
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 
 

127

Manuscript received February 5, 2011 
Manuscript revised February 20, 2011 

An Evolutionary Immune Approach for University Course 
Timetabling 

Y. Awad †, A. Dawood† and A. Badr†† 
  

†Dept. of Business Information Systems, Arab Academy for Science & Technology & Maritime Transport, Cairo, Egypt 
††Faculty of Computers and Information, Cairo University, Cairo, Egypt. 

 
Abstract 
The university course timetabling problem (UCTP) is a 
combinatorial NP-complete problem that has been subject to 
research since the early 1960’s. Numerous solution techniques 
have been applied to the timetabling problem ever since. This 
paper aims at formulating an immune-inspired algorithm, namely 
the Clonal Selection Algorithm1 (CSA1) and testing its ability in 
solving the UCTP against the Genetic algorithm (GA).  An 
Immune-Genetic algorithm (IGA) was also created, which 
combines the crossover operator borrowed from the genetic 
algorithm with immune-inspired concepts.  Also, experimenting 
with the effects of changing the selection and re-selection 
schemes of the algorithms motivated the creation of a second 
version of CSA1, that is CSA2 and three more versions of IGA: 
IGA1, IGA2 and IGA3. All the devised algorithms were 
contrasted in their performances against the GA. Enhancements 
were applied to the mutation operator of the formulated 
algorithms by introducing a ‘move factor’. As a means of 
improving the results attained by the algorithms, local search 
consisting of three variable neighborhoods was incorporated into 
each of them. The algorithms were tested over two problem 
instances, with varying complexities and the results demonstrate 
the effectiveness of the algorithms in solving the UCTP. 
Keywords: 
Clonal Selection Algorithms (CSA); Genetic algorithm (GA); 
Hybrid algorithm; University course timetabling problem 
(UCTP)  

1. Introduction 

The University Course Timetabling Problem (UCTP) is a 
problem that is constantly being tackled by educational 
institutes. Many consider the UCTP difficult to solve, 
partly because of the possibly large number of constraints 
associated with it. The fact remains that the UCTP is a 
problem of scarcity of resources. In other words, it is the 
problem of assigning events to timeslots, when teachers, 
rooms and other resources are scarce. The size of the 
timetabling problem Aitself; for instance, the number of 
events to be scheduled, the number of students and the 
number of courses per student is also a contributing factor 
to the complexity of the problem. 
In spite of the fact that the timetabling problem was 
classified as NP-hard in a number of papers, including [9] 
and [6]. Reference [2], proves that the timetabling problem 
is NP-complete in five independent ways. A problem 

belonging to the NP-complete class has no method of 
being solved in polynomial time. Many solution 
techniques were applied to the timetabling problem in the 
past such as direct heuristics, network flow analysis, graph 
coloring, integer linear programming and others, as 
reported in [10]. As the timetabling problem became more 
complex and with the emergence of more restrictions to 
scheduling courses, obtaining a feasible or near feasible 
solution using only heuristics has become more difficult. 
Instead, more recently, heuristics are being used in 
combination with optimization techniques to better prune 
the search space. This method of solving timetabling 
problems is known as metaheuristics. A comprehensive 
survey of recent automated approaches used for university 
timetabling can be found at [4]. 
The work executed here aims at making a comparison 
between the performances of the algorithms under 
consideration when they are presented with post 
enrollment timetabling problems of different complexities. 
It must be stated that the genetic algorithm in addition to 
the local search and matching algorithm that are being 
used in this study are part of the work of the 
Metaheuristics Network (MN) [12], a European 
Commission project whose objective is to compare the 
effectiveness of metaheuristics in solving different 
combinatorial optimization problems; amongst which is 
the timetabling problem in hand. The genetic code can be 
found at [11]. 
Since the amount of literature available on timetabling 
using immune-based concepts is modest, the main 
contribution presented in this paper is embodied in the 
formulation of a clonal selection algorithm to solve the 
UCTP. And in order to evaluate its performance, it is 
compared to the genetic algorithm already formulated as 
part of the work of the MN. Also, a hybrid Immune-
genetic algorithm was also formulated that integrates the 
crossover   operator of the GA into the devised clonal 
selection algorithm, which was also compared to the GA. 
Lastly, several versions of the hybrid and immune-based 
algorithms were implemented with the only difference 
between them being in the selection and re-selection 
schemes to test the effect of changing the schemes on the 
performance of the algorithms.  



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 

128

2. The Problem 

The University Course timetabling problem attempted in 
this study is the same as the one being used by the MN. It 
is classified as a post-enrollment timetabling problem as it 
takes into consideration the timetabling problem after 
students are enrolled [5]. The problem consists of 
assigning timeslots to a number of events that students are 
enrolled in, provided that a feasible timetable is produced. 
A feasible timetable is one that does not violate any of the 
hard constraints. On the other hand, a “good” timetable is 
one that satisfies all hard constraints as well as a number 
of the soft constraints (or all if possible). Soft constraints 
are those that are set by the user to produce a timetable 
that is more suited to their preferences. In other words, 
violation of only soft constraints means that a valid 
solution was produced, but only with less quality, 
depending on the frequency of soft constraint violations. 
The aim of each algorithm in this paper is to produce a 
feasible solution to the timetabling problem in hand, while 
minimizing the number of soft constraint violations 
(SCVs). 

2.1 Description of the University Course Timetabling 
Problem  
The university course timetabling problem constitutes of 
events, students, and rooms. Students attend events that 
take place in rooms of certain features and capacities; 
required by the events. The timetable to be created has 45 
timeslots split into 5 days, of 9 timeslots each. Assigning 
timeslots to events has to take place in compliance with 
the following hard constraints: 1) A student cannot attend 
more than one event simultaneously, 2) The room size 
must tolerate the number of attending students and it must 
satisfy all the features required by the event, 3) Only one 
event can take place in each room at any time. 
Furthermore, the following soft constraints define the 
quality of the timetable produced: 1) A student should not 
have a class in the last timeslot of the day, 2) A student 
should not have more than two consecutive classes, 3) A 
student should have more than a single class per day.  

2.2 Problem Instances 
The problem instances are created using a generator 
written by B.Paechter [7]. This generator is fed eight 
command line parameters, shown in table 1 that is 
acquired from [9], in addition to a random seed.  The 
problem instances can belong to one of three complexity 
classes: small, medium or large. Fixing the value of the 
random seed as well as that of the parameters pertaining to 
a certain class will produce the exact same problem 
instance. However, changing the random seed while 
keeping the values for the parameters of a class constant 
would produce a different problem instance, but belonging 
to the same class. It is worth mentioning that every 

instance produced by the generator has a “perfect” solution. 
In other words, a solution that is without constraint 
violations. The scope of this paper is limited to testing 
only two problem instances: small1 and medium1 that are 
located at [11]. The problem instance files and their 
representation are further elaborated at [15]. 

table1. Parameter values for instance classes 

 

2.3 Solution Representation and Room Assignment 
The output format of a solution consists of two integer 
values for each event with the events ordered in the same 
manner as in the problem instance file. The first integer 
value is that of the timeslot for the event, and the second is 
the value of the room. The timeslot must be a number 
between or including 0 and 44, since there are 45 timeslots 
available for scheduling. While the room value should 
range between 0 and a value, depending on the number of 
rooms available in the problem instance being tackled.   
It must be emphasized that the assignment of rooms to 
events, is implemented separately using a matching 
algorithm. After all events are assigned to timeslots, for 
each timeslot, a list of “possible rooms” that can be 
assigned to the events pertaining to that timeslot is 
produced. This list is executed with respect to the features 
and size of the events taking place in that timeslot. The 
matching algorithm then calls a network flow algorithm 
that establishes a maximum matching between the list of 
possible rooms and each event in the timeslot. If there still 
remains an event that is not assigned a room, the room that 
is currently occupied by the least number of events, as 
well as having the appropriate size and features is assigned 
to that event. 

3. Local search and neighborhood structure 

The local search (LS) addressed here consists of three 
neighborhoods N1, N2 and N3 that involve three different 
kinds of moves belonging to each neighborhood 
respectively. The first type of move, pertaining to N1, 
involves altering the timeslot for one event. The second 
type of move, belonging to N2, involves the swapping of 
timeslots between two different events. Finally the third 
type of move that is of neighborhood N3, permutes the 

 Instance Classes 
Small Medium 

Pa
ra

m
et

er
s 

No. of events 100 400 
No. of rooms 5 10 

No. of features 5 5 
Approximate features/ room 3 3 
Percentage of feature usage 70 80 

No. of students 80 200 
Max no. of events per student 20 20 
Max no. of students per event 20 50 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 
 

 

129

timeslots of three distinct events by either changing their 
timeslot as in the first type of move or swapping the 
timeslots between the  three events as in the second type of 
move.   
Search through each of the neighborhoods is initially 
assigned a probability. Neighborhoods N1 and N2 are 
assigned a probability of 1.0, meaning that both are 
explored. Since the search through N3 is very time 
consuming and ineffective [8], its probability is set to zero, 
meaning that only neighborhoods N1 and N2 are exploited. 
The number of moves allowed for the LS depends on the 
class of the problem being handled. The maximum number 
of moves is set to 200 for small problem instances and to 
1000 for medium problem instances. 
The local search used is a “first-improvement” local search. 
In other words, it examines the existing neighborhoods 
one by one until it reaches a solution that is better than the 
current solution which then becomes the new current 
solution. The local search algorithm attempts to handle the 
hard constraints of the solution in hand, then the soft 
constraints. It starts by generating a list of events that is 
randomly ordered, then moving through the list one event 
after the other. Each event within the list is first tested for 
hard constraint violations. If the event under consideration 
is involved in a hard constraint violation, it is subjected to 
a series of moves until all effort is expended to eliminate 
the violation. The moves that are tried on the event as an 
attempt to remove the constraint violation are initially 
from the neighborhood N1, then, neighborhood N2 is 
explored. After each move is implemented, the matching 
algorithm, (responsible for assigning rooms to each 
scheduled event) is applied to the timeslots affected by the 
move, and the resulting solution is delta-evaluated. If the 
move results in an improvement in the feasibility of the 
solution, then it is executed. Otherwise, another move is 
tried. Once the local search algorithm has processed all the 
events in the originally generated   randomly ordered list 
of events as explained earlier, it then moves on to examine 
each event for soft constraint violations in the same way. 
More details about the local search algorithm and how it is 
applied can be found at [8]. 

4. The Algorithms 

This paper conducts a comparison of the competency of 
seven different algorithms in solving the timetabling 
problem. The algorithms include the Genetic algorithm 
(GA), the Clonal Selection Algorithm1 (CSA1), the Clonal 
Selection Algorithm2 (CSA2), and a number of hybrid 
algorithms: the Immune-genetic algorithm (IGA), the 
Immune-genetic algorithm1 (IGA1), the Immune-genetic 
algorithm2 (IGA2) and the Immune-genetic algorithm3 
(IGA3). 

The GA, CSA1 and IGA can be considered the three main 
algorithms in comparison, as the remaining algorithms 
only differ slightly in the method of selection and re-
selection. All algorithms use the same solution 
representation and neighborhood structure for the local 
search. They also are started off with a population of 
random solutions that is created by randomly assigning 
timeslots to events, then using the matching algorithm to 
assign the rooms. Local search is then applied to each of 
the initial random solutions to further improve them. The 
population size is fixed to ten individuals for all the 
algorithms under investigation. Each algorithm is given a 
time limit depending on the class of the problem being 
handled, during which it can perform for a number of 
generations. For the small1 instance, the time limit is set to 
90 seconds, while for the medium1 instance; it is set to 
900 seconds. The solution presented at the end of the time 
limit would be the best solution reached throughout all the 
generations that the algorithm has undergone.  Additional 
parameters and their values that are set for each algorithm 
are shown in table 3. 
Different terminology is used depending on whether the 
algorithm being referred to is the GA or an immune-based 
algorithm. For instance, fitness in the GA corresponds to 
affinity in the immune-based algorithms; an individual is 
referred to as an antibody, mutation is corresponds to 
hypermutation, and the population of individuals 
corresponds to the antibody repertoire respectively. 
Since the algorithms require a technique in order to 
introduce constraints into their fitness/affinity functions, a 
static penalty function [15] is integrated into the 
fitness/affinity function that penalizes each occurrence of a 
constraint violation depending on its type (hard or soft).  A 
single penalty is issued for each occurrence of a SCV in a 
solution, while each occurrence of a HCV is assigned a 
penalty that is amplified by multiplying it by a large 
constant. The fitness/affinity function used for the 
evaluation of candidate solutions is illustrated in (1): 
 

   (1) 
 
where, 
s is the candidate solution; n is the number of types of 
constraints available in our case it is equal to two, since 
the two types of constraints available are soft and hard 
constraints; wi which represents the weight associated 
with constraint type i. The weight of a HCV is set to 
1000,000, and a SCV is set to 1; ci (s) represents the 
number of occurrences of constraint violations of 
constraint type i for solution s.  



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 

130

4.1 The Genetic Algorithm 
The genetic algorithm can be categorized as a global 
search heuristic that is based on the Darwinian theory of 
evolution. It is used to find solutions to optimization and 
search problems. While the GA is considered relatively 
strong in performing global search, its drawback lies in 
local search [13]. For this reason, the GA used here is 
supported by local search. The GA is presented with a 
population of randomly generated candidate solutions that 
are optimized by passing through the iterative process of 
selection, crossover and mutation.  
 
4.1.1 Applying the Genetic Algorithm: 
 The algorithm starts by selecting two parents for 
reproduction from the population of individuals using 
tournament selection with a tournament size of five. Next, 
crossover takes place between the two parents with a 
crossover probability equal to 0.8. If crossover does occur, 
it is applied by randomly assigning timeslots to events 
from either the first or second parent, creating only a 
single child. Then, the rooms are handled using the 
matching algorithm. The next step is to apply mutation to 
the child solution. The mutation probability is set to 0.5. 
Mutation is represented in a random move of type 1 or 2, 
identical to the move types of the local search algorithm 
explained in section IV. Local Search is applied once 
again, but this time to the child solution. The replacement 
policy used here states that the child solution replaces the 
worst member of the original population regardless of the 
quality of the child solution. The elements of the 
population are sorted, and the best solution is selected.  
 

The Genetic Algorithm 
For i=1 to PopSize do 
{ 
Generate a random initial solution 
Apply Local Search to solution 
} 
End for 
Sort solutions by fitness 
 
While time limit not reached do 
{ 
1. Select 2 parents from the population by tournament 

selection 
2. Apply crossover to parents, with crossover probability 

µ 
3. Apply mutation to child, with mutation probability α 
4. Apply Local search to child solution 
5. Child solution replaces worst member of the 

population 
6. Sort population by fitness 
ABEST  Best solution in population 
} 
End While 

4.2 The Clonal Selection Algorithm 

Clonal Selection Algorithms (CSAs) is a field of study that 
addresses problems by applying the principles of the 
immunological theory. Reference [1], defines a Clonal 
selection algorithm as an algorithm that is primarily 
focused on mimicking the Clonal selection principle (CSP) 
mechanisms. 
The mechanisms of the CSP are responsible for selecting 
the antibodies necessary to combat foreign antigens. 
Simply speaking, once a match occurs between an 
antibody of the immune system and a foreign antigen, the 
antibody is capable of destroying that antigen.  The CSP is 
realized when an antibody recognizes a foreign antigen, 
and it is activated, and then it proliferates creating clones 
of itself - an action known as ‘Clonal Expansion’. Whilst 
proliferating, coping errors can occur in the antibody- a 
process known as ‘Somatic Hypermutation’ which can 
actually lead to an improvement (better match, known as 
‘affinity’) in the recognition between the antibody and 
antigen. The resulting—higher affinity clones— can be 
inserted into the memory repertoire, so as to combat the 
same antigen if it re-attacks. A real life optimization 
problem can be solved by finding a suitable representation 
for the problem and an algorithm so as to resemble the 
optimization mechanisms of the CSP. This can be 
achieved through the use of Clonal Selection Algorithms. 
In this paper, this is realized by the formation of the CSA1 
and CSA2 that attempt to solve the timetabling problem, 
and that resemble the Clonal Selection Algorithm namely 
the CLONALG [3].  
 
4.2.1 Implementing the Clonal Selection Algorithm1: 
 For the CSA1, the affinity/fitness function along with the 
problem resemble the antigens, and the solutions resemble 
antibodies. The CSA1 is started off with antibodies that 
are randomly generated and stored in the antibody 
repertoire P. The first step of the CSA1 is the selection of 
a number of the best antibodies (ns) that are to undergo the 
process of cloning. The repertoire of selected antibodies is 
symbolized by Ps. Then, the repertoire of cloned 
antibodies C, is formed by cloning each of the selected 
antibodies in Ps a number of times equal to PopSize 
multiplied by β, which is a variable, as in (2). The cloning 
of the antibodies here is  not affinity proportionate. This 
means that all antibodies are cloned the same number of 
times and not depending on their affinity.  
 
No. of clones of each ns = β .PopSize           (2) 
 
Next, Hypermutation is applied to each clone in C, 
including the parent clones (i.e. the antibodies from which 
the clones were formed). The Hypermutation implemented 
here indicates that the amount of mutation applied to a 
clone must be inversely proportional to its affinity. In 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 
 

 

131

other words the greater the affinity of the clone the less the 
mutation that is to be applied to it.  To achieve this, first, 
the mutation rate is calculated, which is inversely 
proportional to the affinity of each clone, as shown in (3). 
 
Mutation rate (α) = exp [(-1*pd) (1/penalty)].    (3) 
 

,where pd corresponds to the decay factor; and (1/penalty)  
corresponds to the affinity of a clone. Then, the number of 
random moves is computed, according to (4). 

No_of_Random_Moves = mf * α          (4) 
 
,where mf corresponds to the Move Factor. A random 
move represents a single move of either type one or two 
(see section IV). The higher the mutation rate, (the lower 
the affinity) the higher the number of random moves 
implemented on the clone, as shown in (3) and (4). In 
other words, the move factor is a variable that when 
multiplied by the mutation rate controls the number of 
random moves applied to an antibody; the higher its value, 
the more the mutation that will be applied. Local search is 
then applied to each clone, and they are sorted according 
to their affinity. The reselection process executed here 
relies on choosing the best clone(s) (nr) from C (after 
Hypermutation and LS), and applying local search once 
again to this re-selection.  The nr clone(s) after local 
search replace the worst member(s) of the original 
repertoire of antibodies P. In order for metadynamics to be 
realized, after ng generations, a number of clones from P 
are replaced with new random antibodies (d), in order to 
enhance the exploration capabilities of the algorithm. For 
these newly introduced antibodies to be fit opponents to 
the rest of the antibodies in P, they are subjected to LS, 
with a magnified number of moves that is equivalent to the 
maximum moves allowed multiplied by the current 
generation number. Finally, P is sorted, and the antibody 
with the highest affinity is selected as the best antibody 
PBEST.  The CSA1 is a simple clonal selection  
 

 The Immune-genetic Algorithm (IGA) 
For i =1 to PopSize do 
{ 
P  Generate a random antibody　  
Apply local search to antibody 
} 
End for 
Sort antibody repertoire by affinity 
While time limit not reached do 
{ 
1. Ps  Selection: Select ns antibodies with the highest 　

affinity from the antibody repertoire 
2. C  Cloning: Clone each 　 of the ns selected antibodies, 

with number of clones = (β.PopSize) 

3. Hypermutation:  Mutate each clone inversely 
proportional to its affinity: 

(a) Calculate Mutation rate  α= exp [(-1*pd) (1/penalty)] 
(b) Calculate number of Random Moves 
4. Apply Local Search to each clone in C 
5. Sort the clones according to affinity 
6. Re-selection: Select the best 2 clones from C as 

parents 
7. Apply crossover to parents, with crossover probability 

µ 
8. Apply Local Search to child 
9. Child replaces the worst antibody of the antibody 

repertoire P 
10. Sort antibody repertoire by affinity 
11. [Case: After ng generations]Metadynamics: Replace 

worst d antibodies in the antibody repertoire P with d 
random antibodies 

12. Sort antibody repertoire P by affinity 
PBEST  Best antibody in repertoire　  
} 
End While 
 

The Clonal Selection Algorithm1 (CSA1) 
For i=1 to PopSize do 
{  
P  Generate a random antibody 　  
Apply local search to antibody 
}  
End for 
Sort antibody repertoire by affinity 
 
While time limit not reached do 
{ 
1. Ps  Selection: Select ns antibodies with the highest affinity 

from the antibody repertoire 
2. C  Cloning: Clone each of the ns selected antibodies, with 

number of clones = (β.PopSize)  
3. Hyper mutation: Mutate each clone in C inversely 

proportional to its affinity 
(a) Calculate Mutation rate α= exp [(-1*pd) (1/penalty)]     
(b) Calculate number of Random Moves 
4. Apply Local Search to each clone in C 
5. Sort the clones according to affinity 
6.  Reselection: Select the best nr clones from C  
7. Replace the nr clones with the worst nr antibodies of the 

antibody repertoire P 
8. Sort antibody repertoire by affinity 
9. [Case: After ng generations] Metadynamics: Replace worst 

d antibodies in the antibody repertoire P with d random 
antibodies 

10. Sort antibody repertoire P by affinity 
PBEST  Best antib　 ody in repertoire 
} 
End While 
addition to devising the mf that controls that amount of 
mutation applied to each of the antibodies. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 

132

4.2.2 The Clonal Selection Algorithm 2: 
The CSA2 operates in the same way as CSA1 except for 
step six. In the reselection process, instead of selecting 
only the best clone(s) (nr) from C for replacement, the 
CSA2 additionally selects a random clone(s) (nrr) from C 
to replace the worst members of P. In other words, both 
the best and random antibodies are chosen for replacement. 
This added feature gives the algorithm the opportunity of 
exploiting current solutions (by reselecting the best), as 
well as the ability to further explore (by reselecting 
randomly). 

4.3 The hybrid Immune-Genetic Algorithm  

 The Immune-genetic algorithm (with its variations) can be 
considered as a combination of both the Clonal Selection 
Algorithm and the Genetic algorithm. It operates in the 
same manner as the CSA1, but, in addition to introducing 
crossover between clones produced by the cloning process. 
Several versions of the Immune-genetic algorithm were 
implemented that vary in both the method of selection and 
re-selection. The objective of experimenting with a 
number of versions of the Immune-genetic algorithm is to 
discover the effect of changing the former mentioned 
factors on the performance of the algorithm.  
 
4.3.1 The IGA:  
The Immune-genetic algorithm (IGA) starts, and functions 
in the same way as CSA1 for a series of steps; more 
specifically until step number five. At step six, the best 
two clones from C are reselected to become the parents of 
crossover. Then the crossover operator is put into action, 
in the same way as in the genetic algorithm, and with the 
crossover probability set to 0.8 as well. The child 
produced by the crossover undergoes local search, then, it 
replaces the worst member of the original antibody 
repertoire P. Finally, metadynamics is applied in a similar 
way as CSA1.  
 
 4.3.2 The IGA1: 
The Immune-genetic algorithm1 (IGA1) differs from IGA 
in the method of selection. Instead of selecting the 
absolute best ns antibodies in step one, tournament 
selection is used. 
 
 4.3.3 The IGA2: 
The Immune-genetic algorithm2 (IGA2) differs from the 
IGA in two ways. Firstly, in the use of tournament 
selection in step number one instead of selection of 
absolute best ns antibodies. Secondly, in the re-selection 
process, in step six, the IGA2 can either re-select the 
absolute best two clones from C to undergo crossover, or, 
select two random clones from C to become the parents for 
crossover. The decision of which re-selection method the 
IGA2 uses is based on a probability of 0.5. In other words, 

at every generation, there is an equal chance for random 
re-selection as there is for the re-selection of the absolute 
best clones for crossover.  
 
4.3.4 The IGA3:  
The difference between the Immune-genetic algorithm3 
(IGA3), and IGA is only in the re-selection method. It 
utilizes the same re-selection method as IGA2.  But, the 
IGA3 uses the absolute best method for selection (not 
tournament selection). Table 2 summarizes the differences 
in operation between the versions of the IGA. 

table 2. Differences in selection and re-selection between versions of IGA 

table 3. Algorithm parameters and values 

 
 

Algorithm Method of selection Method of re-selection

IGA Absolute best Absolute best 
IGA1 Tournament selection Absolute best 

IGA2 Tournament selection Absolute best or random

IGA3 Absolute best Absolute best or random

Sy
m

bo
l 

Description 
Parameter presence in 

Algorithms
1 2 3 4 5 6 7

ns No. of antibodies/sol. 
selected for cloning; =3 
for sml. & med. 

× 

p Problem type, 
determines the 
MaxSteps for LS. For 
sml   p=1  MaxSteps= 
200; for med. p=2  
MaxSteps =1000. 

nrr No. of rnd child 
antibodies to replace 
worst members in the 
original pop.; =1 for sml 
&med. 

× × × × × ×

b A variable representing  
β  used in the 
calculation of no. of 
clones for each   sol.; 
=0.2 sml & med. 

× 

pd Decay factor for 
calculation of  α; =30 
for sml & med. 

× 

nr No. of best child 
antibodies to replace 
worst members of pop.; 
=1 sml & med. 

× × × × ×

mf Move factor sets the no. 
of mutation moves; =5 
for sml & med. 

× 

d No. of rnd solutions 
introduced into pop. ; 
=2 for sml & med. 

× 

ng No. of generations after 
which rnd antibodies  
are introduced; =20 for 
sml. & med. 

× 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 
 

 

133

The numbers in the table subheading stand for the 
algorithms accordingly: 1:GA, 2:CSA1, 3:CSA2, 4:IGA, 
5:IGA1, 6:IGA2, 7:IGA3 

5. Implementation 

All algorithms were written in C++, and compiled using 
the GNU compiler gcc version 4.4.1, on a Core 2 Duo 2.20 
GHz processor. A number of different parameters were 
created for each of the algorithms; these are described in 
table 3. Table 3 shows the parameter symbol, a description 
of it, its value for the small and medium instances and 
whether or not it is present in each of the algorithms. 

6. Results 

The performance of the algorithms in this paper is 
measured by conducting a series of tests: For each class of 
the problem handled (small and medium), firstly, a 
comparison of the fitness/affinity of the algorithms against 
generations is performed. Secondly, the algorithms are 
contrasted in terms of the number of soft constraint 
violations (SCVs). Thirdly, a comparison of the best 
solution attained by each algorithm and the time at which 
this solution was attained is also presented. All runs for all 
algorithms for both the small1 and medium1 problem 
instances produced feasible solutions. Therefore, an 
assessment of the number of invalid solutions produced 
was unnecessary. 
For the comparison of fitness/affinity against generations, 
the average fitness/affinity for 10 runs for each algorithm 
were plotted against 6000 generations for the small1 
instance and 3000 generations for medium1 instance. The 
result of the comparison between the hybrid algorithms 
(IGA, IGA1, IGA2 and IGA3) for the small1 instance is 
shown in Fig.1.  Fig.2 shows the results when the best-
performing hybrid algorithm (IGA1) was compared to the 
remaining algorithms. Fig.3 shows the comparison 
between the hybrid algorithms for the medium1 instance.  
The best performing hybrid algorithm (IGA) for the 
medium1 instance is compared to the remaining 
algorithms in Fig.4. 
As for the evaluation of the number of soft constraint 
violations, 100 runs of the small1 problem instance were 
implemented for each algorithm, with a time limit of 90 
seconds for each run. In addition to executing 50 runs for 
the medium1 instance with a time limit of 900 seconds for 
each run. The results of this comparison are shown in box 
plots of Fig.5 and Fig.6 respectively. In the box plots the 
median value for the number of SCV is represented by a 
dash; and each box represents the ranges between the 
upper and lower quartile. The whiskers emerging from the 
box signify the maximum and minimum values produced 
by the algorithm. 

 

Figure1. A comparison of the affinity of hybrid algorithms for the small1 
instance 

 

Figure2. A comparison of the fitness/affinity between GA, CSA1, CSA2 
and IGA1 for the small1 instance. 

 

Figure3. A comparison of the affinity of hybrid algorithms for the 
medium1 instance. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 

134

 

Figure4. A comparison of the fitness/affinity between GA, CSA1, CSA2 
and IGA for the medium1 instance. 

A graph of the number of SCV for Small1

0

2

4

6

8

10

12

14

16

GA CSA1 CSA2 IGA IGA1 IGA2 IGA3

Algorithms

#S
C

V

 

Figure5. A boxplot of the number of SCVs for all trials on the small1 
instance 

A graph of the number of SCV for Medium1

160

180

200

220

240

260

280

GA CSA1 CSA2 IGA IGA1 IGA2 IGA3

Algorithms

# 
SC

V

Fi
gure6. A boxplot of the number of SCV for all trials on the medium1 

instance. 

 

Finally, table 4 depicts the best solution reached by each 
algorithm with regards to the least number of SCVs, and 
the time at which it was reached for 100 runs of the small1 
problem instance, with a time limit of 90 seconds; and 50 
runs of the medium1 problem instance, with a time limit of 
900 seconds. 

Table1. The minimum number of SCV and the time of their attainment 
by algorithms 

 

7. Discussion 

With regard to the test of fitness/affinity of the algorithms 
against generations, for the small1 instance, the hybrid 
algorithms’ performances were closely similar (see Fig.1). 
In spite of the fact that IGA3 surpassed the remaining 
hybrid algorithms towards the beginning, the IGA1 
outperformed the remaining algorithms in the end. When 
IGA1 was compared to CSA1, CSA2 and the GA in Fig.2, 
it was clear that both of the Clonal Selection Algorithms 
(CSA1 and CSA2) yielded better affinity results than the 
hybrid IGA1 at the start. However the performance of both 
the CSA1 and CSA2 stabilized a little over quarter the way 
through and they were later joined by IGA1. As for the 
GA, throughout the 6000 generations, its affinity has 
continued to grow until it surpassed that of the remaining 
algorithms. On the other hand, towards the first 
generations, the GA’s performance can be regarded as the 
worst (see Fig.2). The various hybrid algorithms were 
even more similar in affinity for the medium1 instance 
than for the small1 instance (see Fig.3). The IGA can be 
regarded as the best performing algorithm amongst them. 
When a more comprehensive comparison was conducted 
between the IGA, the CSA1, the CSA2 and the GA (see 
Fig.4); it was noted that the GA was the poorest 
performing algorithm in terms of fitness. All the other 
algorithms (CSA1, CSA2 and IGA) produced noticeably 
better fitnesses/affinities than the GA; especially CSA2. 
This observation is opposite to what was expected given 
the GA’s good performance for the small1 instance.  
With regards to the test of the number of soft constraint 
violations for the small1 instance; the box plot of Fig. 5 
shows that the GA as having the lowest median, upper and 

Algorithm Small1 Medium1 
#SCV Time(sec) #SCV Time(sec) 

GA 0 22.937432 175 334.992936 

CSA1 5 11.708732 171 861.853863 

CSA2 4 69.624351 169 797.905867 

IGA 4 20.849303 177 884.907303 

IGA1 4 31.525970 178 788.213260 

IGA2 3 84.401275 181 859.245699 

IGA3 3 69.976373 161 871.746480 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 
 

 

135

lower quartile value amongst all algorithms, its only 
drawback being its high value for the maximum number of 
SCV. The numbers of SCVs for the remaining algorithms 
were in close resemblance to each other. The IGA2 can be 
considered as the second best in terms of number of SCVs 
after the GA. As for the medium1 instance, the boxplot of 
Fig.6 shows the GA as one of the least effective 
algorithms in terms of the number of SCVs having the 
highest median, maximum and upper quartile values for 
number of SCVs. The CSA2 is regarded as the best 
performing algorithm having the lowest values for the 
number of SCVs amongst all algorithms. 
Finally, concerning the test of the most fit solution 
produced and the time of their attainment; for the small1 
instance, the GA managed to reach the best results 
accomplishing no SCVs at nearly quarter of the time 
allowed. On the other hand, the remaining algorithms 
produced a minimum number of SCVs ranging between 3 
and 5, at a time that is between 12 and 84 seconds. As for 
the medium1 instance, the solution with the smallest 
number of SCVs was generated by the IGA3 in about 872 
seconds.  

8. Conclusion 

It is rather challenging to select a single algorithm as the 
‘best’ at solving the timetabling problem in hand. The only 
apparent observation is the poor performance of the GA 
for the medium1 instance and its good performance for the 
small1 instance. This emphasizes that an algorithm can 
behave differently across different classes of the problem. 
Also, the fact that the performance of the hybrid 
algorithms (IGA, IGA1, IGA2 and IGA3) compared to the 
Clonal Selection Algorithms (CSA1 and CSA2) was 
indefinable as each of the aforementioned algorithms 
performed differently across classes of instances in most 
tests. An additional observation is that for the small1 
instance, all algorithms converged much earlier than the 
GA, producing much better results at the beginning. 
With regards to the effect of changing the selection and re-
selection methods on the performance of the algorithms; 
introducing some randomness in the re-selection process 
such as in CSA2 rather than CSA1 has resulted in the 
CSA2 performing better than the CSA1 for almost all tests. 
On the other hand the effect of incorporating randomness 
on the performance of the hybrid algorithms was 
indeterminable, as their performances were comparable to 
each other in most tests. 
It must be noted that the algorithms implemented here may 
have produced entirely different results if certain factors 
were changed, such as the local search neighborhood 
structure. Also, the values assigned to the parameters and 
probabilities used by various algorithms were not ideal; 

they were merely assigned after conducting brief 
experiments about their effect on the results. 
Based on the above conclusions, it is clear that the 
contributed algorithms (CSA1, CSA2, IGA, IGA1, IGA2 
and IGA3) are capable of producing good solutions, 
sometimes even better than that of the GA. However, the 
effect of changing the selection and re-selection methods 
on the performance of the algorithms was difficult to 
determine. 

Acknowledgement 

We would like to thank all who supported this work 
technically and morally. 
 
References 
[1] J. Brownlee, “Clonal Selection Algorithms,” CIS Lab., 

Centre for Information Technology Research, Swinburne 
Univ. of Tech., Melbourne, Technical Report 070209A, Feb 
2007. 

[2] T. B Cooper and J. H. Kingston, “The complexity of 
timetable construction problems,” in 1995 Proc. of PATAT, 
LNCS, vol.1153, pp.283–295,Springer-Verlag,1996. 

[3] L. N DeCastro, “Learning and Optimization Using the 
Clonal Selection Principle,” IEEE Trans. Evol. Comput., 
Special Issue on Artificial Immune Systems, vol. 6, pp. 239-
251, June 2002. 

[4] R. Lewis, A survey of metaheuristic-based techniques for 
university timetabling problems, OR Spectrum, vol. 30(1) 
pp.167-190, 2008. 

[5] Z. Lü, J. K. Hao, “Adaptive Tabu Search for Course 
Timetabling,” Eur. Journal Oper.Res., vol.200(1), pp.235–
244, Jan.2010. 

[6] M. R. Malim, A. T. Khader and A. Mustafa, “An Immune-
Based Approach to University Course Timetabling: 
Negative Selection Algorithm,” in the Proc. of the 2nd IMT-
GT Regional Conf. on Mathematics, Statistics and 
Applications, Univ. of Sains Malaysia, Penang, pp. 13-15, 
2006. 

[7] B.Paechter, School of Computing, Napier University, 
http://www.dcs.napier.ac.uk/~benp 

[8] O. Rossi-Doria, C. Blum, J. Knowles, M. Sampels, K. 
Socha,and B.Paechter, “A local search for the timetabling 
problem,” in 2002 Proc. of PATAT, LNCS, vol 2740, 
pp.124–127, Springer-Verlag, 2003. 

[9] O. Rossi-Doria, M. Samples, M. Birattari, M. Chiarandini, J. 
Knowles, Manfrin, M. Mastrolilli, L. Paquete, B. Paechter, 
and T. Stützle, “A comparison of the performance of 
different metaheuristics on the timetabling problem,”  in 
2002 Proc. of PATAT, LNCS, vol. 2740, pp. 329-351, 
Springer-Verlag, 2003.  

[10] A. Schaerf, A survey of automated timetabling, Artificial 
Intelligence Review, 13(2), pp.87-127, 1999. 

[11] Supplementary information on [9], Available: 
http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html 

[12] The Metaheuristics Network, Available: 
http://www.metaheuristics.net 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011 

 

136

[13] L. Wang and L. Jiao, “The immune genetic algorithm and 
its convergence,” in Proc. of 4th Int. Signal Processing, 
vol.2, pp. 1347 – 1350, Oct. 1998.   

[14] O. Yeniay, Penalty function methods for constrained 
optimization with genetic algorithms, Mathematical and 
Computational Applications, vol. 10(1), pp.45–56, 2005. 

[15] International Timetabling Competition (ITC), available at: 
http://www.idsia.ch/Files/ttcomp2002/IC_Problem/node7.ht
ml, accessed February 2010. 


