
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

98

Manuscript received February 5, 2011
Manuscript revised February 20, 2011

A Novel Scheme for Congestion Control in Hierarchical Mobile
IPv6 Networks

P. Harini†, B. Eswara Reddy††, U.S.N. Raju††† and V. Vijaya Kumar††††

†Prof. and HOD, Dept. of IT, St. Anns College of Engg. & Technology, Chirala, A.P., India.
††Assoc. Prof. and HOD, Dept. of CSE, JNTUA College of Engineering, Anantapur, A.P., India.

†††Professor, Dept. of CSE, Rajeev Gandhi College of Engg. & Technology, Nandyal, A.P., India.
††††Professor, Dean, Dept. of CSE&IT, Head- SR Research Forum, GIET, Rajahmundry, A.P., India.

Summary
Packet losses occur repeatedly due to temporal link
disconnection during handoff in wireless networks. Also during
the handoff, the amount of bandwidth present at the new point of
attachment may be different from that of the previous one. Due
to this bandwidth change, packet drops or wastage of resources
and congestion may occur at the new access point. To overcome
this problem, the present paper proposes a TCP (Transport
Control Protocol) based Path Loss Acknowledgment (TCP–
PLACK) mechanism in place of TCP-SACK (selective
acknowledgement) mechanism. The proposed TCP-PLACK
mechanism sends a special acknowledgment which consists of
packet loss details and available bandwidth at the new access
point whenever a TCP receiver is attached to a new access point
after a disconnection period or handoff. On receiving this
acknowledgment, the sender retransmits the lost packets and
adjusts the sending rate according to the bandwidth availability
at the new access point.
Key words:
HMIPv6, Handoffs, Bandwidth, Throughput, Congestion.

1. Introduction

1.1 Mobile IP

In the early days of the Internet’s development, a decision
was made that Internet protocol (IP) addresses would
represent both the topological location and identity of an
end-host (RFC 791) (Pos81b). While this decision
simplified the Internet’s conceptual addressing model and
met the needs of early network deployments, it has created
difficulties for the development and deployment of truly
mobile, IP-based applications and services. To reduce the
handover delay and packet loss, many authors have
suggested their ideas. Some concentrated on the link-layer
[4] to detect the movement of Mobile Nodes (MN) as
early as possible, others focus at network-layer [15] to
accelerate the ‘binding update process’ by buffering and
simulcasting packets.

S-MIP [10] provides a novel architecture that builds on
top of the hierarchical approach and the fast handover
mechanism, in connection with a newly developed handoff
algorithm based on pure, ‘software-based movement
tracking techniques.’ S-MIP introduces a new entity in the
network, the Decision Engine (DE) that is similar to a
MAP in its scope, and makes handover decision for its
network domain. S-MIP provides improvement in both
delay and packet loss, however, the operation of DE entity
is difficult to simulate in test-bed and therefore the
evaluation for this framework is not so far clear.
Shiao-li Tsao et al. [16] proposed a dynamic load
balancing scheme for a voice over IP (VoIP) over WLAN
(VoWLAN) system. The network-assisted association
policy, by means of an Access point (AP), which instructs
a station (STA) to request a VoWLAN session with the
minimal load. The proposed load balancing scheme again
rearranges the serving VoWLAN STAs between APs to
allocate adequate resources for admitting the new request,
if the APs are all overloaded. This rearranging mechanism
is again a time consuming process.
Issam Jabri1 et al. [11] focused on the design of a QoS
management solution for wireless communication systems.
For better performances of the Wireless LAN, this method
needs a balanced distribution of mobile stations among the
available Access Points. The main disadvantage of this
approach is estimation of balanced distribution.
Antonios Argyriou [4] presents a joint performance
evaluation model of TCP and TFRC, with the fundamental
IP-based mobility protocols. The protocol performance
during handoffs between heterogeneous wireless networks
like WLAN, cellular, or WMAN are characterized by the
stochastic models developed. This method is too complex
in nature.
Ezil sam Leni A. et al. [5] proposed a new technique based
on the information from the Data Link Layer and Network
Layer. This reduces the handoff delay and increases the
TCP performance in integrated wireless networks. To
identify the Neighbour Routers during handover, the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

99

Candidate Access Route Discovery (CARD) Protocol is
used.
Andrei Gurtov et al. [3] evaluated performance of TFRC
during handovers between GPRS, WLAN, and UMTS.
The above standard and non-standard solutions are
proposed for making the handover seamless. The solutions
proposed by various authors obviously improved the
handover performance to a little or some extent, especially
the latency. But in practice the handover delay is still very
high for time-sensitive services. The main purpose of the
proposed paper is to analyze existing handover
implementations and to propose suitable improvements to
the Hierarchical Mobile IPv6 protocol architecture so that
latency of the handover is minimized.
The present paper is organized as follows. Section 2 deals
with the basic concepts of congestion control in HMIPv6,
section 3 introduces the proposed new TCP-PLACK
mechanism, section 4 deals with results and discussions
and section 5 deals with conclusions.

2. Congestion Control

The TCP congestion control mechanism has been
continuously developed for over 15 years. There are a
large number of standardized and non-standardized TCP
variants nowadays; however, in this section, only the most
frequently used standardized TCP congestion control
algorithms in the current Internet are described, to help the
understanding of the impact of mobility on TCP
performance. The current basic TCP congestion control
mechanism consists of four algorithms as specified in [2]:
slow start, congestion avoidance, fast retransmit and
Reno-fast recovery. These algorithms suffer with many
disadvantages that affect the TCP performance in dealing
with multiple segments. For example, if the ACK that
acknowledges new data does not acknowledge all the
segments before the fast retransmit is invoked, these
algorithms cannot recover efficiently since the fast
retransmit algorithm only leads to the retransmission of
one segment [2] [7]. To overcome this NewReno fast
recovery algorithm is proposed.

2.1 New Reno TCP Fast Recovery Algorithm

During the Reno fast recovery procedure, however, if the
ACK that acknowledges new data does not acknowledge
all the segments before the fast retransmit is invoked, the
Reno algorithm cannot recover efficiently since the fast
retransmit algorithm only leads to the retransmission of
one segment [2] [7]. Therefore, the NewReno fast
recovery algorithm [7] was proposed to improve TCP
performance when multiple segments are lost from a
window of data, in the absence of explicit information on
which segment(s) should be retransmitted, such as the

information provided by the TCP Selective
Acknowledgement (SACK) options [13] when they are
supported. The NewReno fast recovery algorithm
introduces the concepts of partial acknowledgement and
full acknowledgement during the fast recovery procedure.
A partial acknowledgement is referred to as the ACK that
acknowledges a retransmitted segment but not all of the
segments transmitted before the fast retransmit, while a
full acknowledgement is referred to as the ACK that
acknowledges not only a retransmitted segment, but also
all of the segments transmitted before the fast retransmit.
The key idea of the NewReno algorithm (also the key
difference between the NewReno and the Reno
algorithms) is to distinguish the response to a full
acknowledgement and a partial acknowledgement. On
receipt of a full acknowledgement, cwnd is deflated to
either the minimum of ssthresh and FlightSize+SMSS, or
just ssthresh as the Reno algorithm specifies. The choice is
implementation dependent. Then the fast recovery
pocedure ends. On receipt of a partial acknowledgement,
the TCP sender immediately retransmits the first
unacknowledged segment. If this is the first partial
acknowledgement during the fast recovery procedure, the
TCP sender also resets the retransmit timer. This is called
the impatient variant of NewReno. If the retransmit timer
is reset on every partial acknowledgement, it is called the
slow-but-steady NewReno. In the impatient variant of
NewReno, if the fast recovery procedure does not end
before the retransmit timer reaches the value of RTO, a
slow start procedure is invoked. [7] At the same time,
cwnd is deflated by the amount of cumulative
acknowledged new data. If the partial acknowledgement
acknowledges at least SMSS of new data, cwnd is then
artificially inflated back by SMSS to reflect the number of
outstanding segments being reduced by one. A new
segment is transmitted at this time if the minimum of cwnd
and rwnd allows. These operations repeat until a full
acknowledgement arrives or the retransmit timer reaches
the value of RTO. In this way, the NewReno algorithm
improves TCP performance in the case when multiple
segments are lost from one window of data. The NewReno
algorithm has been widely deployed in the current Internet.
Tests have been done to prove that the NewReno
algorithm is used more than the Reno algorithm in SACK-
incapable TCP implementations [7].

2.2 Selective Acknowledgement (SACK) options for
TCP

Although the NewReno algorithm can improve the Reno
algorithm performance in the case when multiple segments
are lost from one window of data, it does still have its own
disadvantages. For example, in the situation that no
segments are lost but just reordered, the NewReno

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

100

algorithm can result in more unnecessary retransmissions
than the Reno algorithm. This is because the NewReno
algorithm is based on limited information obtained from
ACKs and conjectures on which segments may be lost. It
is only deemed as a good choice when the TCP SACK
mechanism is not available [7]. The TCP SACK
mechanism [13] allows the TCP receiver to include a
SACK option in an ACK packet, explicitly informing the
TCP sender of which out-of-order segments have been
received. Then the TCP sender can only retransmit those
missing segments. One SACK TCP implementation that
requires minimum changes to the Reno algorithm is
described in [6]. Its main difference from the Reno
algorithm lies in the behavior when multiple packets are
lost from one window of data. In general, this SACK TCP
implementation (simply called the SACK algorithm
hereafter) enters the fast retransmit procedure when a
sufficient number (normally three) of duplicate ACKs are
received, as in the Reno algorithm; and distinguishes the
response to a full acknowledgement and a partial
acknowledgement, as in the NewReno algorithm. In the
case that a retransmitted packet is dropped, the SACK
algorithm waits for an RTO. A slow start procedure is then
initiated and the dropped packet is retransmitted again.
When a full acknowledgement arrives at the TCP sender,
the SACK fast recovery procedure ends. Fall . K. etal
compares the Reno, NewReno and SACK algorithms
based on extensive simulations, and the results show that
the SACK algorithm has the best overall performance in
various scenarios.
Although TCP-SACK improves the performance, it does
still have disadvantages, especially when temporal link
disconnects. This results packet drops and ultimately leads
to congestion. To overcome these drawbacks of TCP-
SACK mechanism the present paper proposes a new TCP-
PLACK mechanism.

3. New TCP-PLACK mechanism

To accommodate TCP to more real handoff situations, the
present paper proposes a path loss acknowledgment
(TCP–PLACK) mechanism. In TCP-PLACK mechanism,
whenever a TCP receiver is attached to a new access point
after a disconnection period or handoff, it sends this
special ack which consists of three components:
(i) A PLFLAG, and
(ii) A TCP SACK option [13]
(iii) A bandwidth availability field (ABW)
The information about sequence numbers of the lost
packets is stored in TCP SACK. TCP SACK then informs
the TCP sender about the details of packets lost due to this
temporal link disconnection. Bandwidth availability field
is used to provide an efficient estimation of the bandwidth
availability in the new network. Because of this, within

one round trip time (RTT), senders can adjust their
sending rates to the most suitable value. Thus the rate
adjustment is done either by increasing their transmission
rates to make full utilization of the new network resources
or by decreasing their transmission rates to avoid
overloading the new network with bursty traffic.

3.1 The Path Loss Acknowledgement (PLACK)
Mechanism

The basic objective of TCP-PLACK is to recover the
harmful impact of the temporal link disconnection due to a
handoff and to balance the network bandwidth. A TCP
receiver on MN notifies its TCP sender on a FN (fixed
node) of the temporal disconnection through a special
acknowledgement, to reduce the influence of packet losses
during the disconnection, then, the TCP sender retransmits
the lost packets and restores the reduced Congestion
Window (cwnd) and sends Slow Start Threshold
(ssthresh) signal if a false Retransmission Time Out
(RTO) occurs.
TCP–PLACK requires modifying both the sender’s and
receiver’s operations on the TCP–SACK option. Some
fields included in TCP–PLACK are listed as follows:

• PLFLAG: This flag plays a role in notifying the
sender that a wireless link was temporally
disconnected or reconnected. The flag is set to
one of the three values: no loss (2), partial packet
loss (1), and full packet loss (0).

• Ccwnd: A copy of cwnd is used to restore the
cwnd if an RTO occurred due to a disconnection.

• Cssthresh: A copy of ssthresh is used to restore
ssthresh if an RTO occurred due to a
disconnection.

• Stime: Indicates the last packet transmitted from
the TCP sender within a window due to a RTO or
a fast retransmits.

• PLtimer: This timer is maintained in order to
notify the TCP sender about the loss of all
packets.

• ABW: The bandwidth availability (ABW) field is
used to provide an efficient estimation of the
bandwidth availability in the new network.

In the proposed TCP-PLACK mechanism, the receiver
reacts to a temporal disconnection as follows:
With the help of the link layer and Mobile IP, the recovery
of the wireless link is identified by the receiver. The
sender is informed by the receiver about the reconnection
of the wireless link by sending PLACK with PLFLAG set
to 2. The sender immediately checks if the sender’s
retransmission timer expires or if one RTT has elapsed
after the Stime. Then, the receiver schedules the PLtimer

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

101

with RTT/2 since any additional packets are anticipated to
be delivered within RTT/2, if they exist. If a new packet
arrives at the receiver before the PLtimer expires it
includes gaps in the sequence numbers. To transmit only
the lost packets by the sender, the receiver sends an
acknowledgement packet with a PLFLAG set to 1 and a
SACK block. Then, the receiver cancels the PLtimer.
When the PLtimer expires and no new packets have
arrived at the receiver, the receiver sends an
acknowledgement packet with only the PLFLAG set to 0.
This insists the sender to send all unacknowledged packets
or to perform the slow start algorithm. Based on this
Receiver calculates the available bandwidth of the new AP
in the following way:
Let W be the capacity of the wireless network. Idle rate
(IR) indicates the rate at which the link is idle. Then the
available bandwidth (ABW) can be obtained by the
following product:

 ABW=W×IR (1)

The busy time of the link can be estimated by adding up
all the transactions of nodes in the network as given by the
equation (2).
The transaction time of node i can be obtained via the sum
of the sending and receiving times to/from node i (Ts(i)+Tr
(i)) where Ts(i) is the sending time from node i to j and
Tr(i) is the receiving time from node j to i. Transaction
time between other nodes can be obtained on looking time
To (i), from the NAV in node i that is updated in other
node transactions. The present paper estimated the busy
time (BT) of any link i in the network and given in
Equation (2):

 BTl=Ts(i)+Tr(i)+To(i) (2)

The idle rate using the busy time is given by the equation
(3).

 IR=1-(BTl/TT) (3)

where TT is the total elapsed time.
Based on Equation (1), (2) and (3) the ABW is given in
Equation (4).

 ABW=W×1-(BTl/TT) (4)

3.2 The Sender’s Operations

When the lost packets are recovered by the sender it
begins to receive an acknowledgement with a PLACK.
The detailed operations of the sender are given by the
following three steps.
Step 1: The sender checks the value of the PLFLAG when
a retransmission timer is pending and the sender receives a

PLFLAG, and does the following actions as specified in
steps 1.1, 1.2, 1.3, 1.4 and 1.5.
Step 1.1: If the PLFLAG is set to 2, then (Stime+RTT) the

current time is compared by the sender. If current
time is larger than (Stime+RTT), then TCP sender
considers as all packets are lost and then retransmits
all unacknowledged packets. Otherwise, the sender
does nothing. If the sender transmitted the lost
packets, the process moves to Step 1.4.

Step 1.2: If the PLFLAG option is set to 0, the sender
follows the operations of Step 1.1. However, if
current time is smaller than (Stime+RTT), then the
sender cancels the pending retransmission time and
enters the slow start algorithm.

Step 1.3: If the PLFLAG is set to 1 and SACK blocks are
included, the sender gets back the sequence
numbers of the lost packets from each SACK block.
Then it retransmits the lost packets to the receiver
immediately. In order to prevent the timer expiry
during the recovery of the lost packets, it resets the
retransmit timer. If the sender transmitted the lost
packets, the process moves to Step 1.4.

Step 1.4: After transmitting the lost packets, when the
sender receives duplicate ACKs, it transmits a new
packet for each dup ack if congestion window is
available.

Step 1.5: If the retransmitted packets by the first PLFLAG
are still traversing and if the retransmission timer is
pending, then all other PLFLAG values are ignored.
The sender continues to send new packets when an
incoming acknowledgement is arrived, if the
retransmitted packets successfully arrive and the
sender receives a new non-duplicate
acknowledgement from the receiver.

Step 2: When the RTO has already occurred and sender
receives a PLFLAG, the sender replaces cwnd and
ssthresh with Ccwnd and Cssthresh, respectively.
With an enlarged cwnd, the sender continues the
normal operation of TCP by flushing both the
unacknowledged packets and new packets into the
network.

Step 3: If the available bandwidth of the new network
ABWnew is greater than that of the old one ABWold,
the congestion window increases by (1/cwnd) for
each PLACK received, i.e., (cwnd=cwnd+
(1/cwnd)) until a congestion occurs. On the other
hand, if (ABWnew<ABWold), then the new network
suddenly gets overloaded with a large number of
data packets. This congests, in turn, the
transmission queue at the bottleneck link’s router
and eventually results in the discard of a large
number of packets. As a result, TCP almost
immediately decreases its cwnd to 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

102

4. Experimental Results

4.1 Simulation Setup

This section evaluates the performance of TCP–PLACK
using the ns-2 simulator. The TCP–SACK1 agent and its
sink agent in ns-2 are modified to implement TCP–
PLACK. The receiver’s window size is set to 100 packets
in order to receive extra packets during the lost packet
recovery. The link layer connector and mobile host agent
in ns-2 are modified to notify the TCP sink of the wireless
link reconnection. The queue size of each node is set to
100 packets. The entire simulation settings are given in
Table 1. The simulation was carried out using the
hierarchical mobile network topology shown in Fig. 2.

Table1: Simulation Settings.
No. of Nodes 15
Area Size 1000 X 1000
Mac 802.11
Simulation Time 50 sec
Traffic Source FTP
Packet Size 100,200,….500 bytes
Speed 20
Transmission
range

75m

Routing Protocol AODV

Fig. 2 Network Topology.

Initially the mobile node MN13 was in MAP1 in the
domain AR1. During the simulation we perform intra and
inter domain handoff on MN13. Initially, at time t1, the
mobile node performs intra domain handoff by moving
from AR1 to AR2 within MAP1. Next at time t2, it starts
moving towards AR3 from AR2, thus by performing inter
domain handoff. Here AR3 is in MAP2, which has lower
bandwidth than MAP1. Hence the new network will
become congested leading to packet drops and throughput
degradation. At time t3, it moves from AR3 to AR4,
within MAP2. Finally at time t4, it moves back to AR1,
once again performing inter domain handoff.

In our first experiment, the simulations are performed by
varying the disconnection period from 0.25s to 1.25s. The
first disconnection begins at 2seconds (2s) after the
initiation of the simulation.

Disconnection Period Vs Thrroughput

0
0.1
0.2
0.3
0.4

0.25 0.5 0.75 1 1.25

period(s)

M
b/

s PLACK

SACK

Fig. 3 Disconnection Period Vs Throughput.

Disconnection Period Vs Congestion

160
170
180
190
200
210

0.25 0.5 0.75 1 1.25

period(s)

cw
nd

(p
ac

ke
ts

)

PLACK

SACK

Fig. 4 Disconnection Period Vs Congestion.

Packetsize Vs Throughput

0

0.1

0.2

0.3

0.4

100 200 300 400 500

psize

M
b/

s PLACK

SACK

Fig. 5 Packet size Vs Throughput.

Packetsize Vs Congestion

0

50
100

150
200

250

100 200 300 400 500

psize

cw
nd

(p
ac

ke
ts

)

PLACK

SACK

Fig. 6 Packet size Vs Congestion.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

103

Fig. 3 shows the average throughput obtained by the
receiver during the entire simulation. It clearly shows that
the proposed PLACK mechanism gains more throughput
compared to the SACK when the disconnection period is
increased. Fig. 4 shows the average congestion window
size in terms of packets. From the Fig. 4, one can observe
that PLACK accumulates more packets in its congestion
window, when compared to SACK. In our second
experiment, the simulations are performed by varying the
TCP packet size from 100 bytes to 500 bytes. Fig. 5
shows the average throughput obtained by the receiver
during the entire simulation. It clearly shows that PLACK
gains more throughput compared to the SACK when the
packet size is increased. Fig. 6 shows the average
congestion window size in terms of packets. From the Fig.
6 it is clearlyevident that PLACK accumulates more
packets in its congestion window, when compared to
SACK.

5. Conclusions

This paper proposed a novel Cross-Layer based scheme
for loss recovery and rate control for handoff in
hierarchical Mobile IPv6 networks. In this scheme a path
loss acknowledgment (TCP–PLACK) mechanism is
proposed to accommodate TCP to more real handoff
situations. When a TCP receiver is attached to a new
access point after a disconnection period or handoff, it
sends a special acknowledgment which consists of three
components, a PLFLAG, a TCP SACK and a bandwidth
availability field (ABW). By the introduction of these
three fields in TCP-PLACK within one round trip time
(RTT), senders can adjust their sending rates to the most
suitable value. Thus the rate adjustment is done either by
increasing their transmission rates to make full utilization
of the new network resources or by decreasing their
transmission rates to avoid overloading the new network
with bursty traffic. The simulation results are carried out
for the proposed TCP-PLACK and TCP-SACK
mechanism based on disconnection period vs throughput,
disconnection period vs congestion, packet size vs
congestion. The simulation results shows the efficacy of
the proposed method over TCP-SACK.

Acknowledgments

The authors would like to express their cordial thanks to
K.V.V. Satya Narayana Raju, Chairman, Chaitanya
Institutions and K. Sashi Kiran Varma, Secretary, GIET,
Rajahmundry for providing Research facilities. Authors
would like to thank Dr. G.V.S. Anantha Lakshmi for her
invaluable suggestions and constant encouragement that
led to improvise the presentation quality of the paper.

References
[1] “Mobile IPv6 Overview”, Cisco Systems, Dec 2004.
[2] Allman M., Paxson V., and Stevens W., “TCP Congestion

Control”, RFC 2581, April 1999.
[3] Andrei Gurtov and Jouni Korhonen, “Effect of Vertical

Handovers on Performance of TCP-Friendly Rate Control,”
ACM SIGMOBILE Mobile Computing and
Communications, Volume 8, Issue 3, pp: 73 – 87, July
2004.

[4] Antonios Argyriou, “A joint performance model of TCP and
TFRC with mobility management protocols,” Wireless
Communications & Mobile Computing Volume 6 , Issue 5,
pp: 547 – 557, August 2006.

[5] Ezil sam Leni A. and Srivatsa S.K., “A handoff technique to
improve TCP performance in next generation wireless
networks,” Inform. Technololgy Journal, vol. 7, pp: 504-
509, 2008.

[6] Fall K. and Floyd S., “Simulation-based Comparison of
Tahoe, Reno, and SACK TCP”, Computer Communication
Review, July 1996.

[7] Floyd S., Henderson T., and Gurtov A., “The New Reno
Modification to TCP’s Fast Recovery Algorithm”, RFC
3782, April 2004.

[8] Goff T., Moronski J., Phatak D., Gupta V., “Freeze-TCP: a
true end-to-end TCP enhancement mechanism for mobile
environments”, INFOCOM 2000. Nineteenth Annual Joint
Conference of the IEEE Computer and Communications
Societies. Proceedings, vol. 3, 1537 – 1545, Mar 2000.

[9] Hesham Soliman, Claude Castelluccia, Karim El- Malki,
Ludovic Bellier, “Hierarchical Mobile IPv6 mobility
management (HMIPv6),” draft-ietf-mipshophmipv6- 00.txt.
IETF Mobile IP Working Group, June 2003.

[10] Hsieh R., Zhou Z.G., and Seneviratne A., “S-MIP: A
seamless Handoff Architecture for Mobile IP,” IEEE
INFOCOM, 2003, pages 1774 -1784, volume 3.

[11] Issam jabri1, thierry divoux, nicolas krommenacker, adel
soudani, “IEEE 802.11 Load balancing: an approach for
QoS Enhancement,” International Journal of Wireless
Information Networks, 2008.

[12] Johnson D., Perkins C., Arkko J., “Mobility Support in
IPv6,” Draft-ietf-mobileip-ipv6-24.txt, IETF Mobile IP
Working Group, Dec.2003.

[13] Mathis M., Mahdavi J., Floyd S., Romanow A., “TCP
Selective Acknowledgement Options,” RFC, 2008.

[14] Narten T., “Neighbor Discovery for IP Version 6 (IPv6),”
RFC 2461, IETF, 1998.

[15] Olivia Brickley, Susan Rea, Dirk Pesch, “Load Balancing
for QoS Enhancement in IEEE802.11E WLANs Using Cell
Breathing Techniques,” 7th IFIP International Conference
on Mobile and Wireless Communications Networks, Maroc,
2005.

[16] Shiao li tsao and chih chien hsu, “A Dynamic Load
Balancing Scheme for VoIP over WLANs,” journal of
information science and engineering, vol. 24, pp: 47-60,
2008.

[17] Soliman H. et al., “Hierarchical MIPv6 mobility
management (work in progress),” IETF Internet-Draft,
draft-ietf-mobileip-hmipv6-07.

[18] Thomson S., “IPv6 Stateless Address Auto configuration,”
RFC 2462, IETF, 1998.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

104

P. Harini M.Tech (Remote Sensing),
M.Tech. (CSE), [Ph.D. (Mobile
Computing)]. I obtained my M.Tech.
(Remote Sensing) in 1997 & M.Tech.
(CSE) in 2003 from JNTU, Masab
Tank, Hyderabad. I worked as a
Research Associate in JNTU, Masab
Tank, Hyderabad in Remote Sensing
Department for 01 year, 05 years
worked as a Assistant Professor in
QIS College of Engineering, Ongole

and 01 year worked as a Associate Professor in Rao & Naidu
Engineering College, Ongole. At present I am working as
Professor & Head of the Computer Science and Engineering
Department in St. Ann's College of Engineering & Technology,
Chirala.

B. Eswara Reddy received the
B.Tech. (CSE) degree from Sri
Krishna Devaraya University in 1995,
M.Tech. (Software Engineering) from
JNT University in 1999 and Ph.D
degree from JNT University in
Computer Science. He worked as a
Lecturer for two years (1996-97). He
worked as Assistant Professor (from
1999) in the Dept. of Computer
Science & Engineering, JNT

University College of Engineering. At present he is working as
Associate Professor and Head, in CSE Dept at JNTUCE,
Anantapur (Since 2006). His research interests includes Image
processing, Pattern Recognition and Software Engineering. He
is a life member of ISTE and IE.

U.S.N Raju received the B.E. (CSE)
degree from Bangalore University in
1998. He worked as a Software
Engineer in INDIGO RDBMS
Research and Development for two
years (1999-2000). After that he
completed his M. Tech. (Software
Engineering) from JNT University in
2002. He worked as an Academic

Assistant in JNT University, Hyderabad for six months and
joined as an Assistant Professor in Mahatma Gandhi Institute of
Technology, Hyderabad and worked there for five years (2002-
2007). He worked as an Associate Professor in Godavari Institute
of Engineering and Technology, Rajahmundry for three years.
He completed his Ph.D. in Computer Science and Engineering
from JNT University Kakinada under the guidance of Dr V.
Vijaya Kumar in Feb’2010. Presently, he is working as a
Professor at Rajeev Gandhi Memorial College of Engineering
and Technology, Nandyal, Andhra Pradesh, India. He is a life
member of ISTE, ISCA and CSI.

Vakulabharanam Vijaya Kumar
received integrated M.S. Engg, degree
from Tashkent Polytechnic Institute
(USSR) in 1989. He received his
Ph.D. degree in Computer Science
from Jawaharlal Nehru Technological
University (JNTU) in 1998. He has
served the JNT University for 13
years as Assistant Professor and
Associate Professor and taught
courses for M.Tech students. He has

been Dean for Dept of CSE and IT at Godavari Institute of
Engineering and Technology since April, 2007.His research
interests include Image Processing, Pattern Recognition,
Network Security, Steganography, Digital Watermarking, and
Image retrieval. He is a life member for CSI, ISTE, IE, IRS, ACS
and CS. He has published more than 120 research publications in
various National, Inter National conferences, proceedings and
Journals.

