
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

24

Manuscript received February 5, 2011
Manuscript revised February 20, 2011

Cryptographically Generated Addresses (CGAs): A survey and
an analysis of performance for use in mobile environment

Sana Qadir and Mohammad Umar Siddiqi

International Islamic University Malaysia, Kuala Lumpur, Malaysia

Summary
CGAs are cryptographically generated IPv6 addresses and are
one of the most novel features introduced in IPv6. They have the
promising potential of being the basis of authentication
mechanisms for Mobile IPv6 because they do not require hosts to
share information or security infrastructure. A mobile
environment however has several resource constraints that must
be considered before any mechanism can be deemed feasible.
This paper undertakes to survey all the work done on CGAs and
their performance. The goal is to identify and discuss parameters
that have an impact on performance (e.g. the public-key
cryptosystem being used). This should help in proposing possible
modifications and parameters to ease the adoption of CGAs in a
mobile environment.
As a starting point, the CGA generation and verification
algorithms are implemented with the help of a cryptographic
library designed especially for embedded systems. An evaluation
of the performance of this implementation is undertaken and a
comparison is made with the results reported in previous studies.
Based on this, a recommendation is made for the parameters that
should be used by mobile nodes when using CGAs. The long-
term modification that has the most potential for improving the
performance of CGAs in a resource-limited setup is also
identified
Key words:
CGA, Performance, Public Key Cryptosystem

1. Introduction

Two benefits of adopting IPv6 are improved support for
security and mobility. To help achieve these goals a novel
mechanism called Cryptographically Generated Addresses
(CGA) was introduced. CGAs were initially included in
SEcure Neighbor Discovery (SEND) protocol to protect
against IP address spoofing and stealing attacks. However,
the most promising area of application for CGAs is in
mobile environments where the use of conventional
security mechanisms like IPsec/IKE is not realistic. This is
because these mechanisms require hosts to share common
information or to depend on an existing security
infrastructure whereas the use of CGAs is not bound by
this limitation [1]. CGAs also have the advantage over
alternatives like Host Identity Protocol (HIP) in that it

does not require an additional layer between the network
and transport layer [2].
It is thus imperative that an analysis of all work related to
CGAs is made and their performance studied so that
optimizations can be proposed to ease their adoption in a
mobile environment.
The rest of this paper is organized as follows. Section 2
presents the details of CGAs and a review of
improvements proposed for CGAs. Section 3 describes the
performance testing environment and section 4 provides
the results. Section 5 gives the conclusion of the paper.

2. Overview and Related Work

2.1 Overview of CGA

CGA are IPv6 addresses for which the interface identifier
is generated by computing a cryptographic one-way hash
function using a public key and auxiliary parameters [3].
This ensures that the IPv6 address of a host is bound to the
public key it is using. This binding can be verified by re-
computing the hash digest and comparing it with the
interface identifier of the IPv6 address [4].
The most basic use of a CGA is to prevent an attacker
from impersonating an existing IPv6 address [3]. CGAs
can also be used for authentication. For example, to prove
that the sender of a packet is the actual owner of a CGA,
the packet can be signed by the sender’s private key. This
signature, the public key and the auxiliary parameters can
be sent with the packet to the receiver. The receiver can
verify the signature of the packet to confirm that the
sender of the packet is also the owner of the CGA [5].
The use of CGAs requires the sender and receiver to share
the CGA Parameters data structure. Essentially this is the
concatenation of [3]:
• a 128-bit randomly generated Modifier,
• a 64-bit Subnet Prefix,
• an 8-bit Collision Count,
• variable length Public Key, and
• variable length Extension Fields (optional)
CGAs also require a security parameter or sec. This is an
unsigned 3-bit integer that indicates the security level of

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

25

the CGA against brute force attack. After a CGA is
generated, the sec parameter is encoded in the three
leftmost bits of the interface identifier (see Fig. 1).
The CGA generation and verification algorithms are
defined in the RFC 3972. Fig. 2 and 3 show the steps in
brief [3]. A CGA generated using the algorithm shown in
Fig. 2 will satisfy the following two conditions [3]:
• Hash1 equals the interface identifier of the address
• 16 * sec leftmost bits of Hash2 are zero

2.2 Areas of Application of CGA

a. To protect against denial-of-service attacks during
IPv6 address auto-configuration, duplicate address
detection (DAD) and neighbor discovery (ND) [6]. A
node can prove ownership of its address by using its
private key to sign the DAD and ND messages that it
sends.

b. To protect against denial-of-service attacks in Mobile
IPv6 [7]. A binding update (BU) message can be
authenticated by the correspondent node if the
sending mobile node signs the message. Inadequate
mechanisms to protect BUs is one of the most
important shortcomings of Mobile IPv6

2.3 Cost Analysis of CGA generation and
verification algorithm

Advances in technology make it easier to attack the
underlying hash function used by a CGA. For example, a
2nd pre-image attack on a 64-bit hash digest requires
O(264) hash function evaluations [2]. To prevent against
such attacks, the hash extension technique was introduced
to achieve the effective extension of the hash digest length
[6]. Basically this technique requires that the input to
Hash2 be modified (by incrementing the Modifier value)

until the 16 * sec leftmost bits of the hash digest are
zero [3]. This increases the cost of a brute force attack
from O(259) to O(259 + 16 * sec). It also means that the cost
of generating a CGA increases from O(259) to O(259 + 16 *

sec).
However, once a CGA has been generated, the cost of
using and verifying a CGA does not depend on sec. In
fact, the verification algorithm requires a constant amount
of computation and it is relatively fast (requires at most
two computations of SHA-1 functions) [3].

2.4 Related Work

In a mobile environment, minimizing the time taken by the
CGA generation and verification algorithm is vital. This is
for two reasons. Firstly, handover operations have to be
completed within a few milliseconds in order to ensure an
adequate quality of service. Secondly, mobile nodes have
limited resources (like battery, bandwidth and memory)
that have to be efficiently used to prevent unacceptable
delays. It is thus important to review all the work related
to factors that affect the time taken by CGA algorithms:
i. sec value
In general, a mobile node should use a sec value based
on its computational capacity, risk of attacks and the
expected lifetime of the address. Currently, values
between 0 and 2 are considered adequate [3]. However,
any increase in sec value introduces significant delay and
this is undesirable in a mobile environment. For example,
[8] finds that increasing sec from 0 to 1, causes the
average execution time of CGA generation algorithm to
jump from15.57µs to just over 0.1 seconds. A sec value
of 2, increases the average execution time to 100 seconds.
Table 1 presents a summary of the results of CGA
generation time reported in several studies.

Subnet Prefix (64 bits)

Interface Identifier (64 bits)

 s e c u g
 0 63 64 65 66 70 71 127

Fig. 1 CGA

Table 1: CGA generation time for different sec values

Source Specification of setup sec = 0 sec = 1 sec = 2 sec = 3

[8] Pentium 4.3GHz, Memory 1GB.
Linux (Kernel 2.4) 15.57µs just over 0.1

seconds
100

seconds
more than 200

hours

[9] Machine with moderate processing power n/a 1 minute 16 days n/a

[2] A modern PC (AMD64) n/a 0.2 seconds 3.2 hours 24 years

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

26

Input:
1. 64-bit subnet prefix
2. Public key of address owner
3. Security parameter (sec)

CGA Generation Algorithm:

Output:
1. A new CGA
2. A CGA Parameters data structure

Fig. 2 CGA Generation Algorithm

no

no

yes

1. Set Modifier to a 128 bit random number

2. Set Hash2 to 112 leftmost bits of:
SHA-1 (Modifier || 9-zero octets || Public Key || Extension Fields)

4. Set Collision Count to zero

3. Are 16 * sec
leftmost bits of

Hash2 equal to 0?

no

5. Set Hash1 to 64 leftmost bits of:
SHA-1 (Modifier || Subnet Prefix || Collision Count || Public Key ||

Extension Fields)

6. Form Interface Identifier from Hash1
(writing sec into 3 leftmost bits and setting “u” and “g” bits to 0)

7. Form IPv6 address: Subnet Prefix || Interface Identifier

9. Form CGA Parameters data structure

8. Duplicate Address
Detection (is there an

address collision)?

yes

Increment Modifier

Increment
Collision Count

Is
Collision

Count == 3?

yes

Stop and report
ERROR

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

27

Input:
1. An IPv6 address
2. A CGA Parameters data structure

CGA Verification Algorithm:

Output:
1. Success or Failure

Fig. 3 CGA Verification Algorithm

yes

yes

yes

no

yes

1. Is Collision
Count == 0, 1

or 2?

Stop and report
FAILURE

no

2. Is Subnet Prefix from
CGA Parameters data

structure == subnet prefix
from IPv6 address?

Stop and report
FAILURE

3. Set Hash1 to 64 leftmost bits of:
SHA-1 (CGA Parameter data structure)

4. Is Hash1 == Interface
Identifier from IPv6

address?
(Ignore bits 0 to 2, 6 & 7)

no Stop and report
FAILURE

5. Read sec from bits 0 to 2 of Interface Identifier
(of the IPv6 address)

6. Set Hash2 to 112 leftmost bits of:
SHA-1 (Modifier || 9-zero octets || Public Key || Extension Fields)

7. Are 16 * sec
leftmost bits of

Hash2 equal to 0?
Stop and report

FAILURE

no

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

28

Based on the performance test carried out on an actual
Nokia N800, by Cheneau and colleagues, only sec value
of 0 is feasible for mobile devices at the medium security
level provided by 1024-bit RSA keys [10].
To help minimize the delays introduced by sec values
greater than 0, RFC 3972 makes two recommendations:
a. Steps 1-3 of the CGA generation algorithm can be

done in advance or offline (i.e. on separate, more
powerful machine) [3]. The result of these steps can
be transmitted to a mobile node which can then carry
on the algorithm from step 4. If the subnet prefix
changes or an address collision occurs, a mobile node
can simply use the earlier results to generate a new
address (starting from step 4).

b. Use small sec values. Higher sec values can be
used either in the future (when the computational
capacity of mobile nodes is higher) or when the risk
of denial-of-service attacks based on brute-force
search is too high to ignore [3].

ii. Hash function
The hash function used by the CGA algorithm also has an
impact on the level of security of the CGA and on
performance. RFC 4982 introduces support for multiple
hash Algorithms in CGAs [11]. This is to help protect
applications where CGAs are vulnerable to attacks based
on the collision-free property of SHA-1. The RFC,
however, makes no recommendations of a hash function.
In an effort to reduce execution time, Lee & Mun use
MD5 (instead of SHA-1) in their design of a Modified
CGA (MCGA) because it is simpler and has a shorter
processing time [8]. SHA-1 should not be replaced by
MD5, because its 128-bit hash digest is vulnerable to
collision attack [12]. The possibility of using a hash
function other that SHA-1 was investigated in [10]. The
performance metric used shows SHA-1 as the most
efficient algorithm compared with more secure
alternatives like SHA-256, SHA-512, RIPEMD-160,
TIGER and WHIRLPOOL.

iii. Public Key Cryptosystem
The public key cryptosystem used by CGAs has an impact
on performance in more than one way. Reference [10]
reports Total CGA generation time (including key pair
generation time) for different RSA key lengths. If the
reported RSA key generation time is subtracted from the
Total CGA generation time, it gives the time taken by just

the CGA generation algorithm. This data is summarized in
Table 2.
The setup used is a Nokia N800 @ 400 MHz when sec is
0.
It is clear to see that increasing the RSA key size does not
have much of an impact on the CGA generation time
(which is about 13.8 ms for all three key sizes). It is the
RSA key generation time that increases substantially as
key size is increased. Using an alternative public key
cryptosystem like ECC will reduce the key generation time
as well as the size of the CGA Parameters data structure
because of the smaller key length. The latter should help
reduce packet size and this is desirable in a low bandwidth
environment and for devices with limited battery.
[10] reports that it takes 0.079611 seconds to generate an
163 bit ECC key and the time to generate the CGA is
0.068774 seconds (0.148385 - 0.079611). When compared
to the 4.685756 seconds needed to generate an equivalent
1024 bit RSA, it is clear that ECC’s key generation is
much less expensive than RSA’s key generation. To deal
with unacceptable delays, RFC 3972 suggests generating
the key pair on a separate, more powerful machine instead
of on the mobile node [3]. Of course, this assumes the
secure transmission of the key pair from the machine to
the mobile node.
The need to support alternative public key cryptosystems
has led to a number of Internet drafts. [13] paves the way
for a CGA to be associated with multiple public key while
[14] outlines how to use ECC together with CGA and
SEND.

iv. Other Studies
Two other studies on CGA generation and verification
algorithms are worth mentioning. In [9] two modifications
are made. Firstly, they move the Modifier field from the
beginning of the CGA Parameters data structure to after
the Extension Fields. This enables them to reduce the
number steps used in re-computing the hash digest. The
hash digest has to be re-computed whenever 16 * sec
leftmost bits of Hash2 are not zero. The second change
they make is to optimize the SHA-1 algorithm to perform
the block operation only on those blocks that contain the
new 128 bit Modifier. The block operation is not
performed on the rest of the blocks and this saves
computation time. Performance test on an implementation
of their proposed optimizations shows an almost 80%
reduction in the time taken for computing the hash value.

Table 2: RSA Key Length vs. CGA Generation Time (in seconds) [10]
RSA Key Size (in bits) 384 512 1024

Total CGA generation time 0.651353 1.004133 4.699501
RSA key generation time 0.637553 0.990302 4.685756
CGA Generation Time 0.0138 0.013831 0.013745

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

29

This they argue is a significant reduction in the time
required to generate a CGA.

The second work proposes a more secure version of CGAs
for IPv6 called CGA++ [2]. Their main aim was to
increase the resistance of CGAs to time-memory trade-off
attacks and garbage attacks. To achieve resistance against
global time-memory trade-off attacks, they include Subnet
Prefix in the calculation of Hash2. This prevents a mobile
node from offloading the computation expensive steps1-3
to more powerful machine. This however has the cost of
reducing the efficiency of CGA++. To protect against
garbage attacks, they sign the Modifier, Subnet Prefix and
Collision Count with the private key. This signature is
concatenated with the Public Key before being used to
calculate Hash1. Introducing this signature increases the
cost of CGA generation and verification algorithms. Their
analysis shows that [2]:
• generation time of CGA++ is significantly higher than

the generation time of CGA when sec is 0.
• generation time of CGA++ is about 0.005 seconds

when sec is 0 and about 0.18 seconds when sec is 1.

3. Development and Performance Evaluation

As specified in RFC 3972, CGAs used by SEND must be
able to support RSA public key length between 384 and
2048 bits [3]. In future, higher security level may be
required. To this end, it is important to evaluate the
performance of CGA algorithms at these key sizes using
more efficient software implementations than those used
by the studies quoted above. Such a performance analysis
should also provide very important feedback on how
CGAs should be used in a mobile environment.
The CGA generation and verification algorithms were
coded using C. The implementation of multi-precision
integers, random number generation and different hash
functions used is the one provided by PolarSSL [15]. Most
of the studies quoted above use OpenSSL instead because
it is the most popular open source implementation of
SSL/TLS. PolarSSL is a more recent light-weight
implementation of SSL/TLS that is written specifically for
use by embedded systems. PolarSSL allows developers to
include only the components of the library that are needed
into their application instead of the whole library. It has
also been successfully ported to several architectures
including ARM and Motorola 68000. Both these
characteristics make PolarSSL the preferred choice for this
study because execution time of algorithms and memory
requirements of an application both depend on the
software implementation being used.
The development is done using Maemo 5 Software
Development Kit (SDK) running on a Debian system

(Kernel 2.6.26-2). Maemo is the operating systems used
on the Nokia N series of smartphones including the N900
[16]. The code was cross-compiled using Scratchbox (a
cross-compilation toolkit included in Maemo SDK) for an
ARM target. The executable produced can run on an
actual ARM processor like the OMAP ARM SoCs used in
Nokia’s N series. In this study, however, the executable is
run using QEMU. QEMU is an open source processor
emulator that can run a program compiled for one machine
(in our case ARM) on a different machine [17]. In our
case, this different machine is a desktop with Pentium
Dual-Core (each CPU at 2.8 GHz) and Memory of
494.3MB GB.
To measure the execution time of an algorithms or
function, the RDTSC instruction is recommended. This
instruction returns the value of a 64-bit time stamp counter
(TSC) that is incremented on each clock cycle [18]. Using
clock cycle count is the most precise and accurate method
of recording time on x86 architectures. To this end, code
is added so the following measurements can be made:
• CGA generation – the number of clock cycles time

taken by the steps shown in Fig. 2 (except for
Duplicate Address Detection). Keys are pre-generated.

• CGA Verification – the number of clock cycles taken
by the steps shown in Fig. 3

• The number of clock cycles taken for Hash1 and
Hash2 computation

The results obtained are shown in Table 3, 4 and 5. The
mean number of clock cycles is reported as well as the
corresponding mean time in microseconds (based on the
fact the processor speed of an N800 is about 400 MHz).

4. Analysis of Results

As can be seen from Table 3 and 5, sec value of 0 (with
1024-bit RSA) results in a mean CGA generation time of
68.61 µs. This is a reasonable delay for a mobile scenario.
Reference [10] reports a Total CGA generation time of
4.699501 seconds for the same sec value and RSA key
length. As noted before, their result includes the time
taken to generate the RSA key pair while this study
assumes the mobile node has a pre-generated key pair. If
the time taken to generate the RSA key pair is excluded
from their results, their CGA generation time reduces to
about 13.8 ms [10]. This is still more than the 68.61 µs
obtained in this study.
Using sec value of 1(instead of 0) increases the mean
CGA generation time by about 126 times. Although 8.7
ms is still much less than the unacceptable delay of 1s, it is

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

30

Table 3: CGA generation using different sec values

Value of sec 0 1

Mean # of clock cycles 27446 3,467,670

Mean time (in µs) 68.61 8669.17

Table 4: Hash1 computation using SHA-1, SHA-256 and SHA-512

Hash function SHA-1 SHA-256 SHA-512

Mean # of clock cycles 19 25 49

Mean time (in µs) 0.0475 0.0625 0.1225

Table 5: CGA generation and verification using different RSA Key Length

RSA Key Length 384-bits 512-bits 1024-bits 2048-bits

CGA Generation
Mean # of clock cycles 27290 27404 27446 27549

Mean time (in µs) 68.22 68.51 68.61 68.87

CGA Verification
Mean # of clock cycles 51 51 74 97

Mean time (in µs) 0.13 0.13 0.19 0.24

still too much in cases where handover operations have to
be completed within 5 to10 ms.
It is also obvious from Table 5 that increasing RSA key
length does not have a significant an impact on mean CGA
generation time (it remains between 68 to 69 µs).
Increasing RSA key length has an obvious impact only on
Total CGA generation time (as reported in Table 2). This
difference is because of the inclusion of generation time of
the RSA key pair.
It should be noted that alternatives to RSA should urgently
be investigated for use with CGAs for following reasons:
• A mobile node still has to generate the RSA key pair

(even if this delay is not part of the CGA generation
and verification algorithm). As shown in [10] this
introduces unacceptable delay even for the soon to be
replaced 1024-bit keys.

• Generating and verifying CGA signatures requires the
computationally expensive RSA signature generation
and verification operations

The mean CGA verification time in Table 5 is in line with
the point made in RFC 3972, that the verification
algorithm is relatively fast i.e. less than 0.25 µs even for
2048-bit RSA keys.
Table 4 shows that although using SHA-256 or SHA-512
increases the mean number of clock cycles taken to
compute Hash1, the increase is not substantial. This
should help promote the possibility that SHA-1 can be

replaced with alternatives like SHA-256 and SHA-512
that are more robust and provide a higher level of security
without any noteworthy degradation in performance.

5. Conclusion and Recommendation

As it can be seen, some work has been done on optimizing
CGAs for use in a mobile environment. These include
investigations of the impact of different sec values,
different hash functions, and different public key
cryptosystem. Like [10] this study finds that only sec
value of 0 is feasible for mobile devices at the medium
security level provided by 1024-bit RSA keys. Because
this study uses a more efficient software implementation,
the results of the performance evaluation are better than
those reported in previous studies. The mean time to
generate a CGA and the mean time to verify a CGA were
found to be acceptable for a mobile scenario (i.e. 68.61 µs
and 0.19 µs respectively).
Although this study finds that increasing RSA key length
does not lead to any significant increase in mean time
taken by CGA generation and verification algorithms, it is
still vital to investigate replacing RSA. This is because
using RSA for operations related to using CGAs (such as
key generation, CGA signature generation and
verification) is too expensive for mobile nodes. RSA must
be replaced by a public key cryptosystem that provides
comparable cryptographic strength but has faster key

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

31

generation, shorter key length and less expensive signature
generation and verification. Only when this is achieved
can CGAs-based authentication be computationally
feasible for mobile environment.

References

[1] C. Caicedo, J. Joshi and S. Tuladhar (2009), IPv6 Security

Challenges, IEEE Computer, 42(2), pp.36-42.
[2] J.W. Bos, O. Ozen, and J-P Hubaux (2009), Analysis and

Optimization of Cryptographically Generated Addresses,
Information Security 2009 (LNCS 5735), pp17-32.

[3] T. Aura (2005), Cryptographically Generated Addresses
(CGA) [Online]. Available:
 http://tools.ietf.org/pdf/rfc3972.pdf.

[4] H. Oh and K. Chae (2007, February 12-14), “An Efficient
Security Management in IPv6 Network via MCGA” paper
presented at the 9th International Advanced Conference on
Communication Technology (ICACT 2007), Phoenix Park,
Republic of Korea.

[5] C. Bauer and M. Ehammer (2008, October 12-14),
“Securing Dynamic Home Agent Address Discovery with
Cryptographically Generated Addresses and RSA
Signatures” paper presented at IEEE International
Conference on Wireless & Mobile Computing, Networking
& Communication (WIMOB’08), Avignon, France.

[6] T. Aura (2003), Cryptographically Generated Addresses.
Information Security 2003 (LNCS 2851), pp.29-43.

[7] J. Arkko, C. Vogt and W. Haddad (2007), Enhanced Route
Optimization for Mobile IPv6 [Online]. Available:
http://tools.ietf.org/pdf/rfc4866.pdf.

[8] H. Lee and Y. Mun (2006), “Design of Modified CGA for
Address Auto-configuration and Digital Signature in
Hierarchical Mobile Ad-Hoc Network” paper presented at
the International Conference on Information Networking
ICOIN 2006 (LNCS 3961), pp.217-226.

[9] T. Rajendran and K.V. Sreenaath, (2008, January 6-10),
“Hash optimization for cryptographically generated
address” paper presented at the 3rd International Conference
on Communication Systems Software and Middleware and
Workshops (COMSWARE 2008), Bangalore, India.

[10] T. Cheneau, A. Boudguiga and M. Laurent (2010),
Significantly Improved Performances of the
Cryptographically Generated Addresses Thanks to ECC and
GPGPU. Computers & Security 29, pp.419-431.

[11] M. Bagnulo and J. Arkko (2007), Support for Multiple Hash
Algorithms in Cryptographically Generated Addresses
(CGAs) [Online]. Available: http://tools.ietf.org/pdf/
rfc4982.pdf.

[12] B. A. Forouzan (2008), Cryptography and Network Security.
New York: McGraw-Hill.

[13] T. Cheneau, M. Maknavicius, S. Sean and M. Vanderveen
(2009, Feb 21), Support for Multiple Signature Algorithms
in Cryptographically Generated Addresses (CGAs) [Online].
Available: http://tools.ietf.org/pdf/draft-cheneau-cga-pk-
agility-00.pdf.

[14] T. Cheneau, M. Laurent, S. Shen and M. Vanderveen (2010,
Jun 16), ECC public key and signature support in
Cryptographically Generated Addresses (CGA) and in the

Secure Neighbor Discovery (SEND) [Online]. Available:
http://tools.ietf.org/pdf/draft-cheneau-csi-ecc-sig-agility-
02.pdf.

[15] polarSSL, http://polarssl.org/.
[16] maemo.org, http://maemo.org/intro/.
[17] QEMU, http://wiki.qemu.org/Main_Page
[18] P. Kankowski (2006), Performance measurements with

RDTSC [Online]. Available:
http://www.strchr.com/performance_measurement_with_rdt
sc.

