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Abstract 
In this paper, for decrease transmissions delay in wireless sensor 
network, a distributed algorithm (DATS) suggested. Because this 
network have got limited energy, therefore the energy issue is 
very important. The exist protocols due to have transmission 
delay in sending data among nodes cause increase consuming 
energy in network. DATS because of is distributing solve the 
problem. In this algorithm, a distinguished node periodically 
sends time values along a spanning tree structure. One of the 
most important advantages of the DATS is purely distributed, 
local, and does not depend on a fixed structure for disseminating 
time values. In conclusion, results gained shows that suggested 
protocol decrease transmissions delay of wireless network above 
30 percent compared to the exist approaches. 

1. Introduction 

The Sensor networks have provided us with several 
applications in wireless environments but have more 
problems that must solve their. Time synchronization is a 
critical piece of infrastructure in any distributed system. In 
sensor networks, a confluence of factors makes flexible 
and robust time synchronization particularly important, 
while simultaneously making it more difficult to achieve 
than in traditional networks. Time synchronization is a 
critical piece of infrastructure for any distributed system. 
Distributed, wireless sensor networks make particularly 
extensive use of synchronized time: for example, to 
integrate a time-series of proximity detections into a 
velocity estimate [2]; to measure the time-of-flight of 
sound for localizing its source [4]; to distribute a beam 
forming array [7]; or to suppress redundant messages by 
recognizing that they describe duplicate detections of the 
same event by different sensors [5]. Sensor networks also 
have many of the same requirements as traditional 
distributed systems: accurate timestamps are often needed 
in cryptographic schemes, to coordinate events scheduled 
in the future, for ordering logged events during system 
debugging, and so forth. 
Wireless sensor network (WSN) are large-scale distributed 
systems, yet their unique characteristics, especially the 
severe resource constraints, require the reevaluation of 

traditional distributed algorithms for problems once 
considered to be solved. One of the basic middleware 
services of sensor networks is time synchronization. Time 
synchronization is required for consistent distributed 
sensing and control. Furthermore, common services in 
WSN, such as coordination, communication, security or 
distributed logging also depend on the existence of global 
time. 
The many uses of synchronized time in a sensor network 
make it critical. However, the diversity of these roles also 
makes synchronization a difficult problem to solve. 
Application requirements vary widely on many axes, such 
as precision, lifetime, scope, availability, and energy 
budget. For example, acoustic applications require 
precision of several microseconds, while sensor tasking 
works on the time scale of hours or days. Local 
collaborations often require only a pair of neighbors to be 
synchronized, while global queries require global time. 
Event triggers may only require momentary 
synchronization, while data logging or debugging often 
require an eternally persistent timescale. Communication 
with a user requires a external, human timescale, whereas 
only relative time is important for purely in-network 
comparisons. Some nodes have large batteries and run all 
the time; others are so constrained that they only wake up 
occasionally, take a single sensor reading, and transmit it 
before immediately returning to sleep. A paradox of 
sensor networks, then, is that they make stronger demands 
on a time synchronization system than traditional 
distributed systems, while simultaneously limiting the 
resources available to achieve it. This paradox has made 
current synchronization schemes inadequate to the task. 
For solve problems, distributed algorithm based on tree 
structure for synchronization in wireless sensor network 
suggested.  
The rest of this paper is organized as follows. Section 2 
reviews the existing protocols for time synchronization. 
Section 3, introduces the proposed algorithm in detail. 
Simulation results and finally conclusions and future 
works are presented in End Sections. 
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2. Related Work 

 Time synchronization algorithms providing a mechanism 
to synchronize the local clocks of the nodes in the network 
have been extensively studied in the past. The most widely 
adapted protocol used in the internet domain is the 
Network Time Protocol (NTP) devised by Mills [6]. The 
NTP clients synchronize their clocks to the NTP time 
servers with accuracy in the order of milliseconds by 
statistical analysis of the round-trip time. The time servers 
are synchronized by external time sources, typically using 
GPS. The NTP has been widely deployed and proved to be 
effective, secure and robust in the internet. In WSN, 
however, non-determinism in transmission time caused by 
the Media Access Channel (MAC) layer of the radio stack 
can introduce several hundreds of milliseconds delay at 
each hop. Therefore, without further adaptation, NTP is 
suitable only for WSN applications with low precision 
demands. 
Two of the most prominent examples of existing time 
synchronization protocols developed for the wireless 
sensor network domain are the Reference Broadcast 
Synchronization (RBS) algorithm [1] and the Timing-sync 
Protocol for Sensor Networks (TPSN) [3]. In the RBS, a 
reference message is broadcasted. The receivers record 
their local time when receiving the reference broadcast 
and exchange the recorded times with each other. The 
main advantage of RBS is that it eliminates transmitter-
side non-determinism. The disadvantage of the approach is 
that additional message exchange is necessary to 
communicate the local time-stamps between the nodes. To 
our best knowledge the algorithm has not been extended to 
large multi-hop networks. The TPSN algorithm first 
creates a spanning tree of the network and then performs 
pair wise synchronization along the edges. Each node gets 
synchronized by exchanging two synchronization 
messages with its reference node one level higher in the 
hierarchy. The TPSN achieves two times better 
performance than RBS by time stamping the radio 
messages in the Medium Access Control (MAC) layer of 
the radio stack [3] and by relying on a two-way message 
exchange. The shortcoming of TPSN is that it does not 
estimate the clock drift of nodes, which limits its accuracy, 
and does not handle dynamic topology changes. 
A number of other groups have considered synchronized 
time in sensor networks, concurrently with our work. In 
[8] suggests that, for some applications, the time of events 
can be described in terms of their age rather than as an 
absolute time [8]. In essence, when two nodes exchange a 
message that describes an event in terms of is age, the time 
at which the message itself is sent becomes a common 
frame of reference for time. The notion of "now" at the 
instant a message is sent is inexact, due to 
nondeterministic and asymmetric latencies; this is an 

important source of error. In the long term, error is 
dominated by frequency differences among nodes; the 
effect is magnified as timestamps age. In [8] analysis of 
his scheme concludes it has a nominal precision of 1ms. In 
[10] describe the Time Diffusion Protocol (TDP), for 
achieving global time synchronization in sensor networks 
[10]. Their work has a number of strengths, including an 
automatic self-configuration through dynamic topology 
discovery. In addition, they quantitatively analyze the 
energy cost of their scheme. However, to date, TDP has 
not been implemented, and the authors' simulations leave 
out certain details-such as a realistic model of the 
channel's non-determinism-that are critical to 
understanding its expected performance. 
So far, we have described schemes that produce various 
forms of clock agreement among a distributed set of nodes. 
Implicit to these schemes is the existence of a clock local 
to each node in the system. A clock, in essence, is a device 
that counts events indicating the passage of some time 
interval (e.g., 1 second), and uniquely labels each of these 
intervals. The events are generated by a frequency 
standard, based on the observation of a physical process, 
such as the transit of the Sun through a local meridian, the 
vibration of a quartz crystal, the beat of a pendulum, or the 
resonance of a cesium beam tube. The quality of a clock 
usually boils down to its frequency stability-that is, the 
ability of its frequency standard to emit events at a 
constant frequency over time. The absolute value of the 
frequency compared to the desired value-or, its frequency 
accuracy-is also important, but calibration can easily 
compensate for an inaccurate but stable standard. 
The focus of our work is on methods of clock 
synchronization, not on construction of better clocks. 
However, clocks are very important: the error bound 
achieved by a clock synchronization method is linked to 
both the error inherent in the method itself, and the 
stability of the clocks' frequency standards. In fact, to 
some extent, the two are interchangeable. Stable clocks 
can compensate for a synchronization channel between 
them that is prone to large (but unbiased) errors: many 
synchronization events can be averaged over a long time. 
Similarly, a precise synchronization channel can 
compensate for a poor-stability frequency standard; 
frequent synchronization minimizes the time in-between 
when the clock is left to fend for itself. Many types of 
frequency standards exist. In general, as their stability and 
accuracy increase, so do their power requirements, size, 
and cost, all of which are important in sensor networks. 
Most commonly found in computer clocks are quartz 
crystal oscillators, characterized in [11]. Quartz crystals 
are attractive because they are inexpensive, small, use little 
power, and perform surprisingly well despite their low 
resource requirements. 
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In this paper, an algorithm by high accuracy in calculating 
time proposed that in section 3 presented.  

3.Introduce Proposed Protocol 

As described in the derivation for the influence field and 
the size of the classifier window, we require that 
observations occurring at the same physical time need to 
be time stamped with values differing by not more than 5 
ms in order to achieve the desired classification accuracy. 
This imposes an accuracy requirement on the time 
synchronization service, i.e., the time values of any two 
nodes in the network cannot differ by more than 5 ms at 
any time instant, which translates to a per-hop accuracy of 
less than 500 ls. An important requirement of the time 
synchronization service is that it should be robust to node 
and link failures. Our first implementation of time 
synchronization was based on the traditional spanning tree 
based algorithm for synchronizing clocks. In this 
algorithm, a distinguished node periodically sends time 
values along a spanning tree structure. However, this 
algorithm, while providing good accuracy, suffers from 
the drawback of depending on a relatively static structure 
for time dissemination and hence performs poorly in the 
presence of unreliable nodes and links and network 
partitions. For this reason, we designed a truly distributed 
time synchronization service that is robust to these 
commonly occurring faults in sensor networks. 

4.  A Distributed Algorithm for Time 
Synchronization in Wireless Sensor Network 

The basic idea behind our time synchronization algorithm 
is that of locally synchronizing to the fastest clock. In this 
scheme, each node maintains a local clock which is never 
changed and an estimate of network time which is stored 
as an offset with respect to the local clock. Each node 
broadcasts its network time value periodically and receives 
time values from its neighbors. If a node receives a time 
value greater than its own, it adjusts its local time to that 
value; otherwise it ignores the value received. Thus, the 
entire network synchronizes to the maximum clock value 
in the network. This scheme also guarantees that the 
timestamp values at every node are monotonically 
increasing. 
This time synchronization algorithm is purely distributed, 
local, and does not depend on a fixed structure for 
disseminating time values. Consequently, even if a single 
node or link fails, the other nodes can receive time values 
from the rest of their neighbors. The protocol is thus 
robust to individual node and link failures. Node joins are 
also easy to handle as the new nodes have lower time 
values and hence catch up with the rest of the network and 

do not force other nodes to roll back their clocks. The 
algorithm can also handle network partitions in the sense 
that the nodes in each partition synchronize to the 
maximum time value in that partition. These properties of 
robustness to network dynamics like failures, joins, and 
partitions make this protocol suitable for mobile 
environments as well. We demonstrated the robustness of 
the time synchronization scheme in a mobile setting by 
partitioning a group of sensor nodes into two subgroups, 
each of which synchronized to the maximum value in its 
partition. We showed that whenever a node moved from 
one partition to another, it would either catch up with the 
time in the new partition or the new partition would catch 
up with the moving nodes time and consequently the 
original partition. In the presence of node mobility in both 
directions, the protocol converges to synchronize both 
partitions with high accuracy even if no two nodes in 
either partition can communicate with each other directly. 
The DATS utilizes a radio broadcast to synchronize the 
possibly multiple receivers to the time provided by the 
sender of the radio message. The broadcasted message 
contains the sender’s time stamp which is the estimated 
global time at the transmission of a given byte. The 
receivers obtain the corresponding local time from their 
respective local clocks at message reception. Consequently, 
one broadcast message provides a synchronization point (a 
global-local time pair) to each of the receivers. The 
difference between the global and local time of a 
synchronization point estimates the clock offset of the 
receiver. As opposed to the RBS protocol [1] and FTSP 
[12], the time stamp of the sender must be embedded in 
the currently transmitted message. Therefore, the time-
stamping on the sender side must be performed before the 
bytes containing the time stamp are transmitted. Message 
broadcast starts with the transmission of preamble bytes, 
followed by SYNCH bytes, then with a message 
descriptor followed by the actual message data, and ends 
with CRC bytes. During the transmission of the preamble 
bytes the receiver radio synchronizes itself to the carrier 
frequency of the incoming signal. From the SYNCH bytes 
the receiver can calculate the bit offset it needs to 
reassemble the message with the correct byte alignment. 
The message descriptor contains the target, the length of 
the data and other fields, such as the identifier of the 
application layer that needs to be notified on the receiver 
side. The CRC bytes are used to verify that the message 
was not corrupted. The message layout is summarized in 
Figure 1.  
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Figure1. Data packets transmitted over the radio channel 

On the Mica2 [34] platform, the interrupt handling time is 
typically around 5µs depending on the length of the code 
path between the start of interrupt handler and the part that 
records the local time. However, we observed interrupt 
handling times as high as 30µs. The sum of encoding and 
decoding times is between 110µs and 112µs. The byte 
alignment time is between 0µs (for bit offset 0) and 365µs 
(for bit offset 7). In contrast, the propagation time is under 
1µs.  Table 1 summarizes the magnitudes and distribution 
of the various delays DATS in message transmissions. 
The accuracy provided by the time synchronization service 
depends on the node and network resources available to 
the service. On the network side, accuracy increases as the 
frequency of the periodic message exchange increases. On 
the node side, accuracy can be improved using skew 
calculations. 
In the basic version of the protocol, whenever a node 
receives a higher time value than its own, it copies the 
received value. However, this is inaccurate because the 
time value at the sender of that time has already moved 
forward by the time the value is copied. The amount by 
which its clock has moved forward is the sum of the time 
taken by the node to send out the message after time 
stamping it, the message transmission time and the time 
spent in receiving the message, comparing  its time value 
and copying it. 

To complicate matters, this elapsed time may be non-
deterministic in case of random waiting or back-off 
strategies for channel access. The accuracy of the time 
synchronization service can be greatly improved by 
estimating this elapsed time. This calculation requires the 
sending of additional information in each message and 
additional processing at each node. In order to avoid errors 
due to non-deterministic delays, the stamping and copying 
of time values can be done at the MAC level just before 
the message is transmitted and just after it is received. 

TABLE1. The sources of delays in message    transmissions (DATS) 

 

5. Evulation and Simulation 

Our experiments demonstrate that the basic time 
synchronization algorithm meets the level of accuracy 
desired by the application, as can be seen from Table 2. 
Our results also show that accuracy improves significantly 
when time synchronization is implemented as close to the 
hardware level as possible. Moreover, accuracy can be 
further improved using skew compensation techniques. It 
should be noted that in large scale networks, where the 
amount of message traffic received is high, processing 
time synchronization values at the level closest to 
hardware can be risky. Because of the overhead of extra 
computations at the lowest level, processing of time 
synchronization messages might be preempted by other 
low level events resulting in arbitrary state corruptions if 
not programmed or scheduled carefully. 
With the purpose of simulate the proposed protocol, the 
acquired results are compared to the results from protocols 
[1], [12]. In comparison all the conditions involved are 
supposed to be the some, in the way that in all of them 50 
sensor nodes are used. Result as shown figure 2. 

TABLE2. Accuracy of the time synchronization protocol 
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Figure2. Exist error in network and compare FTSP, RBS and proposed 
approach (DATS) 

6. Conclusions 

In this paper an algorithm to decrease transmission delay 
in wireless sensor network was introduced and discussed. 
We have described the Distributed algorithm for time 
synchronization in wireless sensor network. The protocol 
was implemented on the MATHLAB software. The 
precision of 1.78µs in the single hop scenario and the 
average precision of 0.94µs per hop in the multi-hop case 
were shown by providing experimental results. This 
performance is markedly better than those of other 
existing time synchronization approaches on the same 
platform. 
The DATS was tested and its performance was verified in 
a real world application. This is significant because the 
service had to operate not in isolation, but as part of a 
complex application where resource constraints as well as 
intended and unintended interactions between components 
can and usually do cause undesirable effects. Moreover, 
the system operated in the field for extended periods and 
not under laboratory conditions. This is a testimony to the 
robustness of the protocol and its implementation. 
The application, in addition to the DATS, contained 
several services, such as message routing, data 
aggregation, remote configuration and debugging services, 
along with application specific software components. A 
typical test scenario involved 50 to 60 motes distributed in 
an urban environment. The network was approximately 8 
hops wide. The system was tested repeatedly for 4 to 8 
hours of continuous operation. During testing some of the 
motes were switched off and on, the temperature and 
humidity of the environment changed drastically 
influencing the stability of the crystals. All nodes 
remained synchronized during these tests, but no other 
explicit time synchronization data was obtained. However, 

the overall performance of the counter sniper system and 
the fact that there was no performance degradation over 
time, clearly verified that the DATS performed well. 
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