectiveness for the proposed model and other 
existing models are also performed. Results show that the 
proposed models can give fairly better predictions. Therefore, the 
Log-logistic TEF is suitable for incorporating into inflection S-
shaped NHPP growth models. In addition, the proposed models 
are discussed under imperfect debugging environment. 
Keywords:  
Software reliability growth models, Testing-effort functions, 
Software testing, Imperfect debugging, Inflection S-shaped NHPP 
growth model, Estimation methods. 

1. Introduction 

The size and complexity of computer systems has grown 
significantly during the past decades. Computers are used 
in medical fields, businesses, chemical labs, air traffic 
control towers, ships, space ships, home appliances, 
communication, manufacture and many more. Software is 
a functioning element embedded in computers that plays 
vital role in the modern life. Errors are bound to happen as 
software is written by humans. Before, the focus was only 
on the design and reliability of the hardware. But, now 
increase in the demand of software has led to the study of 
the high quality reliable software development. Reliability 
is the most important aspect since it measures software 
failures during the process of software development. 
Software reliability is defined as the probability of failure-
free operation of a computer program for a specified time 

in a specified environment (Musa et al., 1987). Many 
researches have been conducted over the past decades 
(Pham, 2000; Lyu, 1996; Musa et al. 1987) and still going 
on, to study the software reliability. A common approach 
for measuring software reliability is by using an analytical 
model whose parameters are generally estimated from 
available data on software failures (Lyu, 1996; Musa et al. 
1987). 
A software reliability growth model (SRGM) is a 
mathematical expression of the software error occurrence 
and the removal process. In early 1970’s, many software 
reliability growth models (SRGMs) have been proposed 
(Lyu, 1996; Xie, 1991; Musa et al., 1987). A Non- 
homogeneous Poisson process (NHPP) as the stochastic 
process has been widely used in SRGM. In the past years, 
several SRGMs based on NHPP which incorporates the 
testing–effort functions (TEF) have been proposed by 
many authors (Yamada et al., 1986; 1987; 1993; Yamada 
and Ohtera, 1990; Kapur and Garg, 1996; Kapur and 
Younes, 1994; Huang et al., 1997; 2007; Kuo et al., 2001; 
Huang and Kuo, 2002; Huang, 2005; Bokhari and Ahmad, 
2006; 2007; Quadri et al., 2006; 2008; Ahmad et al., 2008; 
2009; 2010). The testing-effort can be represented as the 
number of CPU hours, the number of executed test cases, 
etc. (Yamada and Osaki, 1985; Yamada et al., 1986, 1993). 
Most of these works on SRGMs modified the exponential 
NHPP growth model (Goel and Okumoto, 1979) and 
incorporated the concept of testing-effort into an NHPP 
model to describe the software fault detection phenomenon. 
Recently, Bokhari and Ahmad (2006) also proposed a new 
SRGM with the Log-logistic testing-effort function to 
predict the behavior of failure and fault of software. 
However, the exponential NHPP growth model is 
sometimes insufficient and inaccurate to analyze real 
software failure data for reliability assessment. 
In this paper we show how to integrate a Log-logistic 
testing-effort function into inflection S-shaped NHPP 
growth models (Ohba, 1984; 1984a) to get a better 
description of the software fault detection phenomenon. 
The parameters of the model are estimated by Least Square 
Estimation (LSE) and Maximum Likelihood Estimation 
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(MLE) methods. The statistical methods of data analysis 
are presented and the experiments are performed based on 
real data sets and the results are compared with other 
existing models. The experimental results show that the 
proposed SRGM with Log-logistic testing-effort function 
can estimate the number of initial faults better than that of 
other models and that the Log-logistic testing-effort 
functions is suitable for incorporating into inflection S-
shaped NHPP growth model. Further, the analyses of the 
proposed models under imperfect debugging environment 
are also discussed. 

2. SRGM with TEF 

A software reliability growth model (SRGM) explains the 
time dependent behavior of fault removal. The objective of 
software reliability testing is to determine probable 
problems with the software design and implementation as 
early as possible to assure that the system meets its 
reliability requirements. Numerous SRGMs have been 
developed during the last three decades and they can 
provide very useful information about how to improve 
reliability (Musa et al., 1987; Xie, 1991; Lyu, 1996). 
Among these models, exponential growth model and 
inflection S-shaped growth model have been shown to be 
very useful in fitting software failure data. Many authors 
incorporated the concept of testing-effort into exponential 
type SRGM based on the NHPP to get a better description 
of the fault detection phenomenon.  
The testing-effort indicates how the errors are detected 
effectively in the software and can be modeled by different 
distributions (Musa et al., 1987; Yamada et al., 1986; 
1993; Kapur et al., 1999). Gokhale and Trivedi (1998) 
proposed the Log-logistic SRGM that can capture the 
increasing/decreasing nature of the failure occurrence rate 
per fault. Recently, Bokhari and Ahmad (2006), and 
Ahmad et al. (2010a) also presented how to use the Log-
logistic curve to describe the time-dependent behavior of 
testing-effort consumptions during testing. 
The Cumulative testing-effort expenditure consumed in 
(0,t] is depicted in the following: 
 

1( ) [1 {1 ( ) } ]W t t δα β −= − + [( ) / (1 ( ) )],t tδ δα β β= +          (1) 
 

Therefore, the current testing-effort expenditure at 
testing t is given by: 
 

1 2( ) [ ( ) ] /[1 ( ) ]w t t tδ δαβδ β β−= + , 0,t >                       (2) 
 
where α is the total amount of testing-effort consumption 
required by software testing, β  is the scale parameter, and 
δ is the shape parameter. The testing-effort ( )w t reaches 
its maximum value at time 

1

max
1 1

1
t

δδ
β δ

−⎛ ⎞= ⎜ ⎟+⎝ ⎠  
The inflection S-shaped NHPP software reliability growth 
model is known as one of the flexible SRGMs that can 
depict both exponential and S-shaped growth curves 
depending upon the parameter values (Ohba, 1984 & 
Kapur et al., 2004). The model has been shown to be 
useful in fitting software failure data. Ohba proposed that 
the fault removal rate increases with time and assumed the 
presences of two types of errors in the software. Later, 
Kapur et al. (2004), Khan et al. (2008) and Ahmad et al. 
(2010; 2010a) modified the inflection S-shaped model and 
incorporated the testing-effort in an NHPP model. 
Therefore, we show how to incorporate Log-logistic 
testing-effort function into inflection S-shaped NHPP 
model. 

The extended inflection S-shaped SRGM with Log-logistic 
testing-effort function is formulated on the following 
assumptions (Ohba, 1984; 1984a; Yamada and Osaki, 
1985; Kapur et al., 1999; Kuo et al., 2001; Huang and Lo, 
2006; Kapur et al., 2004; Ahmad et al., 2010; 2010a): 

1. The software system is subject to failures at random 
times caused by errors remaining in the system. 

2. Error removal phenomenon in software testing is 
modeled by NHPP. 

3. The mean number of errors detected in the time 
interval ( , ]t t t+ Δ  by the current testing-effort 
expenditures is proportional to the mean number of 
detectable errors in the software. 

4. The proportionality increases linearly with each 
additional error removal. 

5. Testing-effort expenditures are described by the Log-
logistic TEF. 

6. Each time a failure occurs, the error causing that 
failure is immediately removed and no new errors are 
introduced. 

7. Errors present in the software are of two types: 
mutually independent and mutually dependent. 

The mutually independent errors lie on different execution 
paths, and mutually dependent errors lie on the same 
execution path. Thus, the second type of errors is 
detectable if and only if errors of the first type have been 
removed. According to these assumptions, if the error 
detection rate with respect to current testing-effort 
expenditures is proportional to the number of detectable 
errors in the software and the proportionality increases 
linearly with each additional error removal, we obtain the 
following differential equation: 

 

( )( ) 1 ( ) ( )
( )

dm t t a m t
dt w t

φ× = −     (3) 

where 
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( )( ) (1 ) ,m tt b r r
a

φ ⎡ ⎤= + −⎢ ⎥⎣ ⎦
 

( 0)r >  is the inflection rate and represents the proportion 

of independent errors present in the software, ( )m t be the 
mean value function (MVF) of the expected number of 

errors detected in time (0, ]t , )(tw  is the current testing-
effort expenditure at time t , a  is the expected number of 
errors in the system, and b is the error detection rate per 
unit testing-effort at time t . 
Solving (3) with the initial condition 

0, ( ) 0, ( ) 0t W t m t= = = , we obtain the MVF 
( )

( )

1

1 ((1 ) / )
( )

bW t

bW t

a

r r

e
m t

e

−

−+

⎡ ⎤⎣ ⎦
−

−
=     (4) 

If the inflection rate r = 1, the above NHPP model 
becomes equivalent to the exponential growth model. 
The failure intensity at testing time t  of the inflection S-
shaped NHPP model with testing-effort is given by 

2

( )

( )1 (

( ) ( ) .
(1 ) / )

( )
bW t

bW t

dm t a b w t
dt r r r

et
e

λ
−

−+

⋅ ⋅ ⋅
=

⎡ ⎤−⎣ ⎦

=   

Furthermore, we describe a flexible SRGM with mean 
value function considering the Log-logistic testing-effort 
expenditure as 

[( ) /(1 ( ) )]

[( ) /(1 ( ) )]

1

1 ((1 ) / )
( )

b t t

b t t

a

r r

e
m t

e

δ δ

δ δ

α β β

α β β

− +

− ++

⎡ ⎤
⎣ ⎦
−

−
=     (5) 

In addition, the expected number of errors to be detected 
eventually is 

1

1 ((1 ) / )
( )

b

b

a

r r

e
m

e

α

α

−

−+

⎡ ⎤⎣ ⎦
−

∞
−

= . 

2.1 Imperfect-Software Debugging Models 

An NHPP model is said to have perfect debugging 

assumption when ( )a t is constant, i.e., no new faults are 
introduced during the debugging process. An NHPP 
SRGM subject to imperfect debugging was introduced by 
the authors with the assumption that if detected faults are 
removed, then there is a possibility that new faults with a 
constant rate γ  are introduced (see Ahmad et al. 2010; 
Shyur, 2003; Lo and Huang, 2004; Pham, 2007; Pham et 
al., 1999; Yamada et al., 1992; Zhang et al., 2003; Xie and 
Yang, 2003). 

Let ( )n t be the number of errors to be eventually detected 
plus the number of new errors introduced to the system by 
time t , we obtain the following system of differential 
equations: 

( )( ) 1 ( ) ( ) ( )
( )

dm t t n t m t
dt w t

φ× = − ,    (6)  

and ( ) ( )dn t dm t
dt dt

γ= ,     (7) 

where   ( )( ) (1 )
( )

m tt b r r
n t

φ
⎡ ⎤

= + −⎢ ⎥
⎣ ⎦

 

and      (0)n a= . 
Solving the above differential equations under the 

boundary conditions (0) 0m = and (0) 0W = , we can 
obtain the following MVF of inflection S-shaped model 
with Log-logistic testing-effort under imperfect debugging. 

( ) [ ]

(1 ) ( )

(1 ) ( )

1
( )

1 (1 ) /

b r W t

b r W t

a e
m t

r r e

γ

γγ

− −

− −

⎡ ⎤−⎣ ⎦=
− + −

   (8) 

We also have 
( )( )

( ) [ ]

(1 ) ( )

(1 ) ( )

1 (1 ) /
( )

1 (1 ) /

b r W t

b r W t

a r r e
n t

r r e

γ

γ

γ

γ

− −

− −

⎡ ⎤+ − −⎣ ⎦=
− + −

   (9) 

Thus, the failure intensity function ( )tλ is given by 

[ ] (1 ) ( )

(1 ) ( )

1 ( )
( )

(1 ) (1 ) (1 )

b r W t

b r W t

ab r w t e
t

r r e

γ

γ

γ
λ

γ γ

− −

− −

−
=

⎡ ⎤− − + −⎣ ⎦
  (10)  

The expected number of remaining errors after testing time 
t  is  

(1 ) ( )

(1 ) ( )

(1 )( )
(1 ) (1 )

b r W t

remaning b r W t

a r em t
r r e

γ

γ

γ
γ

− −

− −

−
=

− + −
        (11)  

3. Estimation of Model Parameters 

The parameters of the SRGM are estimated based upon the 
failure data collected by the MLE and LSE techniques 
(Musa et al., 1987; Musa, 1999; Lyu, 1996; Ahmad et al. 
2008). The performance of the proposed model is then 
compared with other existing models. Experiments on 
three real software failure data are performed. 

3.1 Least Square Method 

The parametersα , β , and δ  in the Log-logistic TEF can 
be estimated using the method of LSE. These parameters 
are determined for n observed data pairs in the 

form ( , )k kt W ( 1,2,...., ;k n=  10 ... )nt t< < < where kW  is 

the cumulative testing-effort consumed in time (0, ]kt . The 

estimators
늿ˆ , , andα β δ , which contribute the model with a 

greater fitting, can be obtained by minimizing: 
2

1

( , , ) [ln ln ln( ) ln[1 ( ) ]             (12)
n

k k k
k

S W t t δα β δ α δ β β
=

= − − + +∑
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011 

 

164

Differentiating S with respect toα , β , and δ , setting the 
partial derivatives to zero, the set of nonlinear equations 
are obtained respectively. 

1

12 [ln ln ln( ) ln[1 ( ) ]. 0
n

k k k
k

S W t t δα δ β β
α α=

∂ −
= − − + + =

∂ ∑  

Thus, the LSE of α  is given by 

1 1 1
ln ln( ) ln(1 ( ) )

ˆ
n n n

k k k
k k k

W t t n

e
δδ β β

α = = =

− + +∑ ∑ ∑
=  

The LSE of β  and δ  can be obtained numerically by 
solving the following equations: 

1

ln[1 ( ) ]
[ln ln ln( ) 0

(1 ( ) )

n
k

k k
k k

tS W t
t

δ

δ

β
α δ β

β β=

+∂
= − − + =

∂ +∑  

and   

1

ln[1 ( ) ]ln( )[ln ln ln( ) 0
1 ( )

n
k k

k k
k k

S t tW t
t

δ

δ

β βα δ β
δ β=

∂ +
= − − + =

∂ +∑  

3.2 Maximum Likelihood Method 

Once the estimates of α , β , and δ  are known, the 
parameters of the SRGMs can be estimated through MLE 

method. The estimators of , ,  and  a b r are determined for 
the n  observed data pairs in the form 
( , )k kt y 1 2( 1,2,..., ; 0 ...... )nk n t t t= < < < <  where ky  is 
the cumulative number of software errors detected up to 

time kt  or (0, ]kt . Then the likelihood function for the 

unknown parameters , ,  and  a b r  in the NHPP model (5) 
is given by (Musa et al., 1987) 

[ ]( )1
[ ( ) ( )]1 1

1 1

( ) ( )
( , , ) .

( )!

y yk kn
m t m tk k k k

k k k

m t m t
L a b r e

y y

− −
− −− −

= −

−
′ =

−Π  

where 0 0t ≡  and 0 0y ≡ .       (13) 
The maximum likelihood estimates of SRGM parameters 

, anda r b can be obtained by solving the following three 
equations. 

[ ]1
ˆ

1
n n

n

y
a

λφ
φ
+

=
−

 

[ ]
[ ]

[ ]
( )

[ ]
( )

[ ]
1 1 1

22 2 22 1 1 1

1
1 1 11

n n
n n k k k k k kn

k kk kn

a y y y yy
r r rr

φ φ φ φ
λ λφ λφλφ

− − −

= = −

− − −
+

+ + +⎡ ⎤+⎣ ⎦
= +∑ ∑

( ) ( ) ( ) ( ) ( )1 1 1 1

1 11 1

n n
k k k k k k k k k

k kk k k

y y W t W t y y W tφ φ λ φ
φ φ λφ

− − − −

= =−

− ⎡ − ⎤ − ⎡ ⎤⎣ ⎦ ⎣ ⎦+
− +∑ ∑

 

          ( ) ( ) ( ) [ ]
[ ]

1 1 1
2

1 1 1

1
1 1

n
k k k k n n

k k k

y y W t aW tλ φ φ λ
λφ λφ

− − −

= − −

− ⎡ ⎤ +⎣ ⎦+ =
+ +

∑  

( ) 1where , 1,2,... , and kbW t
k

re k n
r

φ λ− −
= = =  

The above can be solved by numerical methods to get the 

values of â , b̂  and r̂ . 
 

4. Data Analysis and Experiments 

4.1 Comparison Criteria 

To check the performance of proposed SRGM with Log-
logistic TEF, we use the following four criteria: 
1. The Accuracy of Estimation (AE) is defined   

(Musa et al., 1987; Kuo et al., 2001) as 

a

a

M a
AE

M
−

= , 

 where aM is the actual cumulative number of detected 
errors after the test, and a is the estimated number of 
initial errors. For practical purposes, aM  is obtained 
from software error tracking after software testing. 

2. The Mean of Squared Errors (MSE) (Long-term   
predictions) is defined as 

[ ]2

1

1
( )

k

i i
i

m t m
k

MSE
=

−= ∑ , 

Where ( )im t , is the expected number of errors at time 

it  estimated by a model, and im  is the expected 

number of errors at time it . MSE gives a quantitative 
comparison for long-term predictions. A smaller MSE 
indicates a minimum fitting error and better 
performance. 

3. The coefficient of multiple determinations is defined 
(Musa et al., 1987; Musa, 1999) as 

( ) ( )
( )

2

ˆ 늿늿, 0,1 , ,

ˆ̂ , 0,1

S S
R

S

α α β δ

α

−
= , 

where 
ˆ̂α  is the LSE of α   for the model with only a 

constant term, that is, 0β = , and 1δ =  in (12). It is 

given by 1

1ˆ̂ln ln
n

k
k

W
n

α
=

= ∑
. Therefore, 2R measures 

the percentage of total variation about the mean 
accounted for by the fitted model and tells us how well 
a curve fits the data. It is frequently employed to 
compare models and assess which model provides the 
best fit to the data. The best model is the one which 
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provides the higher 2R , that is, closer to 1 (Kumar et al., 
2005; Ahmad et al., 2008). To investigate whether a 
significant trend exists in the estimated testing-effort, 

one could test the hypotheses 0 : 0 and 1H β δ= = , 

against 1 : 0H β ≠  or at least 1δ ≠  using F -test by 
merely forming the ratio 

( ) ( )
( ) ( )

ˆ 늿늿, 0,1 , , 2

ˆ̂ ,0,1 3

S S
F

S n

α α β δ

α

⎡ ⎤−⎢ ⎥⎣ ⎦=
−

. 

If the value of F  is greater than ( )2, 3F nα − , which is 
the α  percentile of the F distribution with degrees of 

freedom 2 and 3n − , we can be (1 )100α−  percent 

confident that  0H  should be rejected, that is, there is a 
significant trend in the testing-effort curve. 

4. The Predictive Validity is defined (Musa et al., 1987; 
Musa, 1999) as the capability of the model to predict 
future failure behavior from present and past failure 
behavior. Assume that we have observed q failures by 
the end of test time qt . We use the failure data up to 

time  ( )e qt t≤  to determine the parameters of m(t). 
The ratio 

ˆ ( )qm t q
q
−

 

is called the relative error. Values close to zero for 
relative error indicate more accurate prediction and 
hence a better model. We can visually check the 
predictive validity by plotting the relative error for 
normalized test time e qt t . 

4.2 Numerical Examples 

Data Set1: The first set of actual data is from the study by 
Ohba (1984). The system is PL/1 data base application 
software, consisting of approximately 1,317,000 lines of 
code. During nineteen weeks of testing, 47.65 CPU hours 
were consumed and about 328 software errors were 
removed. Moreover, the total cumulative number of 
detected faults after a long time of testing was 358. The 

estimated parameters , , andα β δ  of the Log-logistic TEF 
are:  

늿ˆ 1451.2265, 0.0026 1.1160α β δ= = =   
Figure 1, shows the fitting of the estimated testing-effort 
by using above estimates. The fitted curves and the actual 
software data are shown by solid and dotted lines, 
respectively. The estimated values of the parameters 

, , anda b r in (5) are: 
 ˆ늿 385.6254, 0.0622 0.3689a b r= = =  
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Figure 1: Observed/estimated current testing-effort function vs. time 

Figure 2, illustrates a fitted curve of the estimated 
cumulative failure curve with the actual software data. The 

2R value for proposed Log-logistic TEF is 0.99574. 
Therefore, it can be said that the proposed curve is suitable 
for modeling the software reliability. Also, the calculated 

value ( 4.9787)F = is greater than 0.05 (2,16).F Therefore, it 
can be concluded that the proposed model is suitable for 
modeling the software reliability and the fitted testing-
effort curve is highly significant for this data set. 
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Figure 2: Observed/estimated cumulative number of failures vs. time 
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Figure 3: Predictive Relative Error Curve 
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Table I lists the comparisons of proposed model with 
different SRGMs which reveal that the proposed model has 
better performance. Kolmogorov Smirnov goodness-of-fit 
test shows that the proposed SRGM fits pretty well at the 5 
percent level of significance. 
Finally, the relative error in prediction of proposed model 
for this data set (DS) is calculated and illustrated by figure 

3. It is observed that relative error approaches zero as et  

approaches qt  and the error curve is usually within 
5± percent. 

Table I: Comparison results of different SRGMs for DS1 
Model a r b AE % MSE 
Proposed model 385.6

3 
0.3
7 

0.062
2 

7.54 87.69 

Bokhari Log-logistic 
model 

565.7
3 

 0.019
6 

58.02 116.7
4 

Huang Logistic model 394.0
8 

 0.042
7 

10.06 118.5
9 

Yamada Rayleigh model 459.0
8 

 0.027
3 

28.23 268.4
2 

Yamada Weibull model 565.3
5 

 0.019
6 

57.91 122.0
9 

Yamada delayed S-
shaped model  

374.0
5 

 0.197
6 

4.48 168.6
7 

Delayed S-Shaped with 
Logistic TEF 

346.5
5 

 0.093
6 

3.20 147.6
1 

Inflection S-shaped 
model            

389.1 0.2 0.093
5 

8.69 133.5
3 

G-O model 760.0  0.032
3 

112.2
9 

139.8
2 

Therefore, Figures 1 to 3 and Table I reveals that the 
proposed model has better performance than the other 
models. This model fits the observed data better, and 
predicts the future behavior well. 
 
Data set2: The second set of actual data relates to the 
Release of Tandem Computer Project cited in Wood 
(1996) from a subset of products for four separate software 
releases. In this research only Release 1 is used for 
illustrations. There were 10000 CPU hours consumed, over 
the 20 week of testing and 100 software errors were 
removed. The estimated parameters of the TEF are 
obtained as: 

늿ˆ 15808.0743, 0.0704,  1.5689α β δ= = =  
Figure 4 illustrates the comparisons between the 

observed failure data and the estimated Log-logistic 
testing-effort data. Here, the fitted curves are shown as a 
solid and dotted line represents actual software data. The 

estimated parameters of the SRGM (5) are:
 5ˆ늿 197.4934, 1.05 10 , 9.934a b r−= = × =  

Figure 5 illustrates a fitted curve of the estimated 
cumulative failure curve with the actual software data. The 

2R  also known as the coefficient of determination, depicts 

how well a curve fits the data. A fit is more reliable when 
the value is closer to 1. The 2R value for proposed Log-
logistic TEF is 0.9976, which is very close to one. 
Moreover, the value of MSE is 18.04, which is very small 
compared to other SRGM. Table II lists the comparisons 
of proposed model with different SRGMs which reveal 
that the proposed model has better performance. It can 
therefore be observed that the Log-logistic TEF is suitable 
for modeling the proposed SRGM of this data set. Also the 
fitted testing-effort curve is significant since the calculated 

value ( 5.3204)F =  is greater than 0.05 (2,17)F . 
Kolmogorov Smirnov goodness-of-fit test shows that the 
proposed SRGM fits pretty well at the 5 percent level of 
significance. 
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Figure 4: Observed/estimated current testing-effort vs. Time 
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Figure 5:  Observed/estimated cumulative number of failures vs. time 

Table II. Comparison results of different SRGMs for DS2 
Model a r b MSE

Proposed model 197.49 9.934 0.0000105 18.04
Bokhari Log-
logistic model 135.91  0.000142 19.80

Huang Logistic 
model 107.66  0.000266 22.76

Yamada 
Rayleigh model 110.60  0.000226 39.69

Yamada 
Weibull model 135.74  1.42E-04 18.43

Yamada 
delayed S-

shaped model 
102.26  0.345 94.99
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Delayed S-
shaped model 
with Logistic 

TEF 

101.86  0.00063 92.66

Inflection S-
Shaped model 507.63 1.695 0.00814 87.45

G-O model 137.072  0.05154 25.33
 
Following the work of Musa et al. (1987), the relative error 
in prediction for this data set is computed and the results 
are plotted in Figure 6. Figures 4-6 and Table II show that 
the proposed model has better performance and predicts 
the future behavior well. 
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Figure 6: Predictive Relative Error Curve 

Data set3: The third set of actual data in this research is 
the System T1 data of the Rome Air Development Center 
(RADC) projects and cited from Musa et al. (1987), Musa 
(1999). The number of object instructions in System T1 
which is a real-time command and control application is 
21,700. The software was tested by nine testers over the 
period of 21 weeks. Through the testing phase, about 25.3 
CPU hours were consumed and 136 software errors are 
removed. The number of errors removed after 3.5 years of 
test was reported to be 188 (Huang, 2005). The estimated 

parameters , , andα β δ  of the Log-logistic testing-effort 
function are: 

늿ˆ 33.110503, 0.056547, 7.151126α β δ= = = . 
Figure 7 shows the fitting of the estimated testing-effort by 
using above estimates. The fitted curve and the actual 
software data are shown by solid and dotted lines, 
respectively. The estimated values of the parameters 

, , anda b r in (5) are: 
ˆ늿 161.024306, .0010648, 168.36859a b r= = = . 
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Figure 7: Observed/estimated current testing-effort function vs. time 

Figure 8, illustrates a fitted curve of the estimated 
cumulative failure curve with the actual software data. The 

2R value for proposed Log-logistic testing-effort is 0.9973. 
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Figure 8: Observed/estimated cumulative number of failures vs. time 

Therefore, it can be said that the proposed curve is suitable 
for modeling the software reliability. Also, the calculated 

value ( 5.6512)F =  is greater than 0.05 (2,18)F  
0.01and (2,18)F , which concludes that the fitted testing-

effort curve is highly for this data set. Table III lists the 
comparisons of proposed model with different SRGMs 
which reveal that the proposed model has better 
performance. Kolmogorov Smirnov goodness-of-fit test 
shows that the proposed SRGM fits pretty well at the 5 
percent level of significance. 
Lastly, the relative error in prediction of proposed model 
for this data set is calculated and Figure 9 shows the 
relative error plotted against the percentage of data used 

(that is, /e qt t ). It is observed that relative error of the 

proposed model approaches zero as et  approaches qt  and 
the error curve is usually within 5± percent. 
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Table III. Comparison results of different SRGMs for DS3 

Model a r b AE 
(%) MSE

Proposed 
model 161.02 168.37 0.0011 14.36 75.19

Bokhari 
Log-logistic 

model 
133.28  0.1571 29.11 100.18

Huang 
Logistic 
model 

138.03  0.1451 26.58 64.41

Yamada 
Rayleigh 

model 
866.94  0.0096 25.11 89.241

Yamada 
Weibull 
model 

133.71  0.155 28.88 81.51

Yamada 
delayed S-

shaped 
model 

237.19  0.0963 26.16 245.25

Delayed S-
Shaped 

model with 
Logistic 

TEF 
(Huang) 

124.11  0.411 33.98 180.02

Inflection S-
shaped 
model 

159.11  0.0765 15.36 118.3

G-O model 142.32  0.1246 24.29 2438.3
 
Consequently, from the Figures 7 to 9 and Table III 
discussed, it can be concluded that the proposed model 
gets reasonable prediction in estimating the number of 
software errors and fits the observed data better than the 
others. 
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Figure 9: Predictive Relative Error Curve 

 

4.3 Numerical Example on Imperfect Debugging 

We consider the DS1 to discuss the issue of imperfect 
debugging for proposed SRGM. In order to validate the 
proposed SRGM under imperfect debugging, MSE is 
selected as the evaluation criterion. The parameters 

, , , and a b r γ  in (8) can be solved by the method of MLE. 

Table IV. Comparison results of different SRGMs under Imperfect 
Debugging 

Models a r b γ  MSE
Proposed model 385.6

3 
0.3
7 

0.063
0 

0.033
6 

87.69

Bokhari Log-
logistic model 

565.7
3 

 0.019
6 

58.02 116.7
4 

Huang Logistic 
model 

391.6
2 

 0.042
0 

0.011
6 

114.0
9 

Yamada Rayleigh 
model 

399.0
2 

 0.031
6 

0.123 268.5
5 

Yamada Weibull 
model 

565.3
5 

 0.019
6 

57.91 122.0
9 

Yamada delayed 
S-shaped 

374.8
7 

 .1968 0.962 168.7
1 

Delayed S-Shaped 
model with 
Logistic TEF 
(Huang) 

346.5
5 

 0.124 0.011
5 

147.6
0 

Inflection S-
Shaped model 

387.9
5 

0.3
4 

0.201 0.330 133.5
4 

G-O model 530.6
1 

 0.046
3 

0.287 222.0
9 

 
Table IV shows the estimated parameters with MSE of the 
proposed SRGM and some selected models for comparison 
under imperfect debugging. We observed that the value of 
MSE of the proposed SRGM with Log-logistic testing-
effort function is the lowest among all the models 
considered. Moreover, the estimated values γ  of all the 
models is close to but not equal to zero, thus the fault 
removal phenomenon may not be pure perfect debugging 
process.  
A fitted curve of the estimated cumulative number of 
failures with the actual software data and the RE curve for 
the proposed SRGM with Log-logistic testing-effort 
function under imperfect debugging is illustrated by Figure 
10 and 11. 
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Figure 10: Observed/estimated cumulative number of failures vs. time 
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Figure 11: Predictive Relative Error Curve 

5. Conclusion 

In this paper, we have proposed a flexible SRGM based on 
NHPP model, which incorporates Log-logistic testing-
effort function into inflection S-shaped model. The 
performance of the proposed SRGM is compared with 
other traditional SRGMs using different criteria. The 
results obtained show better fit and wider applicability of 
the proposed model on different types of real data 
applications. We conclude that the proposed flexible 
SRGM has better performance as compare to the other 
SRGMs and gives a reasonable predictive capability for 
the real failure data. We also conclude that the 
incorporated Log-logistic testing-effort function into 
inflection S-shaped model is a flexible and can be used to 
describe the actual expenditure patterns more faithfully 
during software development. In addition, the proposed 
models under imperfect debugging environment are also 
discussed. 
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