
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

218

Manuscript received February 5, 2011
Manuscript revised February 20, 2011

DATS: A Distributed Algorithm for Time Synchronization in
Wireless Sensor Network

Farzad kiyani1, Ali Aghaee_rad2, Hamidreza Tahmasebi_rad2

1Computer engineering Department of Islamic Azad university of Shabestar

2Computer engineering Department of Islamic Azad university of Zanjan

Abstract
In this paper, for decrease transmissions delay in wireless sensor
network, a distributed algorithm (DATS) suggested. Because this
network have got limited energy, therefore the energy issue is
very important. The exist protocols due to have transmission
delay in sending data among nodes cause increase consuming
energy in network. DATS because of is distributing solve the
problem. In this algorithm, a distinguished node periodically
sends time values along a spanning tree structure. One of the
most important advantages of the DATS is purely distributed,
local, and does not depend on a fixed structure for disseminating
time values. In conclusion, results gained shows that suggested
protocol decrease transmissions delay of wireless network above
30 percent compared to the exist approaches.

1. Introduction

The Sensor networks have provided us with several
applications in wireless environments but have more
problems that must solve their. Time synchronization is a
critical piece of infrastructure in any distributed system. In
sensor networks, a confluence of factors makes flexible
and robust time synchronization particularly important,
while simultaneously making it more difficult to achieve
than in traditional networks. Time synchronization is a
critical piece of infrastructure for any distributed system.
Distributed, wireless sensor networks make particularly
extensive use of synchronized time: for example, to
integrate a time-series of proximity detections into a
velocity estimate [2]; to measure the time-of-flight of
sound for localizing its source [4]; to distribute a beam
forming array [7]; or to suppress redundant messages by
recognizing that they describe duplicate detections of the
same event by different sensors [5]. Sensor networks also
have many of the same requirements as traditional
distributed systems: accurate timestamps are often needed
in cryptographic schemes, to coordinate events scheduled
in the future, for ordering logged events during system
debugging, and so forth.
Wireless sensor network (WSN) are large-scale distributed
systems, yet their unique characteristics, especially the
severe resource constraints, require the reevaluation of

traditional distributed algorithms for problems once
considered to be solved. One of the basic middleware
services of sensor networks is time synchronization. Time
synchronization is required for consistent distributed
sensing and control. Furthermore, common services in
WSN, such as coordination, communication, security or
distributed logging also depend on the existence of global
time.
The many uses of synchronized time in a sensor network
make it critical. However, the diversity of these roles also
makes synchronization a difficult problem to solve.
Application requirements vary widely on many axes, such
as precision, lifetime, scope, availability, and energy
budget. For example, acoustic applications require
precision of several microseconds, while sensor tasking
works on the time scale of hours or days. Local
collaborations often require only a pair of neighbors to be
synchronized, while global queries require global time.
Event triggers may only require momentary
synchronization, while data logging or debugging often
require an eternally persistent timescale. Communication
with a user requires a external, human timescale, whereas
only relative time is important for purely in-network
comparisons. Some nodes have large batteries and run all
the time; others are so constrained that they only wake up
occasionally, take a single sensor reading, and transmit it
before immediately returning to sleep. A paradox of
sensor networks, then, is that they make stronger demands
on a time synchronization system than traditional
distributed systems, while simultaneously limiting the
resources available to achieve it. This paradox has made
current synchronization schemes inadequate to the task.
For solve problems, distributed algorithm based on tree
structure for synchronization in wireless sensor network
suggested.
The rest of this paper is organized as follows. Section 2
reviews the existing protocols for time synchronization.
Section 3, introduces the proposed algorithm in detail.
Simulation results and finally conclusions and future
works are presented in End Sections.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

219

2. Related Work

 Time synchronization algorithms providing a mechanism
to synchronize the local clocks of the nodes in the network
have been extensively studied in the past. The most widely
adapted protocol used in the internet domain is the
Network Time Protocol (NTP) devised by Mills [6]. The
NTP clients synchronize their clocks to the NTP time
servers with accuracy in the order of milliseconds by
statistical analysis of the round-trip time. The time servers
are synchronized by external time sources, typically using
GPS. The NTP has been widely deployed and proved to be
effective, secure and robust in the internet. In WSN,
however, non-determinism in transmission time caused by
the Media Access Channel (MAC) layer of the radio stack
can introduce several hundreds of milliseconds delay at
each hop. Therefore, without further adaptation, NTP is
suitable only for WSN applications with low precision
demands.
Two of the most prominent examples of existing time
synchronization protocols developed for the wireless
sensor network domain are the Reference Broadcast
Synchronization (RBS) algorithm [1] and the Timing-sync
Protocol for Sensor Networks (TPSN) [3]. In the RBS, a
reference message is broadcasted. The receivers record
their local time when receiving the reference broadcast
and exchange the recorded times with each other. The
main advantage of RBS is that it eliminates transmitter-
side non-determinism. The disadvantage of the approach is
that additional message exchange is necessary to
communicate the local time-stamps between the nodes. To
our best knowledge the algorithm has not been extended to
large multi-hop networks. The TPSN algorithm first
creates a spanning tree of the network and then performs
pair wise synchronization along the edges. Each node gets
synchronized by exchanging two synchronization
messages with its reference node one level higher in the
hierarchy. The TPSN achieves two times better
performance than RBS by time stamping the radio
messages in the Medium Access Control (MAC) layer of
the radio stack [3] and by relying on a two-way message
exchange. The shortcoming of TPSN is that it does not
estimate the clock drift of nodes, which limits its accuracy,
and does not handle dynamic topology changes.
A number of other groups have considered synchronized
time in sensor networks, concurrently with our work. In
[8] suggests that, for some applications, the time of events
can be described in terms of their age rather than as an
absolute time [8]. In essence, when two nodes exchange a
message that describes an event in terms of is age, the time
at which the message itself is sent becomes a common
frame of reference for time. The notion of "now" at the
instant a message is sent is inexact, due to
nondeterministic and asymmetric latencies; this is an

important source of error. In the long term, error is
dominated by frequency differences among nodes; the
effect is magnified as timestamps age. In [8] analysis of
his scheme concludes it has a nominal precision of 1ms. In
[10] describe the Time Diffusion Protocol (TDP), for
achieving global time synchronization in sensor networks
[10]. Their work has a number of strengths, including an
automatic self-configuration through dynamic topology
discovery. In addition, they quantitatively analyze the
energy cost of their scheme. However, to date, TDP has
not been implemented, and the authors' simulations leave
out certain details-such as a realistic model of the
channel's non-determinism-that are critical to
understanding its expected performance.
So far, we have described schemes that produce various
forms of clock agreement among a distributed set of nodes.
Implicit to these schemes is the existence of a clock local
to each node in the system. A clock, in essence, is a device
that counts events indicating the passage of some time
interval (e.g., 1 second), and uniquely labels each of these
intervals. The events are generated by a frequency
standard, based on the observation of a physical process,
such as the transit of the Sun through a local meridian, the
vibration of a quartz crystal, the beat of a pendulum, or the
resonance of a cesium beam tube. The quality of a clock
usually boils down to its frequency stability-that is, the
ability of its frequency standard to emit events at a
constant frequency over time. The absolute value of the
frequency compared to the desired value-or, its frequency
accuracy-is also important, but calibration can easily
compensate for an inaccurate but stable standard.
The focus of our work is on methods of clock
synchronization, not on construction of better clocks.
However, clocks are very important: the error bound
achieved by a clock synchronization method is linked to
both the error inherent in the method itself, and the
stability of the clocks' frequency standards. In fact, to
some extent, the two are interchangeable. Stable clocks
can compensate for a synchronization channel between
them that is prone to large (but unbiased) errors: many
synchronization events can be averaged over a long time.
Similarly, a precise synchronization channel can
compensate for a poor-stability frequency standard;
frequent synchronization minimizes the time in-between
when the clock is left to fend for itself. Many types of
frequency standards exist. In general, as their stability and
accuracy increase, so do their power requirements, size,
and cost, all of which are important in sensor networks.
Most commonly found in computer clocks are quartz
crystal oscillators, characterized in [11]. Quartz crystals
are attractive because they are inexpensive, small, use little
power, and perform surprisingly well despite their low
resource requirements.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

220

In this paper, an algorithm by high accuracy in calculating
time proposed that in section 3 presented.

3.Introduce Proposed Protocol

As described in the derivation for the influence field and
the size of the classifier window, we require that
observations occurring at the same physical time need to
be time stamped with values differing by not more than 5
ms in order to achieve the desired classification accuracy.
This imposes an accuracy requirement on the time
synchronization service, i.e., the time values of any two
nodes in the network cannot differ by more than 5 ms at
any time instant, which translates to a per-hop accuracy of
less than 500 ls. An important requirement of the time
synchronization service is that it should be robust to node
and link failures. Our first implementation of time
synchronization was based on the traditional spanning tree
based algorithm for synchronizing clocks. In this
algorithm, a distinguished node periodically sends time
values along a spanning tree structure. However, this
algorithm, while providing good accuracy, suffers from
the drawback of depending on a relatively static structure
for time dissemination and hence performs poorly in the
presence of unreliable nodes and links and network
partitions. For this reason, we designed a truly distributed
time synchronization service that is robust to these
commonly occurring faults in sensor networks.

4. A Distributed Algorithm for Time
Synchronization in Wireless Sensor Network

The basic idea behind our time synchronization algorithm
is that of locally synchronizing to the fastest clock. In this
scheme, each node maintains a local clock which is never
changed and an estimate of network time which is stored
as an offset with respect to the local clock. Each node
broadcasts its network time value periodically and receives
time values from its neighbors. If a node receives a time
value greater than its own, it adjusts its local time to that
value; otherwise it ignores the value received. Thus, the
entire network synchronizes to the maximum clock value
in the network. This scheme also guarantees that the
timestamp values at every node are monotonically
increasing.
This time synchronization algorithm is purely distributed,
local, and does not depend on a fixed structure for
disseminating time values. Consequently, even if a single
node or link fails, the other nodes can receive time values
from the rest of their neighbors. The protocol is thus
robust to individual node and link failures. Node joins are
also easy to handle as the new nodes have lower time
values and hence catch up with the rest of the network and

do not force other nodes to roll back their clocks. The
algorithm can also handle network partitions in the sense
that the nodes in each partition synchronize to the
maximum time value in that partition. These properties of
robustness to network dynamics like failures, joins, and
partitions make this protocol suitable for mobile
environments as well. We demonstrated the robustness of
the time synchronization scheme in a mobile setting by
partitioning a group of sensor nodes into two subgroups,
each of which synchronized to the maximum value in its
partition. We showed that whenever a node moved from
one partition to another, it would either catch up with the
time in the new partition or the new partition would catch
up with the moving nodes time and consequently the
original partition. In the presence of node mobility in both
directions, the protocol converges to synchronize both
partitions with high accuracy even if no two nodes in
either partition can communicate with each other directly.
The DATS utilizes a radio broadcast to synchronize the
possibly multiple receivers to the time provided by the
sender of the radio message. The broadcasted message
contains the sender’s time stamp which is the estimated
global time at the transmission of a given byte. The
receivers obtain the corresponding local time from their
respective local clocks at message reception. Consequently,
one broadcast message provides a synchronization point (a
global-local time pair) to each of the receivers. The
difference between the global and local time of a
synchronization point estimates the clock offset of the
receiver. As opposed to the RBS protocol [1] and FTSP
[12], the time stamp of the sender must be embedded in
the currently transmitted message. Therefore, the time-
stamping on the sender side must be performed before the
bytes containing the time stamp are transmitted. Message
broadcast starts with the transmission of preamble bytes,
followed by SYNCH bytes, then with a message
descriptor followed by the actual message data, and ends
with CRC bytes. During the transmission of the preamble
bytes the receiver radio synchronizes itself to the carrier
frequency of the incoming signal. From the SYNCH bytes
the receiver can calculate the bit offset it needs to
reassemble the message with the correct byte alignment.
The message descriptor contains the target, the length of
the data and other fields, such as the identifier of the
application layer that needs to be notified on the receiver
side. The CRC bytes are used to verify that the message
was not corrupted. The message layout is summarized in
Figure 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

221

Figure1. Data packets transmitted over the radio channel

On the Mica2 [34] platform, the interrupt handling time is
typically around 5µs depending on the length of the code
path between the start of interrupt handler and the part that
records the local time. However, we observed interrupt
handling times as high as 30µs. The sum of encoding and
decoding times is between 110µs and 112µs. The byte
alignment time is between 0µs (for bit offset 0) and 365µs
(for bit offset 7). In contrast, the propagation time is under
1µs. Table 1 summarizes the magnitudes and distribution
of the various delays DATS in message transmissions.
The accuracy provided by the time synchronization service
depends on the node and network resources available to
the service. On the network side, accuracy increases as the
frequency of the periodic message exchange increases. On
the node side, accuracy can be improved using skew
calculations.
In the basic version of the protocol, whenever a node
receives a higher time value than its own, it copies the
received value. However, this is inaccurate because the
time value at the sender of that time has already moved
forward by the time the value is copied. The amount by
which its clock has moved forward is the sum of the time
taken by the node to send out the message after time
stamping it, the message transmission time and the time
spent in receiving the message, comparing its time value
and copying it.

To complicate matters, this elapsed time may be non-
deterministic in case of random waiting or back-off
strategies for channel access. The accuracy of the time
synchronization service can be greatly improved by
estimating this elapsed time. This calculation requires the
sending of additional information in each message and
additional processing at each node. In order to avoid errors
due to non-deterministic delays, the stamping and copying
of time values can be done at the MAC level just before
the message is transmitted and just after it is received.

TABLE1. The sources of delays in message transmissions (DATS)

5. Evulation and Simulation

Our experiments demonstrate that the basic time
synchronization algorithm meets the level of accuracy
desired by the application, as can be seen from Table 2.
Our results also show that accuracy improves significantly
when time synchronization is implemented as close to the
hardware level as possible. Moreover, accuracy can be
further improved using skew compensation techniques. It
should be noted that in large scale networks, where the
amount of message traffic received is high, processing
time synchronization values at the level closest to
hardware can be risky. Because of the overhead of extra
computations at the lowest level, processing of time
synchronization messages might be preempted by other
low level events resulting in arbitrary state corruptions if
not programmed or scheduled carefully.
With the purpose of simulate the proposed protocol, the
acquired results are compared to the results from protocols
[1], [12]. In comparison all the conditions involved are
supposed to be the some, in the way that in all of them 50
sensor nodes are used. Result as shown figure 2.

TABLE2. Accuracy of the time synchronization protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.2, February 2011

222

0

0.5

1

1.5

2

2.5

1 2 3 4 5

Node-count (10 measure)

Er
ro

r-m
ea

su
re

FTSP
RBS
D S T T SDATTS

Figure2. Exist error in network and compare FTSP, RBS and proposed
approach (DATS)

6. Conclusions

In this paper an algorithm to decrease transmission delay
in wireless sensor network was introduced and discussed.
We have described the Distributed algorithm for time
synchronization in wireless sensor network. The protocol
was implemented on the MATHLAB software. The
precision of 1.78µs in the single hop scenario and the
average precision of 0.94µs per hop in the multi-hop case
were shown by providing experimental results. This
performance is markedly better than those of other
existing time synchronization approaches on the same
platform.
The DATS was tested and its performance was verified in
a real world application. This is significant because the
service had to operate not in isolation, but as part of a
complex application where resource constraints as well as
intended and unintended interactions between components
can and usually do cause undesirable effects. Moreover,
the system operated in the field for extended periods and
not under laboratory conditions. This is a testimony to the
robustness of the protocol and its implementation.
The application, in addition to the DATS, contained
several services, such as message routing, data
aggregation, remote configuration and debugging services,
along with application specific software components. A
typical test scenario involved 50 to 60 motes distributed in
an urban environment. The network was approximately 8
hops wide. The system was tested repeatedly for 4 to 8
hours of continuous operation. During testing some of the
motes were switched off and on, the temperature and
humidity of the environment changed drastically
influencing the stability of the crystals. All nodes
remained synchronized during these tests, but no other
explicit time synchronization data was obtained. However,

the overall performance of the counter sniper system and
the fact that there was no performance degradation over
time, clearly verified that the DATS performed well.

7. References

[1] Elson, J. E., Girod, L., and Estrin, D. Fine-Grained Network
Time Synchronization using Reference Broadcasts. The
Fifth Symposium on Operating Systems Design and
Implementation (OSDI), p. 147–163, December 2002.

[2] W.R. Hein Zelman, A.Chandrakasan, and H. Balakrishnan.
Energy efficient communication protocol for wireless
networks. In proceedings of the 33rd System Sciences
Hawaii International Conference on 4-7 2004 Page(s):10 pp.
vol.2.

[3] A. Cemua, J. jure,, M. Hamilton, and J. Zhao. Habitat
monitoring: Application driver for wireless communications
technology. In Proceedings of the 2006 ACM SIGCOMM
USA, April 2006.

[4] Ganeriwal, S., Kumar, R., and Srivastava, M. B. Timing-
Sync Protocol for Sensor Networks. The First ACM
Conference on Embedded Networked Sensor System
(SenSys), p. 138– 149, November 2003.

[5] L. Gemua. Development of an acoustic rangefinder.
Technical Report 00-728, University of Southern California,
Department of Computer Science, March 2004.

[6] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed
diffusion: A scalable and robust communication paradigm
for sensor networks. In Proceedings of the Sixth Annual
International Conference on Mobile Computing and
Networking, pages 56–67, Boston, MA, Aug. 2005.

[7] Mills, D. L. Internet Time Synchronization: The Network
Time Protocol. IEEE Transactions on Communications
COM 39 no. 10, p. 1482–1493, October 2001.

[8] K. Yao, R. Hudson, C. Reed, D. Chen, and F. Lorenzelli.
Blind beam forming on a randomly distributed sensor array
system. IEEE Journal of Selected Areas in Communications,
16(8):1555–1567, Oct 2004.

[9] Kay Romer. \Time Synchronization in Ad Hoc Networks."
In Proceedings of MobiHoc 2001, Long Beach, CA, Oct
2001.

[10] Weilian Su and Ian F. Akyildiz. \Time-Diffusion
Synchronization Protocol for Sensor Networks." Technical
report, Georgia Institute of Technology, Broadband and
Wireless Networking Laboratory, 2002.

[11] John R. Vig. \Introduction to Quartz Frequency Standards."
Technical Report SLCET-TR-92-1, Army Research
Laboratory, Electronics and Power Sources Directorate,
October 2006. Available at http://www.ieeeu_c.org/
freqcontrol/quartz/vig/vigtc.htm.

[12] Mikos Maoti , Branislav Kusy , Gyula Simon and Akos
ledeczi The Flooding Time Synchronization Protocol ,
Technical Institute for Software Integrated Systems,
Vanderbilt University , 2005

