
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

197

Manuscript received January 5, 2011
Manuscript revised January 20, 2011

An Approach to Detect and Prevent SQL Injection Attacks in
Database Using Web Service

IndraniBalasundaram 1 Dr. E. Ramaraj2

1Lecturer, Department of Computer Science, Madurai Kamaraj University, Madurai
2Director of Computer Centre Alagappa University, Karaikudi.

Abstract
SQL injection is an attack methodology that targets the data
residing in a database through the firewall that shields it. The
attack takes advantage of poor input validation in code and
website administration. SQL Injection Attacks occur when an
attacker is able to insert a series of SQL statements in to a
‘query’ by manipulating user input data in to a web-based
application, attacker can take advantages of web application
programming security flaws and pass unexpected malicious SQL
statements through a web application for execution by the back-
end database. This paper proposes a novel specification-based
methodology for the prevention of SQL injection Attacks. The
two most important advantages of the new approach against
existing analogous mechanisms are that, first, it prevents all
forms of SQL injection attacks; second, Current technique does
not allow the user to access database directly in database server.
The innovative technique “Web Service Oriented XPATH
Authentication Technique” is to detect and prevent SQL-
Injection Attacks in database the deployment of this technique is
by generating functions of two filtration models that are Active
Guard and Service Detector of application scripts additionally
allowing seamless integration with currently-deployed systems.
General Terms
Languages, Security, Verification, Experimentation.

Keywords
Database security, world-wide web, web application security,
SQL injection attacks, Runtime Monitoring

1. Introduction

Information is the most important business asset in today’s
environment and achieving an appropriate level of
Information Security. SQL-Injection Attacks (SQLIA’s)
are one of the topmost threats for web application security.
For example financial fraud, theft confidential data, deface
website, sabotage, espionage and cyber terrorism. The
evaluation process of security tools for detection and
prevention of SQLIA’s. To implement security guidelines
inside or outside the database it is recommended to access
the sensitive databases should be monitored. It is a
hacking technique in which the attacker adds SQL
statements through a web application's input fields or
hidden parameters to gain access to resources or make

changes to data. The fear of SQL injection attacks has
become increasingly frequent and serious. . SQL-Injection
Attacks are a class of attacks that many of these systems
are highly vulnerable to, and there is no known fool-proof
defend against such attacks. Compromise of these web
applications represents a serious threat to organizations
that have deployed them, and also to users who trust these
systems to store confidential data. The Web applications
that are vulnerable to SQL-Injection attacks user inputs the
attacker’s embeds commands and gets executed [4]. The
attackers directly access the database underlying an
application and leak or alter confidential information and
execute malicious code [1][2]. In some cases, attackers
even use an SQL Injection vulnerability to take control
and corrupt the system that hosts the Web application. The
increasing number of web applications falling prey to
these attacks is alarmingly high [3] Prevention of SQLIA’s
is a major challenge. It is difficult to implement and
enforce a rigorous defensive coding discipline. Many
solutions based on defensive coding address only a subset
of the possible attacks. Evaluation of ““Web Service
Oriented XPATH Authentication Technique” has no code
modification as well as automation of detection and
prevention of SQL Injection Attacks. Recent U.S. industry
regulations such as the Sarbanes-Oxley Act [5] pertaining
to information security, try to enforce strict security
compliance by application vendors.

1.1 SAMPLE - APPLICATION

Application that contain SQL Injection vulnerability. The
example refers to a fairly simple vulnerability that could
be prevented using a straightforward coding fix. This
example is simply used for illustrative purposes because it
is easy to understand and general enough to illustrate
many different types of attacks. The code in the example
uses the input parameters LoginID, password to
dynamically build an SQL query and submit it to a
database.
For example, if a user submits loginID and password as
“secret,” and “123,” the application dynamically builds
and submits the query:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

198

SELECT * from FROM user_info WHERE
loginID=’secret’ AND pass1=123

If the loginID and password match the corresponding
entry in the database, it will be redirect to user_main.aspx
page other wise it will be redirect to error.aspx page.

1. dim loginId, Password as string
2. loginId = Text1.Text
3. password = Text2.Text
3. cn.open()
4. qry=”select * from user_info where LoginID=’” &
loginID & “’ and pass1=” & password & “”
5. cmd=new sqlcommand(qry,cn)
6. rd=cmd.executereader()
7. if (rd.Read=True) Then
8. Response.redirect(“user_main.aspx”)
9. else
10. Response.redirect(“error.aspx”)
11. end if
12. cn.close()
13. cmd.dispose()

Figure 1: Example of .NET code implementation.

1.2 Techniques of SQLIA’S

Most of the attacks are not in isolated they are used
together or sequentially, depending on the specific goals
of the attacker.

a. Tautologies
Tautology-based attack is to inject code in one or more
conditional statements so that they always evaluate to true.
The most common usages of this technique are to bypass
authentication pages and extract data. If the attack is
successful when the code either displays all of the returned
records or performs some action if at least one record is
returned.
Example: In this example attack, an attacker submits “ ’ or
1=1 - -”
The Query for Login mode is:
SELECT * FROM user_info WHERE loginID=’’ or 1=1 -
- AND pass1=’’
The code injected in the conditional (OR 1=1) transforms
the entire WHERE clause into a tautology the query
evaluates to true for each row in the table and returns all
of them. In our example, the returned set evaluates to a not
null value, which causes the application to conclude that
the user authentication was successful. Therefore, the
application would invoke method user_main.aspx and to
access the application [6] [7] [8].

b. Union Query
 In union-query attacks, Attackers do this by injecting a
statement of the form: UNION SELECT <rest of injected
query> because the attackers completely control the
second/injected query they can use that query to retrieve
information from a specified table. The result of this attack
is that the database returns a dataset that is the union of the
results of the original first query and the results of the
injected second query.
Example: An attacker could inject the text “’ UNION
SELECT pass1 from user_info where LoginID=’secret - -”
into the login field, which produces the following query:
SELECT pass1 FROM user_info WHERE loginID=’’
UNION SELECT pass1 from user_info where
LoginID=’secret’ -- AND pass1=’’
Assuming that there is no login equal to “”, the original
first query returns the null set, whereas the second query
returns data from the “user_info” table. In this case, the
database would return column “pass1” for account
“secret”. The database takes the results of these two
queries, unions them, and returns them to the application.
In many applications, the effect of this operation is that the
value for “pass1” is displayed along with the account
information

c. Stored Procedures
SQL Injection Attacks of this type try to execute stored
procedures present in the database. Today, most database
vendors ship databases with a standard set of stored
procedures that extend the functionality of the database
and allow for interaction with the operating system.
Therefore, once an attacker determines which backend
database is in use, SQLIAs can be crafted to execute
stored procedures provided by that specific database,
including procedures that interact with the operating
system. It is a common misconception that using stored
procedures to write Web applications renders them
invulnerable to SQLIAs. Developers are often surprised to
find that their stored procedures can be just as vulnerable
to attacks as their normal applications [18, 24].
Additionally, because stored procedures are often written
in special scripting languages, they can contain other types
of vulnerabilities, such as buffer overflows, that allow
attackers to run arbitrary code on the server or escalate
their privileges.
CREATE PROCEDURE DBO.UserValid(@LoginID
varchar2, @pass1 varchar2 AS EXEC("SELECT *
FROM user_info WHERE loginID=’" +@LoginID+ "’
and pass1=’" +@pass1+ "’");GO

Example: This example demonstrates how a parameterized
stored procedure can be exploited via an SQLIA. In the
example, we assume that the query string constructed at
lines 5, 6 and 7 of our example has been replaced by a call

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

199

to the stored procedure defined in Figure 2. The stored
procedure returns a true/false value to indicate whether the
user’s credentials authenticated correctly. To launch an
SQLIA, the attacker simply injects “ ’ ; SHUTDOWN; --”
into either the LoginID or pass1 fields. This injection
causes the stored procedure to generate the following
query:
SELECT * FROM user_info WHERE loginID=’secret’
AND pass1=’; SHUTDOWN; --
At this point, this attack works like a piggy-back attack.
The first query is executed normally, and then the second,
malicious query is executed, which results in a database
shut down. This example shows that stored procedures can
be vulnerable to the same range of attacks as traditional
application code [6] [11] [12] [10] [13] [14] [15].

d. Extended stored procedures
IIS(Internet Information Services) Reset

There are several extended stored procedures that can
cause permanent damage to a system[19].

Extended stored procedure can be executed by using login
form with an injected command as the LoginId

LoginId:';execmaster..xp_xxx;--

Password:[Anything]

LoginId:';execmaster..xp_cmdshell'iisreset';--

Password:[Anything]

select password from user_info where LoginId='';
exec master..xp_cmdshell 'iisreset'; --' and Password=''

This Attack is used to stop the service of the web server of
particular Web application.

Stored procedures primarily consist of SQL commands,
while XPs can provide entirely new functions via their
code. An attacker can take advantage of extended stored
procedure by entering a suitable command. This is
possible if there is no proper input validation. xp_cmdshell
is a built-in extended stored procedure that allows the
execution of arbitrary command lines. For example: exec
master..xp_cmdshell 'dir' will obtain a directory listing of
the current working directory of the SQL Server process.
In this example, the attacker may try entering the
following input into a search form can be used for the
attack. When the query string is parsed and sent to SQL
Server, the server will process the following code:

SELECT * FROM user_info WHERE input text =" exec
master.. xp_cmdshell LoginId /DELETE'--'

Here, the first single quote entered by the user closes the
string and SQL Server executes the next SQL statements
in the batch including a command to delete a LoginId to
the user_info table in the database.

e. Alternate Encodings
Alternate encodings do not provide any unique way to
attack an application they are simply an enabling
technique that allows attackers to evade detection and
prevention techniques and exploit vulnerabilities that
might not otherwise be exploitable. These evasion
techniques are often necessary because a common
defensive coding practice is to scan for certain known
“bad characters,” such as single quotes and comment
operators. To evade this defense, attackers have employed
alternate methods of encoding their attack strings (e.g.,
using hexadecimal, ASCII, and Unicode character
encoding). Common scanning and detection techniques do
not try to evaluate all specially encoded strings, thus
allowing these attacks to go undetected. Contributing to
the problem is that different layers in an application have
different ways of handling alternate encodings. The
application may scan for certain types of escape characters
that represent alternate encodings in its language domain.
Another layer (e.g., the database) may use different escape
characters or even completely different ways of encoding.
For example, a database could use the expression
char(120) to represent an alternately-encoded character
“x”, but char(120) has no special meaning in the
application language’s context. An effective code-based
defense against alternate encodings is difficult to
implement in practice because it requires developers to
consider of all of the possible encodings that could affect a
given query string as it passes through the different
application layers. Therefore, attackers have been very
successful in using alternate encodings to conceal their
attack strings.

Example: Because every type of attack could be
represented using an alternate encoding, here we simply
provide an example of how esoteric an alternatively-
encoded attack could appear. In this attack, the following
text is injected into the login field: “secret’;
exec(0x73687574646f776e) - - ”. The resulting query
generated by the application is:

SELECT * FROM user_info WHERE loginID=’secret’;
exec(char(0x73687574646f776e)) -- AND pass1=’’

This example makes use of the char() function and of
ASCII hexadecimal encoding. The char() function takes as
a parameter an integer or hexadecimal encoding of a
character and returns an instance of that character. The
stream of numbers in the second part of the injection is the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

200

ASCII hexadecimal encoding of the string
“SHUTDOWN.” Therefore, when the query is interpreted
by the database, it would result in the execution, by the
database, of the SHUTDOWN command.
References: [6]

f. Deny Database service
 This attack used in the websites to issue a denial of
service by shutting down the SQL Server. A powerful
command recognized by SQL Server is SHUTDOWN
WITH NOWAIT [19]. This causes the server to shutdown,
immediately stopping the Windows service. After this
command has been issued, the service must be manually
restarted by the administrator.

select password from user_info where
LoginId=';shutdown with nowait; --' and Password='0'

The '--' character sequence is the 'single line comment'
sequence in Transact - SQL, and the ';' character denotes
the end of one query and the beginning of another. If he
has used the default sa account, or has acquired the
required privileges, SQL server will shut down, and will
require a restart in order to function again. This attack is
used to stop the database service of a particular web
application.

Select * from user_info where LoginId=’1;xp_cmdshell
‘format c:/q /yes ‘; drop database mydb; --AND pass1 = 0

This command is used to format the C:\ drive used by the
attacker.

2. Related Work

There are existing techniques that can be used to detect
and prevent input manipulation vulnerabilities.

2.1 Web Vulnerability Scanning

Web vulnerability scanners crawl and scan for web
vulnerabilities by using software agents. These tools
perform attacks against web applications, usually in a
black-box fashion, and detect vulnerabilities by observing
the applications’ response to the attacks [18].However,
without exact knowledge about the internal structure of
applications, a black-box approach might not have enough
test cases to reveal existing vulnerabilities and also have
false positives.

2.2 Intrusion Detection System (IDS)

Valeur and colleagues [17] propose the use of an Intrusion
Detection System (IDS) to detect SQLIA. Their IDS
system is based on a machine learning technique that is
trained using a set of typical application queries. The
technique builds models of the typical queries and then
monitors the application at runtime to identify queries that
do not match the model in that it builds expected query
models and then checks dynamically-generated queries for
compliance with the model. Their technique, however, like
most techniques based on learning, can generate large
number of false positive in the absence of an optimal
training set.
Su and Wassermann [8] propose a solution to prevent
SQLIAs by analyzing the parse tree of the statement,
generating custom validation code, and wrapping the
vulnerable statement in the validation code. They
conducted a study using five real world web applications
and applied their SQLCHECK wrapper to each application.
They found that their wrapper stopped all of the SQLIAs
in their attack set without generating any false positives.
While their wrapper was effective in preventing SQLIAs
with modern attack structures, we hope to shift the focus
from the structure of the attacks and onto removing the
SQLIVs.

2.3 Combined Static and Dynamic Analysis.

AMNESIA is a model-based technique that combines
static analysis and runtime monitoring [1][7]. In its static
phase, AMNESIA uses static analysis to build models of
the different types of queries an application can legally
generate at each point of access to the database. In its
dynamic phase, AMNESIA intercepts all queries before
they are sent to the database and checks each query against
the statically built models. Queries that violate the model
are identified as SQLIA’s and prevented from executing
on the database. In their evaluation, the authors have
shown that this technique performs well against SQLIA’s.
The primary limitation of this technique is that its success
is dependent on the accuracy of its static analysis for
building query models. Certain types of code obfuscation
or query development techniques could make this step less
precise and result in both false positives and false
negatives
Livshits and Lam [16] use static analysis techniques to
detect vulnerabilities in software. The basic approach is to
use information flow techniques to detect when tainted
input has been used to construct an SQL query. These
queries are then flagged as SQLIA vulnerabilities. The
authors demonstrate the viability of their technique by
using this approach to find security vulnerabilities in a
benchmark suite. The primary limitation of this approach
is that it can detect only known patterns of SQLIA’s and,

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

201

because it uses a conservative analysis and has limited
support for untainting operations, can generate a relatively
high amount of false positives.
Wassermann and Su propose an approach that uses static
analysis combined with automated reasoning to verify that
the SQL queries generated in the application layer cannot
contain a tautology [9]. The primary drawback of this
technique is that its scope is limited to detecting and
preventing tautologies and cannot detect other types of
attacks.

3. Proposed Technique

This Technique is used to detect and prevent SQLIA’s
with runtime monitoring. The solution insights behind the
technique are that for each application, when the login
page is redirected to our checking page, it was to detect
and prevent SQL Injection attacks without stopping
legitimate accesses. Moreover, this technique proved to be
efficient, imposing only a low overhead on the Web
applications. The contribution of this work is as follows:
A new automated technique for preventing SQLIA’s
where no code modification required, Webservice which
has the functions of db_2_XMLGenrerator and XPATH_
Validator such that it is an XML query language to select
specific parts of an XML document.
XPATH is simply the ability to traverse nodes from XML
and obtain information. It is used for the temporary
storage of sensitive data’s from the database, Active
Guard model is used to detect and prevent SQL Injection
attacks. Service Detector model allow the Authenticated or
legitimate user to access the web applications. The
SQLIA’s are captured by altered logical flow of the
application. Innovative technique (figure:1) monitors
dynamically generated queries with Active Guard model
and Service Detector model at runtime and check them for
compliance. If the Data Comparison violates the model
then it represents potential SQLIA’s and prevented from
executing on the database.
This proposed technique consists of two filtration models
to prevent SQLIA’S. 1) Active Guard filtration model 2)
Service Detector filtration model. The steps are
summarized and then describe them in more detail in
following sections.
a. Active Guard Filtration Model
Active Guard Filtration Model in application layer build a
Susceptibility detector to detect and prevent the
Susceptibility characters or Meta characters to prevent the
malicious attacks from accessing the data’s from database.

b. Service Detector Filtration Model
Service Detector Filtration Model in application layer
validates user input from XPATH_Validator where the
Sensitive data’s are stored from the Database at second

level filtration model. The user input fields compare with
the data existed in XPATH_Validator if it is identical then
the Authenticated /legitimate user is allowed to proceed.

c. Web Service Layer
Web service builds two types of execution process that are
DB_2_Xml generator and XPATH_ Validator.
DB_2_Xml generator is used to create a separate
temporary storage of Xml document from database where
the Sensitive data’s are stored in XPATH_ Validator, The
user input field from the Service Detector compare with
the data existed in XPATH_ Validator, if the data’s are
similar XPATH_ Validator send a flag with the count
iterator value = 1 to the Service Detector by signifying
the user data is valid.

Procedures Executed in Active Guard

 Function stripQuotes(ByVal strWords)

 stripQuotes = Replace(strWords, "'", "''")

 Return stripQuotes

 End Function

 Function killChars(ByVal strWords)

 Dim arr1 As New ArrayList

 arr1.Add("select")

 arr1.Add("--")

 arr1.Add("drop")

 arr1.Add(";")

 arr1.Add("insert")

 arr1.Add("delete")

 arr1.Add("xp_")

 arr1.Add("'")

 Dim i As Integer

 For i = 0 To arr1.Count - 1

 strWords = Replace(strWords, arr1.Item(i), "", , ,
CompareMethod.Text)

 Next

 Return strWords

 End Function

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

202

Figure 2: proposed Architecture

Procedures Executed in Service Detector

 <WebMethod()> _

 Public Sub Db_2_XML()

 adapt=New SqlDataAdapter("select LoginId,Password
from user_info", cn)

 dst = New DataSet("Main_Tag")

 adapt.Fill(dst, "Details")

dst.WriteXml(Server.MapPath("XML_DATA\XML_D
ATA.xml"))

 End Sub

Procedures Executed in Web Service

 <WebMethod(EnableSession:=True)> _

 Public Function XPath_XML_Validation(ByVal
userName As String, ByVal Password As Integer)
As Integer

Dim xpathdoc As New
XPathDocument(Server.MapPath("XML_DATA\X
ML_DATA.xml"))

 Dim navi As XPathNavigator =
xpathdoc.CreateNavigator()

 Dim expr As XPathExpression =

navi.Compile("/Main_Tag/Details[LoginId='" &
userName & "' and Password=" & Password & "]")

Dim nodes As XPathNodeIterator =
navi.Select(expr)

Dim count2 As Integer = nodes.Count.ToString()

 Return count2

 End Function

d. Identify hotspot
This step performs a simple scanning of the application
code to identify hotspots. Each hotspot will be verified
with the Active Server to remove the susceptibility
character the sample code (figure: 2) states two hotspots
with a single query execution.(In .NET based applications,
interactions with the database occur through calls to
specific methods in the System.Data.Sqlclient namespace,
1 such as Sqlcommand- . ExecuteReader (String)) the
hotspot is instrumented with monitor code, which matches
dynamically generated queries against query models. If a
generated query is matched with Active Guard, then it is
considered an attack.

3.1 Comparison of Data at Runtime Monitoring

When a Web application fails to properly sanitize the
parameters, which are passed to, dynamically created SQL
statements (even when using parameterization techniques)
it is possible for an attacker to alter the construction of
back-end SQL statements.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

203

When an attacker is able to modify an SQL statement, the
statement will execute with the same rights as the
application user; when using the SQL server to execute
commands that interact with the operating system, the
process will run with the same permissions as the
component that executed the command (e.g., database
server, application server, or Web server), which is often
highly privileged. Current technique (Figure: 1) append
with Active Guard, to validate the user input fields to
detect the Meta character and prevent the malicious
attacker. Transact-SQL statements will be prohibited
directly from user input. For each hotspot, statically build
a Susceptibility detector in Active Guard to check any
malicious strings or characters append SQL tokens (SQL
keywords and operators), delimiters, or string tokens to
the legitimate command. Concurrently in Web service the
DB_2_Xml Generator generates a XML document from
database and stored in X_PATH Validator. Service
Detector receive the validated user input from Active
Guard and send through the protocol SOAP (Simple
Object Access Protocol) to the web service from the web
service the user input data compare with XML_Validator
if it is identical the XML_Validator send a flag as a
iterator count value = 1 to Service Detector through the
SOAP protocol then the legitimate/valid user is
Authenticated to access the web application, If the data
mismatches the XML_Validator send a flag as a count
value = 0 to Service Detector through the SOAP protocol
then the illegitimate/invalid user is not Authenticated to
access the web application. In figure 3: In the existing
technique query validation occur to validate a
Authenticated user and the user directly access the
database but in the current technique, there is no query
validation .From the Active Guard the validated user input
fields compare with the Service Detector where the
Sensitive data is stored, db_2_XML Generator is used to
generate a XML file and initialize to the class XPATH
document the instance Navigator is used to search by
using cursor in the selected XML document. With in the
XPATH validator, Compile is a method which is used to
match the element with the existing document. The
navigator will be created in the xpathdocument using
select method result will be redirected to the XPATH node
iterator. The node iterator count value may be 1 or 0, If the
flag value result in Service Detector as 1 then the user
consider as Legitimate user and allowed to access the web
application as the same the flag value result in Service
Detector as 0 then the user consider as Malicious user and
reject/discard from accessing the web application If the
script builds an SQL query by concatenating hard-coded
strings together with a string entered by the user, As long
as injected SQL code is syntactically correct, tampering
cannot be detected programmatically. String concatenation
is the primary point of entry for script injection Therefore,

we Compare all user input carefully with Service Detector
(Second filtration model). If the user input and Sensitive
data’s are identical then executes constructed SQL
commands in the Application server. Existing techniques
directly allows accessing the database in database server
after the Query validation. Web Service Oriented XPATH
Authentication Technique does not allow directly to
access database in database server.

4. EVALUATIONS

The proposed technique is deployed and tried few trial
runs on the web server.

Table 1: SQLIA’S Prevention Accuracy

SQL Injection Types Unprotected Protected

1. TAUTOLOGIES Not Prevented Prevented

2.PIGGY BACKED
QUERIES Not Prevented Prevented

3. STORED PROCEDURE Not Prevented Prevented

4. ALTERNATIVE
ENCODING Not Prevented Prevented

5. UNION Not Prevented Prevented

Table 2: Execution Time comparison for proposed technique

Total
Number of
Entries in
Database

Execution Time in Millisecond

Existing
Technique

Proposed
Technique

1000 1640000 46000
2000 1420000 93000
3000 1040000 46000
4000 1210000 62000
5000 1670000 78000
6000 1390000 107000

The above given table 2 illustrate the execution time taken
for the proposed technique with the existing technique.

4.1 SQLIA Prevention Accuracy

Both the protected and unprotected web Applications are
tested using different types of SQLIA’s; namely use of
Tautologies, Union, Piggy-Backed Queries, Inserting
additional SQL statements, Second-order SQL injection
and various other SQLIA s. Table 1 shows that the
proposed technique prevented all types of SQLIA s in all
cases. The proposed technique is thus a secure and robust
solution to defend against SQLIA’s

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

204

4.2 Execution Time at Runtime Validation

The runtime validation incurs some overhead in terms of
execution time at both the Web Service Oriented XPATH
Authentication Technique and SQL-Query based
Validation Technique. Taken a sample website E-
Transaction measured the extra computation time at the
query validation, this delay has been amplified in the
graph (figure: 4 and figure:5) to distinguish between the
Time delays using bar chart shows that the data validation
in XML_Validator performs better than query validation.
In Query validation(figure:5) the user input is generated as
a query in script engine then it gets parsed in to separate
tokens then the user input is compared with the statistical
generated data if it is malicious generates error reporting.
Web Service Oriented XPATH Authentication Technique
(figure: 4) states that user input is generated as a query in
script engine then it gets parsed in to separate tokens, and

send through the protocol SOAP to Susceptibility Detector,
then the validated user data is sequentially send to Service
Detector through the protocol SOAP then the user input is
compared with the sensitive data, which is temporarily
stored in dataset. If it is malicious data, it will be
prevented otherwise the legitimate data is allowed to
access the Web application.

5. CONCLUSION

SQL Injection Attacks attempts to modify the parameters
of a Web-based application in order to alter the SQL
statements that are parsed to retrieve data from the
database. Any procedure that constructs SQL statements
could potentially be vulnerable, as the diverse nature of
SQL and the methods available for constructing it provide
a wealth of coding options.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1000 2000 3000 4000 5000 6000

Total Number of Entries in Database

Ex
ec

ut
io

n
tim

e
in

 M
ill

i S
ec

Proposed Technique
Existing Technique

Figure4: Execution Time comparison for proposed technique (data validation in X-path) with existing technique

The primary form of SQL injection consists of direct
insertion of code into parameters that are concatenated
with SQL commands and executed. This technique is used
to detect and prevent the SQLI flaw (Susceptibility
characters & exploiting SQL commands) in Susceptibility
Detector and prevent the Susceptibility attacker Web
Service Oriented XPATH Authentication Technique
checks the user input with valid database which is stored
separately in XPATH and do not affect database directly
then the validated user input field is allowed to access the
web application as well as used to improve the
performance of the server side validation This proposed
technique was able to suitably classify the attacks that
performed on the applications without blocking legitimate

accesses to the database (i.e., the technique produced
neither false positives nor false negatives). These results
show that our technique represents a promising approach
to countering SQLIA’s and motivate further work in this
direction

References
[1] William G.J. Halfond and Alessandro Orso , “AMNESIA:

Analysis and Monitoring for Neutralizing SQLInjection
Attacks”, ASE’05, November 7–11, 2005

[2] William G.J. Hal fond and Alessandro Orso, “A
Classification of SQL injection attacks and
countermeasures”,proc IEEE int’l Symp. Secure Software
Engg., Mar. 2006.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.1, January 2011

205

[3] Muthuprasanna, Ke Wei, Suraj Kothari, “Eliminating SQL
Injection Attacks - A TransparentDefenceMechanism”,
SQL Injection Attacks Prof. Jim Whitehead CMPS 183.
Spring 2006, May 17, 2006

[4] William G.J. Hal fond, Alessandro Orso, “WASP:
Protecting Web Applications Using Positive Tainting and
Syntax-Aware Evaluation IEEE Software Engineering,
VOL. 34, NO.1January/February 2008

[5] K. Beaver, “Achieving Sarbanes-Oxley compliance for
Web applications”,
http://www.spidynamics.com/support/whitepapers/, 2003

[6] C. Anley, “Advanced SQL Injection In SQL Server
Applications,” White paper, Next Generation Security
Software Ltd., 2002.

[7] W. G. J. Halfond and A. Orso, “Combining Static Analysis
and Runtime Monitoring to Counter SQL Injection
Attacks,” 3rd International Workshop on Dynamic Analysis,
2005, pp. 1- 7

[8] Z. Su and G. Wassermann, “The Essence of Command
Injection Attacks in Web Applications,” 33rd
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2006, pp. 372-382.

[9] G. Wassermann and Z. Su. An Analysis Framework for
Security in Web Applications. In Proceedings of the FSE
Workshop on Specification and Verification of component-
Based Systems (SAVCBS 2004), pages 70–78, 2004.

[10] P. Finnigan, “SQL Injection and Oracle - Parts 1 & 2,”
Technical Report, Security Focus, November 2002.
http://securityfocus.com/infocus/1644

[11] F. Bouma, “Stored Procedures are Bad, O’kay,” Technical
report, Asp.Net Weblogs, November 2003.
http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.as
px.

[12] E. M. Fayo, “Advanced SQL Injection in Oracle
Databases,” Technical report, Argeniss Information Security,
Black Hat Briefings, Black Hat USA, 2005.

[13] C. A. Mackay, “SQL Injection Attacks and Some Tips on
How to Prevent them,” Technical report, The Code Project,
January 2005. http://www.codeproject.com/cs/database/
qlInjectionAttacks.asp.

[14] S. McDonald. SQL Injection: Modes of attack, defense, and
why it matters. White paper, GovernmentSecurity.org, April
2002.
http://www.governmentsecurity.org/articles/SQLInjectionM
odesofAttackDefenceandWhyItMatters.php

[15] S. Labs. SQL Injection. White paper, SPI Dynamics,
Inc.,2002.
http://www.spidynamics.com/assets/documents/Whitepaper
SQLInjection.pdf.

[16] V. B. Livshits and M. S. Lam. Finding Security Errors in
Java Programs with Static Analysis. In Proceedings of the
14th Usenix Security Symposium, pages 271–286, Aug.
2005.

[17] F. Valeur and D. Mutz and G. Vigna “A Learning-Based
Approach to the Detection of SQL Attacks,” In Proceedings
of the Conference on Detection of Intrusions and Malware
Vulnerability Assessment (DIMVA), July 2005.

[18] Kals, S., Kirda, E., Kruegel, C., and Jovanovic, N. 2006.
SecuBat: a web vulnerability scanner. In Proceedings of the

15th International Conference on World Wide Web. WWW
'06. ACM Press, pp. 247-256.

[19] Sql injection - HSC Guides - Web App Security Written
by Ethical Hacker sunday, 17 February 2008.
http://sqlinjections.blogspot.com/2009/04/sql-injection-hsc-
guides-web-app.html.

Prof.E.Ramaraj is presently working as a
Technology Advisor, Madurai Kamaraj
University, Madurai, Tamilnadu, India on
lien from Director, computer centre at
Alagappa university, Karaikudi. He has 22
years teaching experience and 8 years
research experience. He has presented
research papers in more than 50 national
and international conferences and published

more than 55 papers in national and international journals. His
research areas include Data mining, software engineering,
database and network security.

B.Indrani received the B.Sc. degree in
Computer Science, in 2002; the M.Sc.
degree in Computer Science and
Information Technology, in 2004. She had
completed M.Phil. in Computer Science.
She worked as a Research Assistant in
Smart and Secure Environment Lab under
IIT, Madras. Her current research interests
include Database Security.

