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Summary 
CGAs are cryptographically generated IPv6 addresses and are 
one of the most novel features introduced in IPv6. They have the 
promising potential of being the basis of authentication 
mechanisms for Mobile IPv6 because they do not require hosts to 
share information or security infrastructure. A mobile 
environment however has several resource constraints that must 
be considered before any mechanism can be deemed feasible. 
This paper undertakes to survey all the work done on CGAs and 
their performance. The goal is to identify and discuss parameters 
that have an impact on performance (e.g. the public-key 
cryptosystem being used). This should help in proposing possible 
modifications and parameters to ease the adoption of CGAs in a 
mobile environment.   
As a starting point, the CGA generation and verification 
algorithms are implemented with the help of a cryptographic 
library designed especially for embedded systems. An evaluation 
of the performance of this implementation is undertaken and a 
comparison is made with the results reported in previous studies. 
Based on this, a recommendation is made for the parameters that 
should be used by mobile nodes when using CGAs. The long-
term modification that has the most potential for improving the 
performance of CGAs in a resource-limited setup is also 
identified  
Key words: 
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1. Introduction 

Two benefits of adopting IPv6 are improved support for 
security and mobility. To help achieve these goals a novel 
mechanism called Cryptographically Generated Addresses 
(CGA) was introduced. CGAs were initially included in 
SEcure Neighbor Discovery (SEND) protocol to protect 
against IP address spoofing and stealing attacks. However, 
the most promising area of application for CGAs is in 
mobile environments where the use of conventional 
security mechanisms like IPsec/IKE is not realistic. This is 
because these mechanisms require hosts to share common 
information or to depend on an existing security 
infrastructure whereas the use of CGAs is not bound by 
this limitation [1]. CGAs also have the advantage over 
alternatives like Host Identity Protocol (HIP) in that it  

does not require an additional layer between the network 
and transport layer [2]. 
It is thus imperative that an analysis of all work related to 
CGAs is made and their performance studied so that 
optimizations can be proposed to ease their adoption in a 
mobile environment.  
The rest of this paper is organized as follows. Section 2 
presents the details of CGAs and a review of 
improvements proposed for CGAs. Section 3 describes the 
performance testing environment and section 4 provides 
the results. Section 5 gives the conclusion of the paper. 

2. Overview and Related Work 

2.1 Overview of CGA 

CGA are IPv6 addresses for which the interface identifier 
is generated by computing a cryptographic one-way hash 
function using a public key and auxiliary parameters [3]. 
This ensures that the IPv6 address of a host is bound to the 
public key it is using. This binding can be verified by re-
computing the hash digest and comparing it with the 
interface identifier of the IPv6 address [4].  
The most basic use of a CGA is to prevent an attacker 
from impersonating an existing IPv6 address [3]. CGAs 
can also be used for authentication. For example, to prove 
that the sender of a packet is the actual owner of a CGA, 
the packet can be signed by the sender’s private key. This 
signature, the public key and the auxiliary parameters can 
be sent with the packet to the receiver. The receiver can 
verify the signature of the packet to confirm that the 
sender of the packet is also the owner of the CGA [5]. 
The use of CGAs requires the sender and receiver to share 
the CGA Parameters data structure. Essentially this is the 
concatenation of [3]: 
• a 128-bit randomly generated Modifier,  
• a 64-bit Subnet Prefix,  
• an 8-bit Collision Count,  
• variable length Public Key, and  
• variable length Extension Fields (optional) 
CGAs also require a security parameter or sec. This is an 
unsigned 3-bit integer that indicates the security level of 
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the CGA against brute force attack. After a CGA is 
generated, the sec parameter is encoded in the three 
leftmost bits of the interface identifier (see Fig. 1). 
The CGA generation and verification algorithms are 
defined in the RFC 3972. Fig. 2 and 3 show the steps in 
brief [3]. A CGA generated using the algorithm shown in 
Fig. 2 will satisfy the following two conditions [3]: 
• Hash1 equals the interface identifier of the address 
• 16 * sec leftmost bits of Hash2 are zero 

2.2 Areas of Application of CGA 

a. To protect against denial-of-service attacks during 
IPv6 address auto-configuration, duplicate address 
detection (DAD) and neighbor discovery (ND) [6]. A 
node can prove ownership of its address by using its 
private key to sign the DAD and ND messages that it 
sends.  

b. To protect against denial-of-service attacks in Mobile 
IPv6 [7]. A binding update (BU) message can be 
authenticated by the correspondent node if the 
sending mobile node signs the message. Inadequate 
mechanisms to protect BUs is one of the most 
important shortcomings of Mobile IPv6 

2.3 Cost Analysis of CGA generation and 
verification algorithm  

Advances in technology make it easier to attack the 
underlying hash function used by a CGA. For example, a 
2nd pre-image attack on a 64-bit hash digest requires 
O(264) hash function evaluations [2]. To prevent against 
such attacks, the hash extension technique was introduced 
to achieve the effective extension of the hash digest length 
[6]. Basically this technique requires that the input to 
Hash2 be modified (by incrementing the Modifier value) 

until the 16 * sec leftmost bits of the hash digest are 
zero [3]. This increases the cost of a brute force attack 
from O(259) to O(259 + 16 * sec). It also means that the cost 
of generating a CGA increases from O(259) to O(259 + 16 * 

sec).  
However, once a CGA has been generated, the cost of 
using and verifying a CGA does not depend on sec. In 
fact, the verification algorithm requires a constant amount 
of computation and it is relatively fast (requires at most 
two computations of SHA-1 functions) [3]. 

2.4 Related Work 

In a mobile environment, minimizing the time taken by the 
CGA generation and verification algorithm is vital. This is 
for two reasons. Firstly, handover operations have to be 
completed within a few milliseconds in order to ensure an 
adequate quality of service. Secondly, mobile nodes have 
limited resources (like battery, bandwidth and memory) 
that have to be efficiently used to prevent unacceptable 
delays. It is thus important to review all the work related 
to factors that affect the time taken by CGA algorithms: 
i. sec value 
In general, a mobile node should use a sec value based 
on its computational capacity, risk of attacks and the 
expected lifetime of the address. Currently, values 
between 0 and 2 are considered adequate [3]. However, 
any increase in sec value introduces significant delay and 
this is undesirable in a mobile environment. For example, 
[8] finds that increasing sec from 0 to 1, causes the 
average execution time of CGA generation algorithm to 
jump from15.57µs to just over 0.1 seconds. A sec value 
of 2, increases the average execution time to 100 seconds. 
Table 1 presents a summary of the results of CGA 
generation time reported in several studies. 

 
 
 

Subnet Prefix (64 bits) 
 
 

Interface Identifier (64 bits) 
 

 

  s e c  u g  
 0                                                                                          63 64   65  66                  70   71                                                              127 

Fig. 1 CGA 

Table 1: CGA generation time for different sec values 

Source Specification of setup sec = 0 sec = 1 sec = 2 sec = 3 

[8] Pentium 4.3GHz, Memory 1GB. 
Linux (Kernel 2.4) 15.57µs just over 0.1 

seconds 
100 

seconds 
more than 200 

hours 

[9] Machine with moderate processing power n/a 1 minute 16 days n/a 

[2] A modern PC (AMD64) n/a 0.2 seconds 3.2 hours 24 years 
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Input: 
1. 64-bit subnet prefix 
2. Public key of address owner 
3. Security parameter (sec) 

CGA Generation Algorithm: 

Output: 
1. A new CGA  
2. A CGA Parameters data structure 

Fig. 2 CGA Generation Algorithm 

no 

no 

yes 

1. Set Modifier to a 128 bit random number 

2. Set Hash2 to 112 leftmost bits of: 
SHA-1 (Modifier || 9-zero octets || Public Key || Extension Fields) 

4. Set Collision Count to zero 

3. Are 16 * sec 
leftmost bits of 

Hash2 equal to 0? 

no 

5. Set Hash1 to 64 leftmost bits of: 
SHA-1 (Modifier || Subnet Prefix || Collision Count || Public Key || 

Extension Fields) 

6. Form Interface Identifier from Hash1  
(writing sec into 3 leftmost bits and setting “u” and “g” bits to 0) 

7. Form IPv6 address: Subnet Prefix || Interface Identifier 

9. Form CGA Parameters data structure 

8. Duplicate Address 
Detection (is there an 

address collision)? 

yes 

Increment Modifier 

Increment  
Collision Count

Is 
Collision 

Count == 3?

yes 

Stop and report 
ERROR



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 

27

Input: 
1. An IPv6 address 
2. A CGA Parameters data structure 

CGA Verification Algorithm: 

 

Output: 
1. Success or Failure 

Fig. 3 CGA Verification Algorithm 

 

yes 

yes 

yes 

no 

yes 

1. Is Collision 
Count == 0, 1 

or 2? 

Stop and report 
FAILURE

no 

2. Is Subnet Prefix from 
CGA Parameters data 

structure == subnet prefix 
from IPv6 address? 

Stop and report 
FAILURE

3. Set Hash1 to 64 leftmost bits of: 
SHA-1 (CGA Parameter data structure) 

4. Is Hash1 == Interface 
Identifier from IPv6 

address? 
(Ignore bits 0 to 2, 6 & 7) 

no Stop and report 
FAILURE

5. Read sec from bits 0 to 2 of Interface Identifier  
(of the IPv6 address) 

6. Set Hash2 to 112 leftmost bits of: 
SHA-1 (Modifier || 9-zero octets || Public Key || Extension Fields) 

7. Are 16 * sec 
leftmost bits of 

Hash2 equal to 0? 
Stop and report 

FAILURE

no 
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Based on the performance test carried out on an actual 
Nokia N800, by Cheneau and colleagues, only sec value 
of 0 is feasible for mobile devices at the medium security 
level provided by 1024-bit RSA keys [10]. 
To help minimize the delays introduced by sec values 
greater than 0, RFC 3972 makes two recommendations: 
a. Steps 1-3 of the CGA generation algorithm can be 

done in advance or offline (i.e. on separate, more 
powerful machine) [3]. The result of these steps can 
be transmitted to a mobile node which can then carry 
on the algorithm from step 4. If the subnet prefix 
changes or an address collision occurs, a mobile node 
can simply use the earlier results to generate a new 
address (starting from step 4).  

b. Use small sec values. Higher sec values can be 
used either in the future (when the computational 
capacity of mobile nodes is higher) or when the risk 
of denial-of-service attacks based on brute-force 
search is too high to ignore [3]. 

 
ii. Hash function 
The hash function used by the CGA algorithm also has an 
impact on the level of security of the CGA and on 
performance. RFC 4982 introduces support for multiple 
hash Algorithms in CGAs [11]. This is to help protect 
applications where CGAs are vulnerable to attacks based 
on the collision-free property of SHA-1. The RFC, 
however, makes no recommendations of a hash function.  
In an effort to reduce execution time, Lee & Mun use 
MD5 (instead of SHA-1) in their design of a Modified 
CGA (MCGA) because it is simpler and has a shorter 
processing time [8]. SHA-1 should not be replaced by 
MD5, because its 128-bit hash digest is vulnerable to 
collision attack [12]. The possibility of using a hash 
function other that SHA-1 was investigated in [10].  The 
performance metric used shows SHA-1 as the most 
efficient algorithm compared with more secure 
alternatives like SHA-256, SHA-512, RIPEMD-160, 
TIGER and WHIRLPOOL. 
 
iii. Public Key Cryptosystem 
The public key cryptosystem used by CGAs has an impact 
on performance in more than one way. Reference [10] 
reports Total CGA generation time (including key pair 
generation time) for different RSA key lengths. If the 
reported RSA key generation time is subtracted from the 
Total CGA generation time, it gives the time taken by just 

the CGA generation algorithm. This data is summarized in 
Table 2.  
The setup used is a Nokia N800 @ 400 MHz when sec is 
0.  
It is clear to see that increasing the RSA key size does not 
have much of an impact on the CGA generation time 
(which is about 13.8 ms for all three key sizes). It is the 
RSA key generation time that increases substantially as 
key size is increased. Using an alternative public key 
cryptosystem like ECC will reduce the key generation time 
as well as the size of the CGA Parameters data structure 
because of the smaller key length. The latter should help 
reduce packet size and this is desirable in a low bandwidth 
environment and for devices with limited battery. 
[10] reports that it takes 0.079611 seconds to generate an 
163 bit ECC key and the time to generate the CGA is 
0.068774 seconds (0.148385 - 0.079611). When compared 
to the 4.685756 seconds needed to generate an equivalent 
1024 bit RSA, it is clear that ECC’s key generation is 
much less expensive than RSA’s key generation. To deal 
with unacceptable delays, RFC 3972 suggests generating 
the key pair on a separate, more powerful machine instead 
of on the mobile node [3]. Of course, this assumes the 
secure transmission of the key pair from the machine to 
the mobile node.  
The need to support alternative public key cryptosystems 
has led to a number of Internet drafts. [13] paves the way 
for a CGA to be associated with multiple public key while 
[14] outlines how to use ECC together with CGA and 
SEND. 
 
iv. Other Studies 
Two other studies on CGA generation and verification 
algorithms are worth mentioning. In [9] two modifications 
are made. Firstly, they move the Modifier field from the 
beginning of the CGA Parameters data structure to after 
the Extension Fields. This enables them to reduce the 
number steps used in re-computing the hash digest. The 
hash digest has to be re-computed whenever 16 * sec 
leftmost bits of Hash2 are not zero. The second change 
they make is to optimize the SHA-1 algorithm to perform 
the block operation only on those blocks that contain the 
new 128 bit Modifier. The block operation is not 
performed on the rest of the blocks and this saves 
computation time. Performance test on an implementation 
of their proposed optimizations shows an almost 80% 
reduction in the time taken for computing the hash value.  
 

Table 2: RSA Key Length vs. CGA Generation Time (in seconds) [10] 
RSA Key Size (in bits) 384 512 1024 

Total CGA generation time 0.651353 1.004133 4.699501 
RSA key generation time 0.637553 0.990302 4.685756 
CGA Generation Time 0.0138 0.013831 0.013745 
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This they argue is a significant reduction in the time 
required to generate a CGA. 
 
The second work proposes a more secure version of CGAs 
for IPv6 called CGA++ [2]. Their main aim was to 
increase the resistance of CGAs to time-memory trade-off 
attacks and garbage attacks. To achieve resistance against 
global time-memory trade-off attacks, they include Subnet 
Prefix in the calculation of Hash2. This prevents a mobile 
node from offloading the computation expensive steps1-3 
to more powerful machine. This however has the cost of 
reducing the efficiency of CGA++. To protect against 
garbage attacks, they sign the Modifier, Subnet Prefix and 
Collision Count with the private key. This signature is 
concatenated with the Public Key before being used to 
calculate Hash1. Introducing this signature increases the 
cost of CGA generation and verification algorithms. Their 
analysis shows that [2]: 
• generation time of CGA++ is significantly higher than 

the generation time of CGA when sec is 0.  
• generation time of CGA++ is about 0.005 seconds 

when sec is 0 and about 0.18 seconds when sec is 1. 

3. Development and Performance Evaluation 

As specified in RFC 3972, CGAs used by SEND must be 
able to support RSA public key length between 384 and 
2048 bits [3]. In future, higher security level may be 
required. To this end, it is important to evaluate the 
performance of CGA algorithms at these key sizes using 
more efficient software implementations than those used 
by the studies quoted above. Such a performance analysis 
should also provide very important feedback on how 
CGAs should be used in a mobile environment. 
The CGA generation and verification algorithms were 
coded using C. The implementation of multi-precision 
integers, random number generation and different hash 
functions used is the one provided by PolarSSL [15]. Most 
of the studies quoted above use OpenSSL instead because 
it is the most popular open source implementation of 
SSL/TLS. PolarSSL is a more recent light-weight 
implementation of SSL/TLS that is written specifically for 
use by embedded systems. PolarSSL allows developers to 
include only the components of the library that are needed 
into their application instead of the whole library. It has 
also been successfully ported to several architectures 
including ARM and Motorola 68000. Both these 
characteristics make PolarSSL the preferred choice for this 
study because execution time of algorithms and memory 
requirements of an application both depend on the 
software implementation being used. 
The development is done using Maemo 5 Software 
Development Kit (SDK) running on a Debian system 

(Kernel 2.6.26-2).  Maemo is the operating systems used 
on the Nokia N series of smartphones including the N900 
[16]. The code was cross-compiled using Scratchbox (a 
cross-compilation toolkit included in Maemo SDK) for an 
ARM target. The executable produced can run on an 
actual ARM processor like the OMAP ARM SoCs used in 
Nokia’s N series. In this study, however, the executable is 
run using QEMU. QEMU is an open source processor 
emulator that can run a program compiled for one machine 
(in our case ARM) on a different machine [17]. In our 
case, this different machine is a desktop with Pentium 
Dual-Core (each CPU at 2.8 GHz) and Memory of 
494.3MB GB.  
To measure the execution time of an algorithms or 
function, the RDTSC instruction is recommended. This 
instruction returns the value of a 64-bit time stamp counter 
(TSC) that is incremented on each clock cycle [18]. Using 
clock cycle count is the most precise and accurate method 
of recording time on x86 architectures. To this end, code 
is added so the following measurements can be made: 
• CGA generation – the number of clock cycles time 

taken by the steps shown in Fig. 2 (except for 
Duplicate Address Detection). Keys are pre-generated. 

• CGA Verification – the number of clock cycles taken 
by the steps shown in Fig. 3 

• The number of clock cycles taken for Hash1 and 
Hash2 computation  

The results obtained are shown in Table 3, 4 and 5. The 
mean number of clock cycles is reported as well as the 
corresponding mean time in microseconds (based on the 
fact the processor speed of an N800 is about 400 MHz).  

4. Analysis of Results 

As can be seen from Table 3 and 5, sec value of 0 (with 
1024-bit RSA) results in a mean CGA generation time of 
68.61 µs. This is a reasonable delay for a mobile  scenario. 
Reference [10] reports a Total CGA generation time of 
4.699501 seconds for the same sec value and RSA key 
length. As noted before, their result includes the time 
taken to generate the RSA key pair while this study 
assumes the mobile node has a pre-generated key pair. If 
the time taken to generate the RSA key pair is excluded 
from their results, their CGA generation time reduces to 
about 13.8 ms [10]. This is still more than the 68.61 µs 
obtained in this study. 
Using sec value of 1(instead of 0) increases the mean 
CGA generation time by about 126 times. Although 8.7 
ms is still much less than the unacceptable delay of 1s, it is  
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Table 3: CGA generation using different sec values 

Value of sec 0 1 

Mean # of clock cycles 27446 3,467,670 

Mean time (in µs) 68.61 8669.17 

Table 4: Hash1 computation using SHA-1, SHA-256 and SHA-512 

Hash function SHA-1 SHA-256 SHA-512 

Mean # of clock cycles 19 25 49 

Mean time (in µs) 0.0475 0.0625 0.1225 

Table 5: CGA generation and verification using different RSA Key Length 

RSA Key Length 384-bits 512-bits 1024-bits 2048-bits 

CGA Generation 
Mean # of clock cycles 27290 27404 27446 27549 

Mean time (in µs) 68.22 68.51 68.61 68.87 

CGA Verification 
Mean # of clock cycles 51 51 74 97 

Mean time (in µs) 0.13 0.13 0.19 0.24 
 
 
still too much in cases where handover operations have to 
be completed within 5 to10 ms.  
It is also obvious from Table 5 that increasing RSA key 
length does not have a significant an impact on mean CGA 
generation time (it remains between 68 to 69 µs). 
Increasing RSA key length has an obvious impact only on 
Total CGA generation time (as reported in Table 2). This 
difference is because of the inclusion of generation time of 
the RSA key pair.  
It should be noted that alternatives to RSA should urgently 
be investigated for use with CGAs for following reasons: 
• A mobile node still has to generate the RSA key pair 

(even if this delay is not part of the CGA generation 
and verification algorithm). As shown in [10] this 
introduces unacceptable delay even for the soon to be 
replaced 1024-bit keys.  

• Generating and verifying CGA signatures requires the 
computationally expensive RSA signature generation 
and verification operations  

The mean CGA verification time in Table 5 is in line with 
the point made in RFC 3972, that the verification 
algorithm is relatively fast i.e. less than 0.25 µs even for 
2048-bit RSA keys. 
Table 4 shows that although using SHA-256 or SHA-512 
increases the mean number of clock cycles taken to 
compute Hash1, the increase is not substantial. This 
should help promote the possibility that SHA-1 can be 

replaced with alternatives like SHA-256 and SHA-512 
that are more robust and provide a higher level of security 
without any noteworthy degradation in performance.   

5. Conclusion and Recommendation 

As it can be seen, some work has been done on optimizing 
CGAs for use in a mobile environment. These include 
investigations of the impact of different sec values, 
different hash functions, and different public key 
cryptosystem. Like [10] this study finds that only sec 
value of 0 is feasible for mobile devices at the medium 
security level provided by 1024-bit RSA keys. Because 
this study uses a more efficient software implementation, 
the results of the performance evaluation are better than 
those reported in previous studies. The mean time to 
generate a CGA and the mean time to verify a CGA were 
found to be acceptable for a mobile scenario (i.e. 68.61 µs 
and 0.19 µs respectively). 
Although this study finds that increasing RSA key length 
does not lead to any significant increase in mean time 
taken by CGA generation and verification algorithms, it is 
still vital to investigate replacing RSA. This is because 
using RSA for operations related to using CGAs (such as 
key generation, CGA signature generation and 
verification) is too expensive for mobile nodes. RSA must 
be replaced by a public key cryptosystem that provides 
comparable cryptographic strength but has faster key 
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generation, shorter key length and less expensive signature 
generation and verification. Only when this is achieved 
can CGAs-based authentication be computationally 
feasible for mobile environment.  
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