
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

15

Manuscript received March 5, 2011
Manuscript revised March 20, 2011

Safe and Correctness Strategies for Updating Firewall Policies

A. Kartit†, A. Radi††, M. El Marraki†††and B. Regragui††††

University Mohammed V, Faculty of Sciences, Rabat, Morocco

Summary
Policy deployment is the process by which policy editing
commands are issued on firewall, so that the target policy
becomes the running policy. Due to the sensitive nature of
information transmitted during a policy deployment, the
communication between management tool and firewall should be
confidential [1]. Much research has already addressed to the
specification of policies, conflict detection and optimization, but
very little research is devoted to the security and correctness of
firewall policy deployment. In this paper, we make some
contributions to the correctness of Firewall Policy Deployment
and propose an effective solution that will allow us to secure the
deployment process of a political target. We show that the
category of type I policy editing [2] is incorrect and could lead to
security vulnerabilities. We then provide a correct algorithm for
Type I Deployment. Our algorithm can be used even for the
deployment of policies whose size is very large.
Key words:
Target Policy Deployment (TPD), Firewall Policy Management
(FPM), Securing Exchanges (SE), Security of Policy Deployment
(SPD).

1. Introduction

Network firewalls are devices or systems that control the
flow of traffic between networks employing different
security postures. The network traffic flow is controlled
according to a firewall policy. The filtering decision is
based on a firewall policy defined by network
administrator.
An administrator may want to configure in real time an
active policy to replace it with a new policy. This
configuration is still problematic because it must reconcile
the continued service and avoid security breaches. The
ordered list of operations to be applied to achieve a new
configuration is particularly sensitive. As a result, these
policies require automatic tools for providing a right
environment to specify, configure and deploy target
security policy. Much research has dealt with the
specification {[3], [4], [5]} policies, conflict detection
{[6], [7], [8]} and the optimization problem {[9], [10]},
but very few studies have interested to the deployment of
policies. That is why we have tried to focus on problems
associated with the deployment of policies to make it
easier for network administrators.
Only recently, some researchers have proposed
deployment strategies for two important categories of

policy deployment [2]. In this paper, we analyze the
algorithms provided in [2] and show that these algorithms
have serious flaws. We present an improved correctness
formalization that can be used as a basis for formulating
correct deployment strategies. Our work is focused on
language editing policy type I. We will demonstrate that
the algorithm ”Scanning Deployment” already proposed is
incorrect and we propose another version of this algorithm
which is correct and will allow us to replace a source
policy with a target policy.
Generally, firewalls are configured to protect against
unauthenticated access the external network. They ensure,
among other things, a filtering function at different levels
of the OSI layer and prevent intruders to log on machines
of the internal network.
However, this system firewall is insufficient if not
accompanied by other protections. Indeed, it does not
provide security services like
Authentication of the source data, integrity and
confidentiality [11].This in mind that we thought to
implement other security protocols within the firewall
(SSL, SSH and IPSec) to ensure the security of data
exchange with other firewalls and especially Security of
Policy Deployment.

2. Firewall Background

A firewall is a perimeter security device that filters packets
that traverse across the boundaries of a secured network
“Fig. 1”. The filtering decision is based on a firewall
policy defined by network administrator.

It is possible to use any field of IP, UDP, or TCP
headers [2]. However, the following five fields are most
commonly used: protocol type, source IP address, source
port, destination IP address and destination port “Fig. 2”.
Any field in a packet’s header can be used for the
matching process. However, the same five fields are most
commonly used. In a packet, each of these fields has an
atomic value. If all the fields of a packet p match with the
corresponding fields of a rule r, then p is accepted or
rejected according to the decision field of r. If p does not
match to any rule in policy, then the default match-all rule
is applied.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

16

Fig. 1 Firewall-architecture.

Fig. 2 Example of a firewall policy.

3. Policy Deployment

The deployment of a firewall policy should have the
following characteristics [2]: correctness, confidentiality,
safety and speed.
Correctness: A deployment is correct if it successfully
implements the target policy on the firewall. After a
correct deployment the target policy becomes the running
policy. Correctness is an essential requirement for any
deployment.
Confidentiality: Confidentiality refers to securing the
communication between a management tool and a firewall.
Due to the sensitive nature of information transmitted
during a deployment, the communication between
management tool and firewall should be confidential.
Safety: A deployment is safe if no legal packet is rejected
and no illegal packet is accepted during the deployment.
Deployment safety is a new and challenging area of
research.
Speed: A deployment should be done in the shortest time,
so that the desired state of affairs is achieved as quickly as

possible. A deployment algorithm should have a good
running time, so that it is applicable even for large policies.
Different firewalls support different policy editing
commands. The set of policy editing commands that a
firewall supports is called its policy editing language.
A firewall has a new running policy every time an editing
command is applied. Thus a deployment can be viewed as
a sequence of running policies I = H0, H1, . . . , Hn− 1,
Hn = T, with Hi+1 derived by applying an editing
command to Hi.
In [2], the authors classify policy editing languages into
two representative classes, Type I and Type II, and
provide deployment algorithms for both types of
languages. Type I editing supports only two commands,
append and delete. Command (app r) appends a rule r at
the end of the running policy R, unless r is already in R, in
which case the command fails. Command (del r) deletes r
from R, if it is present. As Type I editing can transform
any running policy into any target policy [2], therefore it is
complete. Most older firewalls and some recent firewalls,
such as FWSM 2.x and JUNOSe 7.x, only support Type I
editing.
Indeed, the deployment algorithm type I used is called
"Scanning Deployment".

3.1 The Algorithm “Scanning Deployment”

Algorithm 1: Scanning Deployment (already existed) [2]
Scanning_Deployment (I, T) {
/* An algorithm using only app and del
to transform policy I into policy T */
S ← empty stack
H← empty hash table
/* Phase 1: add rules */
i ← 1
for t ← 1 to SizeOf(T) do
while i ≤ SizeOf(I) and I[i]<> T[t] do
/* I[i] needs to be deleted */
S. PUSH (I[i])
H.ADD (I[i])
i ← i + 1
if i > SizeOf(I) then
if H.Contains(T[t]) then
H.Remove(T[t])
IssueCommand(del T[t])
IssueCommand(app T[t])
/* Phase 2: clean up */
for j ← SizeOf(I) down to i do
IssueCommand(del I[j])
while not S.IsEmpty() do
r ← S.POP()
if H.Contains(r) then
IssueCommand(del r)
}

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

17

I[i]: is the ith
 rule of the original policy. In the real case can

be replaced for example by “Permit TCP 207.160.100.1
20.30.40.0/24 25”.
Shortcoming of this algorithm: Phase 2 of the algorithm
does not give good results. We will show this through a
sample run “Figure 3”.

Fig. 3 Scanning_Deployment phase 1 running example

We completed the first phase with i = 5 and t = 7,
Sizeof(I) = 4, so we will never run the loop:
for j ← SizeOf(I) down to i do
IssueCommand (del I[j])
After running phase 2, the algorithm gives the following
result: “Figure 4”.

Fig. 4 Scanning_Deployment phase 2 running example

It is therefore clear that H is different from T. Therefore,
the algorithm is not correct.

3.2 Our contribution:”Enhanced Scanning
Deployment”

We start by giving a simple deployment algorithm
for an initial policy I and target policy T that will allow us
to correct the algorithm "scanning deployement". I and T
are coded as arrays of characters, so that I[i] refers to the
ith rule of I. Initially, the running policy H equals I. In
phase1, the algorithm appends to the end of H every rule r
in T, starting from r = T [1]. If r is already in I, then it
removes r from H before appending it back. In phase 2, it
removes from H every rule r that is in I but not T. the new
algorithm is called: “Enhanced_Scanning_Deployment”
Algorithm 1: Scanning Deployment (new release)
Enhanced_Scanning_Deployment (I,T) {
/* an algorithm using only app and del
to transform policy I into policy T */
H← empty hash table

/* Phase 1: add rules */
i←1;
for (t=1 to SizeOf(T)) do
while((i<=SizeOf(I)) AND (I[i]<>T[t]))
do
/* I[i] needs to be deleted */
H. ADD(I[i]);
i ← i + 1;
end while
if (i>SizeOf(I)) then
if (H.Contains(T[t])) then
H.Remove(T[t]);
IssueCommand(del T[t]);
end if
IssueCommand(app T[t]);
end if
end for
/* Phase 2: clean up */
s sizeof(I)+sizeof(T)-sizeof(I∩T);
k 1;
While (s>sizeof(T)) do
t 1; find false;
While((t<=sizeof(T))AND(find=false)) do
If (H(k)=T(t)) then
k k+1;
find true ;
else
t t+1 ;
end if
end while
If (find=false) then
Issuecommand(del(H(k));
s s-1;
end if
end while
}
This algorithm gives good results whatever the size of the
original and target policy.
We will show this through the previous example. “Figure
5”, “Figure 6” and “Table1”.

Fig. 5 Enhanced_Scanning_Deployment phase 1 running example

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

18

Fig. 6 Enhanced_Scanning_Deployment phase 2 running example

Table1: Enhanced_Scanning_Deployment phase 2 manual running
example

s t k find Sizeof(T)

7 1 1 false 6
7 1 2 true 6
7 1 2 false 6
7 2 2 false 6
7 3 2 false 6
7 4 2 false 6
7 5 2 false 6
7 6 2 false 6
6 7 2 false 6

Having finished the execution of the
algorithm ”Enhanced_Scanning_Deployment”, policy
being implemented is identical to the policy target (H=T).
Therefore, we can say that this new version of the
Algorithm is correct.

3.3 Implementation and Performance Evaluation of
the “Enhanced Scanning Deployment”

To test and evaluate the performance of the new algorithm,
we implemented it in C++, and all tests are performed on
ACCENT with Intel(R) Core(TM) 2 DUO CPU 2.00Ghz
(2 CPUs) processor and 4GB of RAM. We use four
firewall policies with 200, 1000, 2000 and 4000 rules to
convert initial policy to the target policy. The results of
each test on policies 1-4 are given in the table below
“Table2”. All times are represented in seconds.

Table 2: Results of experiments (in seconds)

It’s clear that “Enhanced Scanning Deployment” takes a
fraction of second to calculate the correctness of
deployment for policies as large as Policy 4 “Figure 7”.

Fig. 7 Time required for a correct deploying for the target policy

4. Implementation of the Security Solution

4.1 The solution adopted

After having compared the three security protocols (SSL,
SSH, IPSec) [1], it was found that the solution based on
VPN over SS is best suited for the deployment of policies
because it is easy to setup, need non-administrative access
and work reliably.
To most users SSH appears to be terminal emulator similar
to Telnet. The users do not see the encryption and
therefore the security is transparent for the user. For
system administrators SSH is a popular remote
administration platform.

4.2 Creating a VPN tunnel

Here is the sequence of commands that we have entered in
our command line:
pppd debug updetach noauth \
pty "ssh -l login -t -t @distante \
pppd noauth 200.100.254.254:200.100.253.253"
In the first command line, “noauth” request that pppd does
not care about the authentication part. This return to SSH.
In the second command line, “pty” option allows here to
pass the following commands to the remote shell that we
have just opened. The -t option to ssh, in turn, forces the
allocation of pseudo-tty on the remote machine.
The last line assigns a private address at each end virtual
network. We can connect our machines from one to
another without any worries. We just create our VPN.

 Policy size
Policy 1
(size=200)

Policy 2
(size=1000)

Policy 3
(size=2000
)

Policy 4
(size=4000) Time (s)

 Time0 (0,00) 0% 0% 0% 0%

 Time1(0,003132) 100% 20% 10% 5%

Time2(0,01566) 100% 100% 50% 25%

Time3(0,03132) 100% 100% 100% 50%

Time4(0,06264) 100% 100% 100% 100%

H
=T

1

H=1/2T4

H=T4

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

19

4.3 Establish the IP_forwarding

The IP_FORWARDING is a flag that tells the Linux
kernel if the packets must pass through the machine or, on
the contrary, it must be stopped. By default, the current
distributions, it is initialized to 0 at startup. The following
script allows you to initialize it to 1 if you want one of two
machines, or both, serve as a gateway for other machines
on your network, allowing not only communication from
one station to another but also from one network to
another.
#!/bin/sh
echo " Setting up IP forwarding rules "
echo 1 > /proc/sys/net/ipv4/ip_forward
echo -n "/proc/sys/net/ipv4/ip_forward: "
cat /proc/sys/net/ipv4/ip_forward
for forwarding in /proc/sys/net/ipv4/conf/*/forwarding
do
echo -n "$forwarding: ";
interface=‘dirname $forwarding‘
interface=‘basename $interface‘
case "$interface" inppp*|eth1)
interface list when the transfer must be #enabled
echo 1 > $forwarding
;;
*) # it desactivates interfaces that do not require the
transfer.
echo 0 > $forwarding
;;
esac
cat $forwarding
done

4.4 SSH server configuration

The SSH server is shipped with default configuration file
named sshd_config. By default, it listens on port 22; we
will modify it to listen on port 9870. This results in two
things immediately:
-Robots that scan port 22 to find a fallible will not bore
your ssh server.
-Logs authentication normally concerns only access
attempts to your vpn.
Here is the entire configuration file used for our example:
vpn/etc
Specific configuration of the port Port 9870
PidFile /var/run/sshd_vpn.pid
HostKey /etc/ssh/ssh_host_key
HostKey /etc/ssh/ssh_host_rsa_key
HostKey /etc/ssh/ssh_host_dsa_key
ServerKeyBits 768
LoginGraceTime 600
KeyRegenerationInterval 3600
Configuration of log levels
SyslogFacility AUTH

LogLevel INFO
RSAAuthentication yes
AllowUsers sshvpn
Restrictions
#IgnoreRhosts yes
IgnoreUserKnownHosts yes
PermitRootLogin no
StrictModes yes
PasswordAuthentication no
PermitEmptyPasswords no
ChallengeResponseAuthentication no
RhostsAuthentication no
RhostsRSAAuthentication no
X11Forwarding no
PrintMotd no
KeepAlive yes

4.5 Configuring the VPN

Since our initial tests have been successful, we certainly
will desire to automate our VPN. To do this, it is useful
and proper to create a configuration file that contains the
variables necessary for the creation of our VPN tunnel:
VPN1 Configuration File
/opt/ssh-vpn/etc/vpn1
The networks are connected to a side,
following the route command:
client_network=192.168.2.0/24
server_network=192.168.1.0/24
Do you want information to debug?
client_debug="no"
server_debug="yes"
Take different IPs for each VPN required.
server_ppp_ip=192.168.254.254
client_ppp_ip=192.168.254.253
is there a PPP authentication required?
client_require_pap="yes"
server_require_pap="yes"
client_require_chap="no"
server_require_chap="no"
Need non-standard pppd arguments? Put them here.
#client_pppd_args="usepeerdns"
#server_pppd_args="proxyarp"
Need additional arguments ssh? Put them here
#client_ssh_args="-C"
#server_ssh_args=""

5. Conclusion

In this paper, we showed, through examples, that the
policy language edition type I is not accurate but we could
make it correct through the changes we have made on the
algorithm “Scanning Deployment». So, our algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

20

"enhanced scanning deployment" has allowed us to deploy
the policy target with accuracy regardless of its size.
Indeed, we have chosen and implemented VPN over SSH
to ensure the security of policy deployment.
We will be soon working on language editing Type II
policies to make deployment very effective, safe and fast.

Acknowledgments

I would like to thank my wife who helped me in correcting
this paper. The authors also wish to thank many
anonymous referees for their suggestions to improve this
paper.

References
[1] A. Kartit, M. El Marraki, A. Radi and B. Regragui, “On the

Security of Firewall Policy Deployment”, Journal of
Theoretical and Applied Information Technology, ISSN:
1817-3195, Volume 22, n°2, pages 22 – 27, 2010.

[2] C. C. Zhang, M. Winslett, and C. A. Gunter, “On the
Safety and Efficiency of Firewall Policy Deployment”, In
SP ’07: Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 33-50,Washington, DC, USA,
2007.

[3] E. Al-Shaer and H. Hamed, ”Modeling and Management of
Firewall Policies”, Network and Service Management,
IEEE Transactions on, 1(1):2-10, April 2004.

[4] Y. Bartal, A. J. Mayer, K. Nissim, and A.Wool. Firmato, “A
Novel Firewall Management Toolkit”, In IEEE Symposium
on Security and Privacy, pages 17-31, 1999.

[5] M. G. Gouda and A. X. Liu, “Firewall Design: Consistency,
Completeness, and Compactness”, In ICDCS, pages 320-
327, 2004.

[6] F. Baboescu and G. Varghese, “Fast and Scalable Conflict
Detection for Packet Classifiers”, In ICNP, pages 270-279,
2002.

[7] Z. Fu, S. F.Wu, H. Huang, K. Loh, F. Gong, I. Baldine, and
C. Xu, “IPSec/VPN Security Policy: Correctness, Conflict
Detection, and Resolution”, In POLICY, pages 39-56, 2001.

[8] A. X. Liu, “Change-impact analysis of firewall policies”, In
ESORICS, pages 155-170, 2007.

[9] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering
optimization for highspeed firewall filtering”, In ASIACCS,
pages 332-342, 2006.

[10] J. Qian, “ACLA: A framework for Access Control List
(ACL) Analysis and Optimization”,

[11] booktitle = Proceedings of the IFIP TC6/TC11 International
Conference on Communications and Multimedia Security
Issues of the New Century. page 4, Deventer, The
Netherlands, The Netherlands,2001.

Ali Kartit received the Master and DESA
degrees in Network &
Telecommunications and informatics &
Telecommunications from Henry poincaré
university (France-Nancy1) and Faculty of
sciences (Morocco-Rabat) in 2003 and
2006, respectively. During 2009-2011, he

stayed in Network & Data mining Laboratory. He is a PhD
student in the field of security management of computer
networks at the Faculty of sciences in Rabat (FSR). He is
certified Cisco and Exchange 2003 Server.

