
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

179

Manuscript received February 5, 2011
Manuscript revised February 20, 2011

Start-to-End Algorithm for String Searching

Rawan A. Abdeen

Al- Balqa' Applied University, Salt, Jordan

Summary
String searching is a very important component of many
problems, including text editing, text searching and
symbol manipulation. In this paper a string searching
algorithm is proposed as an improvement of the brute-
force searching algorithm. The algorithm is named Start-
to-End Algorithm. The proposed algorithm does not
preprocess neither the pattern nor the text to perform
searching.
Key words: String searching, pattern, start-to-end

algorithm.

1. Introduction

Although we deal with data in a lot of forms, text
remains the main form to exchange information and take
advantage of it.

String searching sometimes called string
matching is concerned in finding the occurrences of a
substring (called the pattern) of length m in a string
(called the text) of length n (where n ≥ m) [1-3].

In order to search for a pattern within a string, an
algorithm is needed to find the pattern as well as to know
the locations where it was found in a given sequence of
characters.

A lot of algorithms were created to perform string
searching. Each algorithm uses a specific strategy to
perform the search. Some need to preprocess the pattern
[4-6]. Others need to preprocess the text; also there are
algorithms that require both the pattern and the text to be
preprocessed before searching [7] and some do not
perform preprocessing neither for the text nor for the
pattern.

One of the simplest string searching algorithms is
the Brute-force algorithm. It is the least efficient way to
check whether one string occurs inside another.

Various string searching algorithms were created
to improve the Brute-Force algorithm. From those
algorithms: the Knuth-Morris-Pratt (KMP), Boyer-
Moore (BM) and Karp and Rabin algorithms [1][8]. Still
to determine which of the algorithms is the best to use
depends on the application were the algorithm is to be
applied.

The Knuth-Morris-Pratt (KMP) algorithm uses
information about the characters in of the pattern to

determine how much to move along that string after a
mismatch occurs [9][10]. The Rabin–Karp algorithm
computes a hash function to seek for a pattern within a
given text [10]. The Boyer-Moore algorithm works by
searching the target string from right to left, while moving
it left to right [9].

2. Brute-Force Algorithm

Brute-force algorithm, which is also called the “naïve” is
the simplest algorithm that can be used in pattern
searching. It is probably the first algorithm we might think
of for solving the pattern searching problem. It requires no
preprocessing of the pattern or the text [11].

The idea is that the pattern and text are compared
character by character [8][10]; in the case of a mismatch,
the pattern is shifted one position to the right and
comparison is repeated, until a match is found or the end
of the text is reached [1].

The algorithm works with two pointers; a “text
pointer” i and a “pattern pointer” j. For all (n-m)
possibly valid shifts, pattern and text are compared; while
text and pattern characters are equal, the pattern pointer is
incremented. If a mismatch occurs, i is incremented, j is
reset to zero and the comparing process is restarted. In
case a match is found, the algorithm returns the position of
the pattern; if not, it returns not found message [9, 11].

The worst case will happen if all the characters of
the pattern were matched with the text segment except the
last one.

Referring to the algorithm, the outer for-loop is
executed at most n-m+1 times and the inner loop is
executed at most m times. Thus, the running time (time
complexity) of the brute force algorithm is: O((n-m+1)m)
which is O(nm) [8]. In the worst case, when n and m are
equal, this algorithm has a quadratic running time [1].

3. Start-To-End Algorithm

This algorithm finds all the occurrences of the
pattern in the text. It does not require performing
preprocessing neither for the text nor for the pattern.

The idea is that the first and last characters of the
pattern are first compared to the corresponding first and

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

180

Check if the last
character of the

pattern matches the
corresponding last

character of the
segment taken.

last characters of the segment taken from the text, in which
we first start by comparing the first character in the pattern
with the first character in the text, if they match, then we
continue by comparing the last character in the pattern
with the last character in the text, if a match occurs then
proceed by matching the rest of the characters of the
pattern with the rest of the characters of the segment,
character by character. In the case of a mismatch while
performing character by character comparison, we directly
take the next segment of the text shifted one position from
the previous one, else continue comparing. If all the
characters of the pattern match with the characters of the
segment then signal that the pattern was found and at
which location in the text it was found. After that, proceed
with the next segment to find other occurrences of the
pattern in the text. If we have scanned all of the segments
of the text without matching the pattern with any of the
introduced segments a not found signal is performed. Fig.
1 illustrates the algorithm in a flowchart to find the first
occurrence of the pattern within the text.

3.1 Algorithm Steps

Step 1: Divide the text into segments in which the first
segment begins from element at index 0, the second
segment begins at the element of index 1 and so on. That
is each segment to be taken is shifted one character than
the previous one.

Step 2: Compare the first character of the pattern with the
corresponding first character of the segment taken, if a
match occurs, then go to the next step. If a mismatch
occurs, then take the next segment and repeat step 2.

Step 3: Compare the last character of the pattern with the
corresponding last character of the segment taken, if a
match occurs, then go to the next step, else if a mismatch
occurs, then take the next segment of the text and go to
step 2.

Step 4: Perform character by character comparison for the
rest of the characters of the pattern with the rest of the
characters of the segment taken (that is without
considering the first and last characters in the
comparison). If a mismatch is encountered while matching
in any step of the comparison, then we stop comparing and
proceed with the next segment for comparison and go to
step 2, else continue comparing. If all the characters of the
pattern match with the characters of the segment then
signal that the pattern was found and at which location in
the text it was found. After that, proceed with the next
segment and repeat step 2, to search for other occurrences
of the pattern in the text.

False
True

Check if the other
characters of the
pattern match with the
rest of the characters
of the segment taken.

False

Signal that the pattern was found and at which
location in the text it was found.

Start

Divide the text into segments

Take a segment from the text

Check if the first
character of the
pattern matches

the corresponding
first character of

the segment.

False True

True

Fig. 1: A flowchart for the proposed algorithm to find the
first occurrence of the pattern within the text.

End

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

181

4. Results

This algorithm finds all the occurrences of the
pattern in the text. The improvement process for the Brute-
Force algorithm within the proposed (Start-to-End)
algorithm does not require performing preprocessing for
the pattern as the other algorithms that has improved the
Brute-Force algorithm. Table 1 summaries the algorithms
that has improved the brute-force algorithm with their time
complexity.

The proposed algorithm begins the search process
by comparing the first character of the pattern with the
first character of the segment taken, if they match, then it
compares the last character of the pattern with the last
character of the segment, if a match occurs, then it will
allow to perform character by character matching between
the segment and the pattern, for the rest of the characters
that remain without comparing.

The time complexity for the Start-to-End algorithm can

be detailed as follows:

 If the first and last characters of the pattern does
not match with the first and last characters of all
the segments in the text, then the time complexity
would be:

 O(((n-m)+1) * (m-2)).

 If the first and last characters match, then the time
complexity would be: O((n-m)+1).

 Table 2 illustrates the differences in the time
complexity between the brute-force algorithm and the
proposed start-to-end algorithm depending on an
example where the number of characters of the text is
14 and of the pattern is 4.

Table 1: A summary for the algorithms that has improved the
brute-force algorithm with their time complexity

Time ComplexityPreprocessing the
Pattern Algorithm

O((n-m+1)*m) No preprocessing Brute-Force
Algorithm

O(((n-m)+1)*(m-
2)) No preprocessing Start-to-End

Algorithm

O(nm) Preprocesses the
pattern

Rabin-Karp
Algorithm

O(n+m) Preprocesses the
pattern

Knuth-
Morris-Pratt

algorithm

O(nm) Preprocesses the
pattern

Boyer-Moore
algorithm

Table 2: The differences in the time complexity between the brute-force
algorithm and the proposed start-to-end algorithm depending on an
example where the number of characters of the text is 14 and of the

pattern is 4

Description Brute-force Time
Complexity

Start-to-end
Time Complexity

If the first and last
characters of the
pattern does not
match with the

first and last
characters of all
the segments in

the text.

44 22

If the first and last
characters match
with one of the
text segments

44 11

5. Conclusion

In conclusion, this paper has proposed a string
searching algorithm as an improvement for the brute-force
algorithm without the need to preprocess neither the
pattern nor the text. The improvement that this algorithm
has offered over the brute-force algorithm is that it does
not allow performing character by character matching
between the segment taken from the text and the pattern
only after it checks that the first and last characters in the
pattern match the first and last characters in the segment
taken from the text. This process would improve the time
of searching of the brute-force algorithm.

References

[1] Thierry Lecroq, "Experimental Results on String Matching
Algorithms", SOFTWARE—PRACTICE AND
EXPERIENCE, VOL. 25(7), 727–765, 1995.

[2] Stephen G., "String Searching Algorithms", World
Scientific, Singapore, 1994.

[3] Apostolico, "A, Galil Z. Pattern Matching Algorithms",
Oxford University Press, 1997.

[4] Liu Z, Du X,and Ishii N., "An improved adaptive string
searching algorithm", Software Practice and Experience,
1988, 28(2):191–198.

[5] Sunday D., "A very fast substring search algorithm",
Communications of the ACM, 1990, 33(8):132–142.

[6] Bruce W., Watson, E., "A Boyer-Moore-style Algorithm for
Regular Expression Pattern Matching", Science of
Computer Programming, 2003, 48: 99-117.

[7] Fenwick P., "Fast string matching for multiple searches",
Software–Practice and Experience, 2001, 31(9):815–833.

[8] Ohdan Masanori, Takeuchi Ryo And Satou Tadamasa, "An
Evaluation of String Search Algorithms at Users Standing",
Proceedings of the 3rd WSES International Conference on
Mathematics and Computers in Mechanical Engineering
(MCME), 2001, pp. 4231-4236, ISBN: 960-8052-35-1.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

182

[9] Softpanorama, "Searching Algorithms", 2010,
http://www.softpanorama.org/Algorithms/searching.shtml.
Accessed on 8 Jan., 2011.

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clifford Stein, "Introduction to Algorithms", 3rd edition,
2009, MIT Press.

[11] Michael T. Goodrich and Roberto Tamassia, "Algorithm
Design", 2002, John Wiley and Sons, Inc.

[12] Hume and Sunday, “Fast String Searching”
SOFTWARE—PRACTICE AND EXPERIENCE, VOL.
21(11), 1221–1248, 1991.

Rawan A. Abdeen received the B.S. degree in
Information Technology and M.S. degree in Computer Science
from Al-Balqa' Applied University.

