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Summary 
The traveling salesman problem (TSP) has attracted many 
researchers’ attention in the past few decades, and amounts of 
algorithms based on heuristic algorithms, genetic algorithms, 
particle swarm optimization, tabu search and memetic algorithms 
have been presented to solve it, respectively. Unfortunately, their 
results have not been satisfied at all yet. This paper is devoted to 
the presentation of a novel hybrid pseudo-parallel genetic 
algorithm with ant colony optimization (PPGA-ACO). The 
experimental results on small and large size TSP instances in 
TSPLIB (traveling salesman problem library) show that PPGA-
ACO is more robust and efficient than the traditional algorithms. 
Key words: 
Traveling salesman, genetic algorithm, pseudo-parallel, ant 
colony optimization, hybridization.  

1. Introduction 

The traveling salesman problem (TSP) is one of the 
existing combinatorial optimization problems and it has 
been demonstrated to be an NP-hard problem [1,2]. Given 
a set of cities and the distances between them, TSP is to 
find a complete, minimal-cost tour visiting each city once. 
The TSP is a well-known combinational optimization 
problem with many real-world applications, such as job 
shop scheduling and VLSI routing [3]. The TSP has often 
served as a touchstone for new problem-solving strategies 
and algorithms; and many well-known combinatorial 
algorithms were first developed for the TSP. In this paper, 
we consider the symmetric TSP, where the distance from a 
city to another is the same as the distance in the opposite 
direction. 
A large number of methods have been developed for 
solving TSP. The complexity of exact algorithms is often 
exponential. In order to tackle larger TSP instances 
effectively and decrease the computational cost, it is 
necessary to develop approximate algorithms that do not 
always aim at finding optimal solutions but at finding 
quasi-optimal solutions in an acceptable running time. An 
excellent survey on approximate algorithms for the TSP is 
provided in the reference [4]. These methods can be 
roughly divided into local search and global search 
approaches. In general, the local search approaches, such 
as 2-opt, 3-opt and Lin-Kernigan [4] are efficient and fast 

convergence, because the selection of reconnecting cities 
depends on geometric neighborhood information and the 
edges from other individuals in the population. 
Nevertheless, they might get struck at local minima 
because they do not deal with the diversity of feasible 
solutions. 
Genetic Algorithm [5] is a global search algorithm 
appropriate for problems with huge search spaces such as 
the TSP, in which the crossover realizes the construction 
of the offspring and the mutation operator maintains the 
diversity of the individuals. Many improved GAs have 
been applied in TSP. One of these variant algorithms is the 
pseudo-parallel genetic algorithm (PPGA) [6], which 
introduce multi-population evolution thoughts of parallel 
genetic algorithm, and can run on personal PC. In order to 
realize the information exchange during each individual 
GA, a method should be assigned. In this paper, we utilize 
the ant colony optimization (ACO) [7] to achieve this 
main purpose, and further improve the local search ability 
of GA. Ants of the artificial colony are able to generate 
successively shorter feasible tours by using information 
accumulated in the form of a pheromone trail deposited on 
the edges of the TSP graph. The more prefer for paths 
with a high pheromone level, the higher rate of growth of 
the amount of pheromone on shorter paths. The solution 
ability of ACO precedes some local search algorithm, such 
as 2-opt, 3-opt and so on [8]. By doing so, a hybrid 
algorithm called pseudo-parallel genetic algorithm with 
ant colony optimization (PPGA-ACO) is established to 
develop an effective method capable of finding high-
quality solution for the problem in hand. 
The basic idea of PPGA-ACO can be summarized as that, 
basically there are several genetic algorithm in a parallel 
manner to solve the problem, and these genetic algorithms 
are independent to each other from the view of 
implementation. Each genetic algorithm maintains a sub-
population and runs a simple GA with crossover and 
mutation operators. Then the ant colony optimization is 
incorporated into the pseudo-parallel genetic algorithm, 
not only to realize the information exchange during all 
individual genetic algorithms, thus enhance the global 
search ability and improve the diversity of the whole 
population, but also to act as a local search mechanism to 
further improve the searching performance of the 
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proposed algorithm. Experimental results based on several 
benchmark instances taken from the TSPLIB verify the 
effectiveness of the proposed PPGA-ACO when compared 
it to other traditional algorithms. 
The remainder of this paper is organized as follows: a 
brief introduction of the genetic algorithm and pseudo-
parallel genetic algorithm is given in the following section. 
Section 3 provides the details of the proposed PPGA-ACO 
by applying it on the STSP. Section 4 discusses the 
experimental results. Finally, some remarks and 
conclusions are summarized. 

2. Genetic Algorithm 

A Genetic Algorithm (GA) is a meta-heuristic inspired by 
the efficiency of natural selection in biological evolution. 
Genetic Algorithms (GAs) have been applied successfully 
to a wide variety of combinatorial optimization problems 
and are the subject of numerous recent books [9-13] and 
conference proceedings [14-16]. 

2.1 Basic description of GA 

The basic ideas behind GAs evolved in the mind of John 
Holland at the University of Michigan in the early 1970s 
[17]. GAs were not originally intended for highly 
constrained optimization problems but were soon adapted 
to order-based problems like the TSP. The development of 
effective GA operators for TSPs led to a great deal of 
interest and research to improve the performance of GAs 
for this type of problem. Several summaries of solving 
TSPs with GAs have been published that provide 
comprehensive reviews of the operators and associated 
issues [18, 19]. 
In general, GAs work by generating a population of 
numeric vectors (called chromosomes), each representing 
a possible solution to a problem. The individual 
components (numeric values) within a chromosome are 
called genes. New chromosomes are created by crossover 
(the probabilistic exchange of values between vectors) or 
mutation (the random replacement of values in a vector). 
Mutation provides randomness within the chromosomes to 
increase coverage of the search space and help prevent 
premature convergence on a local optimum. Chromosomes 
are then evaluated according to a fitness (or objective) 
function, with the fittest surviving and the less fit being 
eliminated. The result is a gene pool that evolves over time 
to produce better and better solutions to a problem. The 
GA’s search process typically continues until a pre-
specified fitness value is reached, a set amount of 
computing time passes or until no significant improvement 
occurs in the population for a given number of iterations. 
From the view of optimization, GA maintains a large 
number of solutions and performs comparatively little 

work on each one. The collection of solutions currently 
under consideration is called the population. Each member 
of the population (called an individual or a chromosome) 
is an encoded version of a solution. Each iteration of a GA 
consists of several operators that construct a new 
generation of solutions from the old one in a manner 
designed to preserve the genetic material of the better 
solutions (survival of the fittest). Many GA operators have 
been proposed; the three most common are reproduction, 
crossover, and mutation. Reproduction consists of simply 
copying the best solutions from the previous generation 
into the next, with the intention of preserving very high-
quality solutions in the population as-is. Crossover takes 
two parents, randomly chosen, and produces one or more 
offspring that contain some combination of genes from the 
parents. Crossover can be performed in a deterministic 
manner (e.g., one point crossover), with genes appearing 
before a certain cutoff coming from parent 1 and genes 
after the cutoff coming from parent 2, or in a random 
manner, with each gene taken from a given parent with a 
certain probability. The mutation operator changes a few 
genes randomly, borrowing from the evolutionary concept 
that random genetic mutations may produce superior 
offspring (or, of course, inferior offspring, but such 
individuals are less likely to survive from one generation 
to the next).  The general algorithm scheme of GA can be 
illustrated in the following. 
Algorithm scheme for Basic Genetic Algorithm 
1. Begin 
2. Initialize the population P(0) 
3. Set generation number t=0 
4. While (t<= T) do 
5.   For i=1 to M do 
6.    Evaluate fitness of P(t) 
7.    Selection operation to P(t) 
8.    Crossover operation to P(t) 
9.    Mutation operation to P(t) 
10.   End For 
11.   For i=1 to M do 
12.    P(t+1)=P(t) 
13.   End For 
14. End While 
15. End 

2.2 Pseudo-parallel GA 

In the application of GA, an obvious problem is the 
premature convergence that affects the result of GA. At 
the same time, we introduce pseudo-parallel genetic 
algorithm, which has the capacity to maintain the 
population diversity as well as enhance the running speed 
of GA. Thus the premature convergence may be restrained, 
but parallel GA requires the system running on parallel 
computer or local area network, while such high 
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performance running environment is not necessary for 
many practical applications. Therefore, Zhou Ming and 
Sun Shudong [20] proposed a pseudo-parallel genetic 
algorithm.  
 

 

Fig. 1: Three Types of the information exchange models in PPGA. 

In the PPGA, the population is divided into some 
subpopulations. Each sub-population evolves 
independently in certain pattern, and some sub-
populations exchanges information at proper time. Thus 
the diversity of populations is maintained and the 
premature convergence is constrained. With these sub-
populations executive serially on single processor rather 
than evolve independently on different processors in the 
algorithm, it is called pseudo-parallel genetic algorithm. 
In the PPGA, the fitness of each sub-population is 
calculated, and then do the selection, crossover and 
mutation operations in each sub-population, finally, 
exchange information among populations according to the 
model of information exchange. The model of information 
exchange used at present are Island Model [21], 
Steppingstone Model [22] and Neighborhood Model [23], 
see Fig. 1 for illustration. The main differences of these 
models are the scale of sub-population and the method of 
information exchange. However, in the scale, they have 

some common points: the scales of subpopulations are 
same and invariable, i.e. the number of individuals in 
every sub-population and it does not change in the course 
of evolution. 

3. Proposed PPGA-ACO 

In this paper, we proposed a pseudo-parallel genetic 
algorithm with ant colony optimization (PPGA-ACO) to 
solve the TSP. As mentioned above, the aim of the embed 
ant colony optimization (ACO) is to realize the 
information exchange during different GAs. Although 
there are three types of the information exchange models 
in the reference, we adopt the island model because it is 
the simplest and the most used one. In this model, each 
GA communicates and cooperates with each other, and the 
ants in ACO play effect to accomplish this task. To make 
this paper self-explanatory, before actually proposing the 
hybrid PPGA-ACO, the principles, basic components and 
characteristics of ant colony optimization are briefly 
explained. 

3.1 Ant colony optimization 

Ant system (AS) comprises a set of cooperating agents 
called ants, which utilize an indirect form of 
communication mediated by a pheromone. The ant system 
has been inspired by the collective behavior of real ant 
colonies, and in particular, by their foraging behavior. The 
primary idea of the ant algorithm is the indirect 
communication among ants in the colony agents, based on 
pheromone trails. The pheromone trails constitute a type 
of distributed numerical information, which is altered by 
the ants to reflect the experiences gained when solving a 
particular problem. Ant system is known as one of the 
most efficient algorithm for TSP. Inspired by the 
collective behavior of ant colony, Dorigo developed the 
ant system (AS) [24], and later continue to design this 
system [25]. To demonstrate the AS method, Dorigo apply 
this approach to the jobshop scheduling problem, classical 
traveling salesman problem (TSP), and quadratic 
assignment problem (QAP). The ant system shows very 
excellent results in each applied area. More recently 
Dorigo has been designing expanded versions of the AS 
paradigm. The AS is one such extension and has been 
applied to the symmetric and asymmetric TSP with 
excellent results [26]. The AS has also been successfully 
applied to other combinatorial optimization problems, 
including the telecommunications networks, partitioning, 
scheduling, coloring, and vehicle routing problem [27]. 
Recently, the ant colony optimization (ACO) meta-
heuristic has been proposed, representing a unifying 
framework to support most applications of ant algorithms 
to combinatorial optimization problems. All the ant 
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algorithms applied to the TSP fit perfectly into the ACO 
meta-heuristic; therefore, these algorithms are hereinafter 
also called ACO algorithms [28]. 
 
The steps of the ACO algorithm are illustrated as follows: 
Algorithm scheme for Ant Colony Optimization 
1. Begin 
2. Initialize the pheromone table 
3. Randomly allocate ants to every node 
4. Every ant must walk to next city, depending on the 

probability distribution given in Eq. (2) (local search) 
5. Compute the length of the path traveled by each ant, 

and allocate a quantity amount of pheromone to the 
path, according to the length of its path 

6. Perform a local update 
7. Compute whether a better solution is obtained in this 

time step than the last; if so, then perform a global 
update on the solution and empty the Tabu value; 
repeat Steps 3 to 7 

8. End 

3.2 Flowchart of PPGA-ACO 

PPGA-ACO mimics the process of parallel computation. It 
designates several sub-populations which respectively 
evolve as the classic GA does and synchronizes them at 
proper time. For every sub-population, its evolvement 
process is controlled by genetic operators and at proper 
time, the chromosomes of the two sub-populations are 
moved between each other, which makes the fitness of the 
whole population a wholly improvement and accelerate 
the speed of convergence. 
The flowchart of the proposed PPGA-ACO is illustrated in 
the following. It should be noted that although the 
information exchange model is selected to be the island 
model, the elite pool estimation principle is also employed. 
That is to say, after exchange and evaluation, the fittest ant 
will be record as memory and used as the global optimal 
solution for further purposes. 
 
Algorithm scheme for PPGA-ACO 
1. Begin 
2. Set the generation number of PPGA: t=0 
3. Randomly generate the initial population P(t), and 

divide it into several sub-populations according to 
Island model: P(t)={P1(t), P2(t), …, Pi(t), …, PM(t)} 

4. Compute the fitness for each sub-population Pi(t) 
5. Evolve individuals in each sub-population Pi(t): 

5.1 Selection Operator: Pi’(t) = selection[Pi(t)] 
5.2 Crossover Operator: Pi’(t) = crossover[Pi(t)] 
5.3 Mutation Operator: Pi’(t) = mutation[Pi(t)] 

6. Evaluate the fitness for newly sub-population Pi’(t) 
7. Place the ants of ACO into each sub-population, 

implement the ACO algorithm; the information 

exchange will be accomplished through the 
pheromone on the TSP map. 

8. If the termination conditions are fulfilled, output the 
fittest solution; otherwise set t=t+1, go to Step 5 

9. End 
 
The details in PPGA-ACO are explained as follows. As 
for the single sub-population initialization, in order to 
improve the performance of computation, a new 
population initialization method-intelligent population 
initialization is proposed. With this new method, a created 
chromosome will be checked whether it violates the 
constraints or not. If it does, it will be discarded and 
simultaneously another one, which conforms to the 
constraints, is created and replaces it. After initialization, 
the initial population contains no chromosome that 
violates the constraints. This would be very helpful in 
reducing computation burden.  
As the operators concerned, the conventional two-
generation competitive selection method was adopted. 
Parent generation chromosomes and offspring generation 
chromosomes are put together and ranked. Then the top M 
(the size of population, which is also the number of 
chromosomes in each generation) chromosomes are 
chosen as the new son generation. Obviously, this method 
can ensure that the average fitness value of population 
increases gradually, and it can also maintain the diversity 
of the population. The best one in every generation is 
passed down directly to the next generation. And at the 
same time, the best chromosome and its fitness value in 
every generation are recorded in an array. After the 
computation is finished, the chromosome with best fitness 
value in the array is taken as the optimal solution. The 
cycle crossover and one-point mutation [29] are adopted in 
this paper. 
The followings describe the rules used in ACO. In discrete 
time steps, add one element (edge) to the solution of each 
ant until the termination condition is met. After an element 
is added, the quantity of pheromone associate with that 
element is altered. The amount of pheromone is a scalar 
value that allows ants to communicate with one another 
regarding the utility of an element. The accumulated 
strength of the pheromone on element i is represented by 
τ(i). At the beginning of each time step, Eq. (1) is applied 
to select the next element s to that is added to the solution. 
The elements that may still be added to the solution by ant 
k in step r are indicated by Jk(r).η(s) measures how good 
element s would be for the solution; restated, it represents 
an incremental cost measure. With respect to the TSP, the 
measure corresponds to the distance between two cities. 
The state transition rule, global updating rule, and local 
updating rule as Eqs. (1)- (3), respectively: 
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The characteristics of PPGA-ACO can be summarized as 
that: by incorporating the ACO into the PPGA, the search 
performance of both algorithms is improved. On the one 
hand, based on the initial pheromones on the repertoire (i.e. 
the map in TSP) secreted by the fittest antibodies in each 
sub-population, the ACO is utilized to act as a local search 
operator. As a result, the local search ability of GA can be 
enhanced. Moreover, due to all of the elite sub-population 
take effects synchronously and interact with each other 
that is realized by the pheromones, all of the elitist gene 
segments in each sub-population have been memorized by 
the repertoire and thus the repertoire can give some hits to 
lead the PPGA to construct fitter chromosomes based on 
these segments in the next generation. On the other hand, 
the speed at which the traditional ACO gives the solution 
is slow if there is little information pheromone on the path 
early. To solve this problem, in our proposed algorithm, 
ACO adopts PPGA to give information pheromone to 
distribute and thus the convergence speed of ACO can be 
accelerated. 

4. Experimental Results 

To demonstrate the performance of our proposed approach, 
we conduct some computer simulations on PC Pentium 4. 
In all the experiments of this section we set parameter 
values, if not differently indicated, as follows: the number 
of total population size is 100, each sub-population has 10 
chromosomes, i.e., there are 10 islands in the Island Model. 
Besides, the probability of the crossover and mutation 
operators is 0.8 and 0.3, respectively. The maximum 
generation number for PPGA-ACO is set as 10000. In 
each subpopulation, place 30 ants into it and 
set 1.0,2 == αβ . All simulations are run 50 repeats to 
make a statistical analysis.  
 

First and foremost, the convergence speed of PPGA-ACO 
is depicted. The benchmark instance used is Kroa100 
taken from the TSPLIB [1]. In order to find out whether 
the ACO has taken efforts on PPGA, and further the 
effects PPGA takes compared with the simple GA, we 
make a comparison with some other typical algorithm. 
That is, the simple GA used in [29]; the SA technique [31], 
using the 2-opt improvement technique; Budinich's SOM, 
which consists of a traditional SOM applied to the TSP, 
also presented in [31]; and the expanded SOM (ESom) 
[32] which, in each iteration, places the neurons close to 
their corresponding input data (cities) and, at the same 
time, places them at the convex contour determined by the 
cities; the pseudo-parallel GA (PPGA) described in [20]. 
The experimental results are shown in Fig. 2, where the 
horizontal axis denotes the average length of the best-so-
far solutions found over fifty runs, while the vertical axis 
represents the generation number (iteration). From Fig. 2, 
it can be concluded that, with the iteration number goes, 
all the six algorithms are convergent. The fastest 
convergent speed is possessed by the proposed PPGA-
ACO. Furthermore, the final solutions found by PPGA-
ACO are also the best during all the algorithms. 

 

Fig. 2: Comparative results of the convergence speed versus the 
generation number on six typical algorithm: GA, SA, Budinich, Esom, 

PPGA, and PPGA-ACO. 

In addition, we make an empirical experiments on a large 
number of traditional algorithms, not only some 
algorithms used above, but also other powerful approaches. 
Those approaches involves: The method that involves 
statistical methods between a SOM's neurons' weights [30] 
and has a global version (KG: Kohonen network 
incorporating explicit statistics global), where all cities are 
used in the neuron dispersion process, and a local version 
(KL), where only some represented cities are used in the 
neuron dispersion step; the efficient and integrated SOM 
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(EiSom) [33], where the Esom procedures are used and the 
winning neuron is placed at the mean point among its 
closest neighboring neurons; the efficient SOM technique 
(Setsp) [34], which defines the updating forms for 
parameters that use the TSP's number of cities; and 
Kohonen's cooperative adaptive network (CAN) [35] uses 
the idea of cooperation between the neurons' close 
neighbors, uses a number of neurons that is larger than the 
number of cities in the problem, and uses one 
improvement's technique for routes called near-tour to tour 
construction. 
For the sake of perspicuity, some indexes are utilized to 
analyze the simulation results. The optimum tour length 
that listed in the TSPLIB is labeled as Dopt. The PDB 
which indicates the percentage deviation from the Dopt of 
best distance Db is defined as follows: 

opt
D

opt
D

b
DPDB /100)( ×−=                                      (4) 

Table 1 lists the experimental results of the nine different 
methods. The results that recorded are PDBs, whose 
property is that the smaller values of which, the better 
qualities of the solutions. As can be observed from this 
table, PPGA-ACO always performs the best solutions than 
the other eight algorithms, revealing that the ACO not 
only enables PPGA to find better solutions, but also can 
outperform other state-of-art approaches. 

Table 1: Experimental results with different methods. 

 eil51 rd100 pr124 kroA200 pcb44
2 

KG 2.86 2.62 0.49 6.57 10.45 
KL 2.86 2.09 0.08 5.72 11.07 
SA 2.33 3.26 1.26 5.61 9.15 
Budinich 3.10 3.16 1.62 6.13 8.43
ESom 2.10 1.96 0.67 2.91 7.43 
EiSom 2.56 - - 1.64 6.11 
Setsp 2.22 2.60 - 3.12 10.16 
CAN 1.65 1.23 2.36 0.93 5.89 
PPGA-ACO 0.00 0.10 0.01 0.31 1.26 
 

5. Conclusions 

In this paper, we proposed a hybrid new algorithm call 
PPGA-ACO, which combined the pseudo-parallel genetic 
algorithm with the ant colony optimization. The ant colony 
optimization carried out the function of information 
exchange during different sub-population of genetic 
algorithms, using a simple but effective island model. The 
novelty of this paper was the hybridization of the two 
algorithms, which was considered in the reference for the 
first time.  
 

The performance of the proposed PPGA-ACO was 
verified through applying it to the famous TSP. 
Experimental results based on several benchmark 
instances taken from TSPLIB demonstrated that the 
PPGA-ACO was more robust and effective than its variant 
GA, PPGA, and other typical meta-heuristics, such as 
neural networks. 
In the future, we plan to apply PPGA-ACO to other 
combinational optimization problems, such as the graph 
planarization problem, the job shop scheduling problem, 
and so on. 
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