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Summary 
Packet losses occur repeatedly due to temporal link 
disconnection during handoff in wireless networks. Also during 
the handoff, the amount of bandwidth present at the new point of 
attachment may be different from that of the previous one. Due 
to this bandwidth change, packet drops or wastage of resources 
and congestion may occur at the new access point. To overcome 
this problem, the present paper proposes a TCP (Transport 
Control Protocol) based Path Loss Acknowledgment (TCP–
PLACK) mechanism in place of TCP-SACK (selective 
acknowledgement) mechanism. The proposed TCP-PLACK 
mechanism sends a special acknowledgment which consists of 
packet loss details and available bandwidth at the new access 
point whenever a TCP receiver is attached to a new access point 
after a disconnection period or handoff. On receiving this 
acknowledgment, the sender retransmits the lost packets and 
adjusts the sending rate according to the bandwidth availability 
at the new access point.  
Key words: 
HMIPv6, Handoffs, Bandwidth, Throughput, Congestion. 

1. Introduction 

1.1 Mobile IP 

In the early days of the Internet’s development, a decision 
was made that Internet protocol (IP) addresses would 
represent both the topological location and identity of an 
end-host (RFC 791) (Pos81b). While this decision 
simplified the Internet’s conceptual addressing model and 
met the needs of early network deployments, it has created 
difficulties for the development and deployment of truly 
mobile, IP-based applications and services. To reduce the 
handover delay and packet loss, many authors have 
suggested their ideas. Some concentrated on the link-layer 
[4] to detect the movement of Mobile Nodes (MN) as 
early as possible, others focus at network-layer [15] to 
accelerate the ‘binding update process’ by buffering and 
simulcasting packets.  

S-MIP [10] provides a novel architecture that builds on 
top of the hierarchical approach and the fast handover 
mechanism, in connection with a newly developed handoff 
algorithm based on pure, ‘software-based movement 
tracking techniques.’ S-MIP introduces a new entity in the 
network, the Decision Engine (DE) that is similar to a 
MAP in its scope, and makes handover decision for its 
network domain. S-MIP provides improvement in both 
delay and packet loss, however, the operation of DE entity 
is difficult to simulate in test-bed and therefore the 
evaluation for this framework is not so far clear.  
Shiao-li Tsao et al. [16] proposed a dynamic load 
balancing scheme for a voice over IP (VoIP) over WLAN 
(VoWLAN) system. The network-assisted association 
policy, by means of an Access point (AP), which instructs 
a station (STA) to request a VoWLAN session with the 
minimal load. The proposed load balancing scheme again 
rearranges the serving VoWLAN STAs between APs to 
allocate adequate resources for admitting the new request, 
if the APs are all overloaded. This rearranging mechanism 
is again a time consuming process. 
Issam Jabri1 et al. [11] focused on the design of a QoS 
management solution for wireless communication systems. 
For better performances of the Wireless LAN, this method 
needs a balanced distribution of mobile stations among the 
available Access Points. The main disadvantage of this 
approach is estimation of balanced distribution. 
Antonios Argyriou [4] presents a joint performance 
evaluation model of TCP and TFRC, with the fundamental 
IP-based mobility protocols. The protocol performance 
during handoffs between heterogeneous wireless networks 
like WLAN, cellular, or WMAN are characterized by the 
stochastic models developed. This method is too complex 
in nature. 
Ezil sam Leni A. et al. [5] proposed a new technique based 
on the information from the Data Link Layer and Network 
Layer. This reduces the handoff delay and increases the 
TCP performance in integrated wireless networks. To 
identify the Neighbour Routers during handover, the 
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Candidate Access Route Discovery (CARD) Protocol is 
used.  
Andrei Gurtov et al. [3] evaluated performance of TFRC 
during handovers between GPRS, WLAN, and UMTS.  
The above standard and non-standard solutions are 
proposed for making the handover seamless. The solutions 
proposed by various authors obviously improved the 
handover performance to a little or some extent, especially 
the latency. But in practice the handover delay is still very 
high for time-sensitive services. The main purpose of the 
proposed paper is to analyze existing handover 
implementations and to propose suitable improvements to 
the Hierarchical Mobile IPv6 protocol architecture so that 
latency of the handover is minimized.  
The present paper is organized as follows. Section 2 deals 
with the basic concepts of congestion control in HMIPv6, 
section 3 introduces the proposed new TCP-PLACK 
mechanism, section 4 deals with results and discussions 
and section 5 deals with conclusions.  

2. Congestion Control 

The TCP congestion control mechanism has been 
continuously developed for over 15 years. There are a 
large number of standardized and non-standardized TCP 
variants nowadays; however, in this section, only the most 
frequently used standardized TCP congestion control 
algorithms in the current Internet are described, to help the 
understanding of the impact of mobility on TCP 
performance. The current basic TCP congestion control 
mechanism consists of four algorithms as specified in [2]: 
slow start, congestion avoidance, fast retransmit and 
Reno-fast recovery. These algorithms suffer with many 
disadvantages that affect the TCP performance in dealing 
with multiple segments. For example,  if the ACK that 
acknowledges new data does not acknowledge all the 
segments before the fast retransmit is invoked, these 
algorithms cannot recover efficiently since the fast 
retransmit algorithm only leads to the retransmission of 
one segment [2] [7]. To overcome this NewReno fast 
recovery algorithm is proposed. 

2.1 New Reno TCP Fast Recovery Algorithm 

During the Reno fast recovery procedure, however, if the 
ACK that acknowledges new data does not acknowledge 
all the segments before the fast retransmit is invoked, the 
Reno algorithm cannot recover efficiently since the fast 
retransmit algorithm only leads to the retransmission of 
one segment [2] [7]. Therefore, the NewReno fast 
recovery algorithm [7] was proposed to improve TCP 
performance when multiple segments are lost from a 
window of data, in the absence of explicit information on 
which segment(s) should be retransmitted, such as the 

information provided by the TCP Selective 
Acknowledgement (SACK) options [13] when they are 
supported. The NewReno fast recovery algorithm 
introduces the concepts of partial acknowledgement and 
full acknowledgement during the fast recovery procedure. 
A partial acknowledgement is referred to as the ACK that 
acknowledges a retransmitted segment but not all of the 
segments transmitted before the fast retransmit, while a 
full acknowledgement is referred to as the ACK that 
acknowledges not only a retransmitted segment, but also 
all of the segments transmitted before the fast retransmit. 
The key idea of the NewReno algorithm (also the key 
difference between the NewReno and the Reno 
algorithms) is to distinguish the response to a full 
acknowledgement and a partial acknowledgement. On 
receipt of a full acknowledgement, cwnd is deflated to 
either the minimum of ssthresh and FlightSize+SMSS, or 
just ssthresh as the Reno algorithm specifies. The choice is 
implementation dependent. Then the fast recovery 
pocedure ends. On receipt of a partial acknowledgement, 
the TCP sender immediately retransmits the first 
unacknowledged segment. If this is the first partial 
acknowledgement during the fast recovery procedure, the 
TCP sender also resets the retransmit timer. This is called 
the impatient variant of NewReno. If the retransmit timer 
is reset on every partial acknowledgement, it is called the 
slow-but-steady NewReno. In the impatient variant of 
NewReno, if the fast recovery procedure does not end 
before the retransmit timer reaches the value of RTO, a 
slow start procedure is invoked. [7] At the same time, 
cwnd is deflated by the amount of cumulative 
acknowledged new data. If the partial acknowledgement 
acknowledges at least SMSS of new data, cwnd is then 
artificially inflated back by SMSS to reflect the number of 
outstanding segments being reduced by one. A new 
segment is transmitted at this time if the minimum of cwnd 
and rwnd allows. These operations repeat until a full 
acknowledgement arrives or the retransmit timer reaches 
the value of RTO. In this way, the NewReno algorithm 
improves TCP performance in the case when multiple 
segments are lost from one window of data. The NewReno 
algorithm has been widely deployed in the current Internet. 
Tests have been done to prove that the NewReno 
algorithm is used more than the Reno algorithm in SACK-
incapable TCP implementations [7]. 

2.2 Selective Acknowledgement (SACK) options for 
TCP 

Although the NewReno algorithm can improve the Reno 
algorithm performance in the case when multiple segments 
are lost from one window of data, it does still have its own 
disadvantages. For example, in the situation that no 
segments are lost but just reordered, the NewReno 
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algorithm can result in more unnecessary retransmissions 
than the Reno algorithm. This is because the NewReno 
algorithm is based on limited information obtained from 
ACKs and conjectures on which segments may be lost. It 
is only deemed as a good choice when the TCP SACK 
mechanism is not available [7]. The TCP SACK 
mechanism [13] allows the TCP receiver to include a 
SACK option in an ACK packet, explicitly informing the 
TCP sender of which out-of-order segments have been 
received. Then the TCP sender can only retransmit those 
missing segments. One SACK TCP implementation that 
requires minimum changes to the Reno algorithm is 
described in [6]. Its main difference from the Reno 
algorithm lies in the behavior when multiple packets are 
lost from one window of data. In general, this SACK TCP 
implementation (simply called the SACK algorithm 
hereafter) enters the fast retransmit procedure when a 
sufficient number (normally three) of duplicate ACKs are 
received, as in the Reno algorithm; and distinguishes the 
response to a full acknowledgement and a partial 
acknowledgement, as in the NewReno algorithm. In the 
case that a retransmitted packet is dropped, the SACK 
algorithm waits for an RTO. A slow start procedure is then 
initiated and the dropped packet is retransmitted again. 
When a full acknowledgement arrives at the TCP sender, 
the SACK fast recovery procedure ends. Fall . K. etal 
compares the Reno, NewReno and SACK algorithms 
based on extensive simulations, and the results show that 
the SACK algorithm has the best overall performance in 
various scenarios.  
Although TCP-SACK improves the performance, it does 
still have disadvantages, especially when temporal link 
disconnects. This results packet drops and ultimately leads 
to congestion. To overcome these drawbacks of TCP-
SACK mechanism the present paper proposes a new TCP-
PLACK mechanism. 

3. New TCP-PLACK mechanism  

To accommodate TCP to more real handoff situations, the 
present paper proposes a path loss acknowledgment 
(TCP–PLACK) mechanism. In TCP-PLACK mechanism, 
whenever a TCP receiver is attached to a new access point 
after a disconnection period or handoff, it sends this 
special ack which consists of three components:  
(i)   A PLFLAG, and  
(ii)  A TCP SACK option [13]  
(iii) A bandwidth availability field (ABW) 
The information about sequence numbers of the lost 
packets is stored in TCP SACK. TCP SACK then informs 
the TCP sender about the details of packets lost due to this 
temporal link disconnection. Bandwidth availability field 
is used to provide an efficient estimation of the bandwidth 
availability in the new network. Because of this, within 

one round trip time (RTT), senders can adjust their 
sending rates to the most suitable value. Thus the rate 
adjustment is done either by increasing their transmission 
rates to make full utilization of the new network resources 
or by decreasing their transmission rates to avoid 
overloading the new network with bursty traffic. 

3.1 The Path Loss Acknowledgement (PLACK) 
Mechanism 

The basic objective of TCP-PLACK is to recover the 
harmful impact of the temporal link disconnection due to a 
handoff and to balance the network bandwidth. A TCP 
receiver on MN notifies its TCP sender on a FN (fixed 
node) of the temporal disconnection through a special 
acknowledgement, to reduce the influence of packet losses 
during the disconnection, then, the TCP sender retransmits 
the lost packets and restores the reduced Congestion 
Window (cwnd) and sends Slow Start Threshold 
(ssthresh) signal if a false Retransmission Time Out 
(RTO) occurs. 
TCP–PLACK requires modifying both the sender’s and 
receiver’s operations on the TCP–SACK option. Some 
fields included in TCP–PLACK are listed as follows: 
 

• PLFLAG: This flag plays a role in notifying the 
sender that a wireless link was temporally 
disconnected or reconnected. The flag is set to 
one of the three values: no loss (2), partial packet 
loss (1), and full packet loss (0). 

• Ccwnd: A copy of cwnd is used to restore the 
cwnd if an RTO occurred due to a disconnection.  

• Cssthresh: A copy of ssthresh is used to restore 
ssthresh if an RTO occurred due to a 
disconnection. 

• Stime: Indicates the last packet transmitted from 
the TCP sender within a window due to a RTO or 
a fast retransmits. 

• PLtimer: This timer is maintained in order to 
notify the TCP sender about the loss of all 
packets. 

• ABW: The bandwidth availability (ABW) field is 
used to provide an efficient estimation of the 
bandwidth availability in the new network. 

 
In the proposed TCP-PLACK mechanism, the receiver 
reacts to a temporal disconnection as follows: 
With the help of the link layer and Mobile IP, the recovery 
of the wireless link is identified by the receiver. The 
sender is informed by the receiver about the reconnection 
of the wireless link by sending PLACK with PLFLAG set 
to 2. The sender immediately checks if the sender’s 
retransmission timer expires or if one RTT has elapsed 
after the Stime. Then, the receiver schedules the PLtimer 
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with RTT/2 since any additional packets are anticipated to 
be delivered within RTT/2, if they exist. If a new packet 
arrives at the receiver before the PLtimer expires it 
includes gaps in the sequence numbers.  To transmit only 
the lost packets by the sender, the receiver sends an 
acknowledgement packet with a PLFLAG set to 1 and a 
SACK block. Then, the receiver cancels the PLtimer. 
When the PLtimer expires and no new packets have 
arrived at the receiver, the receiver sends an 
acknowledgement packet with only the PLFLAG set to 0. 
This insists the sender to send all unacknowledged packets 
or to perform the slow start algorithm. Based on this 
Receiver calculates the available bandwidth of the new AP 
in the following way: 
Let W be the capacity of the wireless network. Idle rate 
(IR) indicates the rate at which the link is idle. Then the 
available bandwidth (ABW) can be obtained by the 
following product: 
 
                               ABW=W×IR                                    (1) 
 
The busy time of the link can be estimated by adding up 
all the transactions of nodes in the network as given by the 
equation (2).  
The transaction time of node i can be obtained via the sum 
of the sending and receiving times to/from node i (Ts(i)+Tr 
(i)) where Ts(i) is the sending time from node i to j and 
Tr(i) is the receiving time from node j to i. Transaction 
time between other nodes can be obtained on looking time 
To (i), from the NAV in node i that is updated in other 
node transactions. The present paper estimated the busy 
time (BT) of any link i in the network and given in 
Equation (2): 
 

          BTl=Ts(i)+Tr(i)+To(i)                               (2) 
 
The idle rate using the busy time is given by the equation 
(3). 

        IR=1-(BTl/TT)                            (3) 
 
where TT is the total elapsed time. 
Based on Equation (1), (2) and (3) the ABW is given in 
Equation (4).              
 

     ABW=W×1-(BTl/TT)                    (4) 

3.2 The Sender’s Operations 

When the lost packets are recovered by the sender it 
begins to receive an acknowledgement with a PLACK. 
The detailed operations of the sender are given by the 
following three steps.  
Step 1: The sender checks the value of the PLFLAG when 
a retransmission timer is pending and the sender receives a 

PLFLAG, and does the following actions as specified in 
steps 1.1, 1.2, 1.3, 1.4 and 1.5. 
Step 1.1: If the PLFLAG is set to 2, then (Stime+RTT) the 

current time is compared by the sender.  If current 
time is larger than (Stime+RTT), then TCP sender 
considers as all packets are lost and then retransmits 
all unacknowledged packets. Otherwise, the sender 
does nothing. If the sender transmitted the lost 
packets, the process moves to Step 1.4. 

Step 1.2: If the PLFLAG option is set to 0, the sender 
follows the operations of Step 1.1. However, if 
current time is smaller than (Stime+RTT), then the 
sender cancels the pending retransmission time and 
enters the slow start algorithm. 

Step 1.3: If the PLFLAG is set to 1 and SACK blocks are 
included, the sender gets back the sequence 
numbers of the lost packets from each SACK block. 
Then it retransmits the lost packets to the receiver 
immediately. In order to prevent the timer expiry 
during the recovery of the lost packets, it resets the 
retransmit timer. If the sender transmitted the lost 
packets, the process moves to Step 1.4. 

Step 1.4: After transmitting the lost packets, when the 
sender receives duplicate ACKs, it transmits a new 
packet for each dup ack if congestion window is 
available. 

Step 1.5: If the retransmitted packets by the first PLFLAG 
are still traversing and if the retransmission timer is 
pending, then all other PLFLAG values are ignored. 
The sender continues to send new packets when an 
incoming acknowledgement is arrived, if the 
retransmitted packets successfully arrive and the 
sender receives a new non-duplicate 
acknowledgement from the receiver. 

Step 2: When the RTO has already occurred and sender 
receives a PLFLAG, the sender replaces cwnd and 
ssthresh with Ccwnd and Cssthresh, respectively. 
With an enlarged cwnd, the sender continues the 
normal operation of TCP by flushing both the 
unacknowledged packets and new packets into the 
network. 

Step 3: If the available bandwidth of the new network 
ABWnew is greater than that of the old one ABWold, 
the congestion window increases by (1/cwnd) for 
each PLACK received, i.e., (cwnd=cwnd+ 
(1/cwnd)) until a congestion occurs. On the other 
hand, if (ABWnew<ABWold), then the new network 
suddenly gets overloaded with a large number of 
data packets. This congests, in turn, the 
transmission queue at the bottleneck link’s router 
and eventually results in the discard of a large 
number of packets. As a result, TCP almost 
immediately decreases its cwnd to 1. 
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4. Experimental Results 

4.1 Simulation Setup 

This section evaluates the performance of TCP–PLACK 
using the ns-2 simulator. The TCP–SACK1 agent and its 
sink agent in ns-2 are modified to implement TCP–
PLACK. The receiver’s window size is set to 100 packets 
in order to receive extra packets during the lost packet 
recovery. The link layer connector and mobile host agent 
in ns-2 are modified to notify the TCP sink of the wireless 
link reconnection. The queue size of each node is set to 
100 packets. The entire simulation settings are given in 
Table 1. The simulation was carried out using the 
hierarchical mobile network topology shown in Fig. 2.  
 

Table1: Simulation Settings. 
No. of Nodes   15 
Area Size  1000 X 1000 
Mac  802.11 
Simulation Time  50 sec 
Traffic Source FTP 
Packet Size 100,200,….500 bytes 
Speed 20 
Transmission 
range 

75m 

Routing Protocol AODV 
 

 
Fig. 2 Network Topology. 

 
Initially the mobile node MN13 was in MAP1 in the 
domain AR1. During the simulation we perform intra and 
inter domain handoff on MN13. Initially, at time t1, the 
mobile node performs intra domain handoff by moving 
from AR1 to AR2 within MAP1. Next at time t2, it starts 
moving towards AR3 from AR2, thus by performing inter 
domain handoff.  Here AR3 is in MAP2, which has lower 
bandwidth than MAP1. Hence the new network will 
become congested leading to packet drops and throughput 
degradation. At time t3, it moves from AR3 to AR4, 
within MAP2. Finally at time t4, it moves back to AR1, 
once again performing inter domain handoff.  

In our first experiment, the simulations are performed by 
varying the disconnection period from 0.25s to 1.25s.  The 
first disconnection begins at 2seconds (2s) after the 
initiation of the simulation.  
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Fig. 3 Disconnection Period Vs Throughput. 
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Fig. 4 Disconnection Period Vs Congestion. 
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Fig. 5 Packet size Vs Throughput. 
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Fig. 6 Packet size Vs Congestion. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 
 

 

103

Fig. 3 shows the average throughput obtained by the 
receiver during the entire simulation. It clearly shows that 
the proposed PLACK mechanism gains more throughput 
compared to the SACK when the disconnection period is 
increased. Fig. 4 shows the average congestion window 
size in terms of packets. From the Fig. 4, one can observe 
that PLACK accumulates more packets in its congestion 
window, when compared to SACK. In our second 
experiment, the simulations are performed by varying the 
TCP packet size from 100 bytes to 500 bytes.  Fig. 5 
shows the average throughput obtained by the receiver 
during the entire simulation. It clearly shows that PLACK 
gains more throughput compared to the SACK when the 
packet size is increased. Fig. 6 shows the average 
congestion window size in terms of packets. From the Fig. 
6 it is clearlyevident that PLACK accumulates more 
packets in its congestion window, when compared to 
SACK. 

5. Conclusions 

This paper proposed a novel Cross-Layer based scheme 
for loss recovery and rate control for handoff in 
hierarchical Mobile IPv6 networks. In this scheme a path 
loss acknowledgment (TCP–PLACK) mechanism is 
proposed to accommodate TCP to more real handoff 
situations. When a TCP receiver is attached to a new 
access point after a disconnection period or handoff, it 
sends a special acknowledgment which consists of three 
components, a PLFLAG, a TCP SACK and a bandwidth 
availability field (ABW). By the introduction of these 
three fields in TCP-PLACK within one round trip time 
(RTT), senders can adjust their sending rates to the most 
suitable value. Thus the rate adjustment is done either by 
increasing their transmission rates to make full utilization 
of the new network resources or by decreasing their 
transmission rates to avoid overloading the new network 
with bursty traffic. The simulation results are carried out 
for the proposed TCP-PLACK and TCP-SACK 
mechanism based on disconnection period vs throughput, 
disconnection period vs congestion, packet size vs 
congestion. The simulation results shows the efficacy of 
the proposed method over TCP-SACK. 
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