
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

73

Manuscript received March 5, 2011
Manuscript revised March 20, 2011

Study of Pseudo-Parallel Genetic Algorithm with Ant Colony
Optimization to Solve the TSP

Sheng Li†, Huiqin Chen and Zheng Tang††

Graduate School of Innovative Life Science, University of Toyama, Toyama-shi, Japan

Summary
The traveling salesman problem (TSP) has attracted many
researchers’ attention in the past few decades, and amounts of
algorithms based on heuristic algorithms, genetic algorithms,
particle swarm optimization, tabu search and memetic algorithms
have been presented to solve it, respectively. Unfortunately, their
results have not been satisfied at all yet. This paper is devoted to
the presentation of a novel hybrid pseudo-parallel genetic
algorithm with ant colony optimization (PPGA-ACO). The
experimental results on small and large size TSP instances in
TSPLIB (traveling salesman problem library) show that PPGA-
ACO is more robust and efficient than the traditional algorithms.
Key words:
Traveling salesman, genetic algorithm, pseudo-parallel, ant
colony optimization, hybridization.

1. Introduction

The traveling salesman problem (TSP) is one of the
existing combinatorial optimization problems and it has
been demonstrated to be an NP-hard problem [1,2]. Given
a set of cities and the distances between them, TSP is to
find a complete, minimal-cost tour visiting each city once.
The TSP is a well-known combinational optimization
problem with many real-world applications, such as job
shop scheduling and VLSI routing [3]. The TSP has often
served as a touchstone for new problem-solving strategies
and algorithms; and many well-known combinatorial
algorithms were first developed for the TSP. In this paper,
we consider the symmetric TSP, where the distance from a
city to another is the same as the distance in the opposite
direction.
A large number of methods have been developed for
solving TSP. The complexity of exact algorithms is often
exponential. In order to tackle larger TSP instances
effectively and decrease the computational cost, it is
necessary to develop approximate algorithms that do not
always aim at finding optimal solutions but at finding
quasi-optimal solutions in an acceptable running time. An
excellent survey on approximate algorithms for the TSP is
provided in the reference [4]. These methods can be
roughly divided into local search and global search
approaches. In general, the local search approaches, such
as 2-opt, 3-opt and Lin-Kernigan [4] are efficient and fast

convergence, because the selection of reconnecting cities
depends on geometric neighborhood information and the
edges from other individuals in the population.
Nevertheless, they might get struck at local minima
because they do not deal with the diversity of feasible
solutions.
Genetic Algorithm [5] is a global search algorithm
appropriate for problems with huge search spaces such as
the TSP, in which the crossover realizes the construction
of the offspring and the mutation operator maintains the
diversity of the individuals. Many improved GAs have
been applied in TSP. One of these variant algorithms is the
pseudo-parallel genetic algorithm (PPGA) [6], which
introduce multi-population evolution thoughts of parallel
genetic algorithm, and can run on personal PC. In order to
realize the information exchange during each individual
GA, a method should be assigned. In this paper, we utilize
the ant colony optimization (ACO) [7] to achieve this
main purpose, and further improve the local search ability
of GA. Ants of the artificial colony are able to generate
successively shorter feasible tours by using information
accumulated in the form of a pheromone trail deposited on
the edges of the TSP graph. The more prefer for paths
with a high pheromone level, the higher rate of growth of
the amount of pheromone on shorter paths. The solution
ability of ACO precedes some local search algorithm, such
as 2-opt, 3-opt and so on [8]. By doing so, a hybrid
algorithm called pseudo-parallel genetic algorithm with
ant colony optimization (PPGA-ACO) is established to
develop an effective method capable of finding high-
quality solution for the problem in hand.
The basic idea of PPGA-ACO can be summarized as that,
basically there are several genetic algorithm in a parallel
manner to solve the problem, and these genetic algorithms
are independent to each other from the view of
implementation. Each genetic algorithm maintains a sub-
population and runs a simple GA with crossover and
mutation operators. Then the ant colony optimization is
incorporated into the pseudo-parallel genetic algorithm,
not only to realize the information exchange during all
individual genetic algorithms, thus enhance the global
search ability and improve the diversity of the whole
population, but also to act as a local search mechanism to
further improve the searching performance of the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

74

proposed algorithm. Experimental results based on several
benchmark instances taken from the TSPLIB verify the
effectiveness of the proposed PPGA-ACO when compared
it to other traditional algorithms.
The remainder of this paper is organized as follows: a
brief introduction of the genetic algorithm and pseudo-
parallel genetic algorithm is given in the following section.
Section 3 provides the details of the proposed PPGA-ACO
by applying it on the STSP. Section 4 discusses the
experimental results. Finally, some remarks and
conclusions are summarized.

2. Genetic Algorithm

A Genetic Algorithm (GA) is a meta-heuristic inspired by
the efficiency of natural selection in biological evolution.
Genetic Algorithms (GAs) have been applied successfully
to a wide variety of combinatorial optimization problems
and are the subject of numerous recent books [9-13] and
conference proceedings [14-16].

2.1 Basic description of GA

The basic ideas behind GAs evolved in the mind of John
Holland at the University of Michigan in the early 1970s
[17]. GAs were not originally intended for highly
constrained optimization problems but were soon adapted
to order-based problems like the TSP. The development of
effective GA operators for TSPs led to a great deal of
interest and research to improve the performance of GAs
for this type of problem. Several summaries of solving
TSPs with GAs have been published that provide
comprehensive reviews of the operators and associated
issues [18, 19].
In general, GAs work by generating a population of
numeric vectors (called chromosomes), each representing
a possible solution to a problem. The individual
components (numeric values) within a chromosome are
called genes. New chromosomes are created by crossover
(the probabilistic exchange of values between vectors) or
mutation (the random replacement of values in a vector).
Mutation provides randomness within the chromosomes to
increase coverage of the search space and help prevent
premature convergence on a local optimum. Chromosomes
are then evaluated according to a fitness (or objective)
function, with the fittest surviving and the less fit being
eliminated. The result is a gene pool that evolves over time
to produce better and better solutions to a problem. The
GA’s search process typically continues until a pre-
specified fitness value is reached, a set amount of
computing time passes or until no significant improvement
occurs in the population for a given number of iterations.
From the view of optimization, GA maintains a large
number of solutions and performs comparatively little

work on each one. The collection of solutions currently
under consideration is called the population. Each member
of the population (called an individual or a chromosome)
is an encoded version of a solution. Each iteration of a GA
consists of several operators that construct a new
generation of solutions from the old one in a manner
designed to preserve the genetic material of the better
solutions (survival of the fittest). Many GA operators have
been proposed; the three most common are reproduction,
crossover, and mutation. Reproduction consists of simply
copying the best solutions from the previous generation
into the next, with the intention of preserving very high-
quality solutions in the population as-is. Crossover takes
two parents, randomly chosen, and produces one or more
offspring that contain some combination of genes from the
parents. Crossover can be performed in a deterministic
manner (e.g., one point crossover), with genes appearing
before a certain cutoff coming from parent 1 and genes
after the cutoff coming from parent 2, or in a random
manner, with each gene taken from a given parent with a
certain probability. The mutation operator changes a few
genes randomly, borrowing from the evolutionary concept
that random genetic mutations may produce superior
offspring (or, of course, inferior offspring, but such
individuals are less likely to survive from one generation
to the next). The general algorithm scheme of GA can be
illustrated in the following.
Algorithm scheme for Basic Genetic Algorithm
1. Begin
2. Initialize the population P(0)
3. Set generation number t=0
4. While (t<= T) do
5. For i=1 to M do
6. Evaluate fitness of P(t)
7. Selection operation to P(t)
8. Crossover operation to P(t)
9. Mutation operation to P(t)
10. End For
11. For i=1 to M do
12. P(t+1)=P(t)
13. End For
14. End While
15. End

2.2 Pseudo-parallel GA

In the application of GA, an obvious problem is the
premature convergence that affects the result of GA. At
the same time, we introduce pseudo-parallel genetic
algorithm, which has the capacity to maintain the
population diversity as well as enhance the running speed
of GA. Thus the premature convergence may be restrained,
but parallel GA requires the system running on parallel
computer or local area network, while such high

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

75

performance running environment is not necessary for
many practical applications. Therefore, Zhou Ming and
Sun Shudong [20] proposed a pseudo-parallel genetic
algorithm.

Fig. 1: Three Types of the information exchange models in PPGA.

In the PPGA, the population is divided into some
subpopulations. Each sub-population evolves
independently in certain pattern, and some sub-
populations exchanges information at proper time. Thus
the diversity of populations is maintained and the
premature convergence is constrained. With these sub-
populations executive serially on single processor rather
than evolve independently on different processors in the
algorithm, it is called pseudo-parallel genetic algorithm.
In the PPGA, the fitness of each sub-population is
calculated, and then do the selection, crossover and
mutation operations in each sub-population, finally,
exchange information among populations according to the
model of information exchange. The model of information
exchange used at present are Island Model [21],
Steppingstone Model [22] and Neighborhood Model [23],
see Fig. 1 for illustration. The main differences of these
models are the scale of sub-population and the method of
information exchange. However, in the scale, they have

some common points: the scales of subpopulations are
same and invariable, i.e. the number of individuals in
every sub-population and it does not change in the course
of evolution.

3. Proposed PPGA-ACO

In this paper, we proposed a pseudo-parallel genetic
algorithm with ant colony optimization (PPGA-ACO) to
solve the TSP. As mentioned above, the aim of the embed
ant colony optimization (ACO) is to realize the
information exchange during different GAs. Although
there are three types of the information exchange models
in the reference, we adopt the island model because it is
the simplest and the most used one. In this model, each
GA communicates and cooperates with each other, and the
ants in ACO play effect to accomplish this task. To make
this paper self-explanatory, before actually proposing the
hybrid PPGA-ACO, the principles, basic components and
characteristics of ant colony optimization are briefly
explained.

3.1 Ant colony optimization

Ant system (AS) comprises a set of cooperating agents
called ants, which utilize an indirect form of
communication mediated by a pheromone. The ant system
has been inspired by the collective behavior of real ant
colonies, and in particular, by their foraging behavior. The
primary idea of the ant algorithm is the indirect
communication among ants in the colony agents, based on
pheromone trails. The pheromone trails constitute a type
of distributed numerical information, which is altered by
the ants to reflect the experiences gained when solving a
particular problem. Ant system is known as one of the
most efficient algorithm for TSP. Inspired by the
collective behavior of ant colony, Dorigo developed the
ant system (AS) [24], and later continue to design this
system [25]. To demonstrate the AS method, Dorigo apply
this approach to the jobshop scheduling problem, classical
traveling salesman problem (TSP), and quadratic
assignment problem (QAP). The ant system shows very
excellent results in each applied area. More recently
Dorigo has been designing expanded versions of the AS
paradigm. The AS is one such extension and has been
applied to the symmetric and asymmetric TSP with
excellent results [26]. The AS has also been successfully
applied to other combinatorial optimization problems,
including the telecommunications networks, partitioning,
scheduling, coloring, and vehicle routing problem [27].
Recently, the ant colony optimization (ACO) meta-
heuristic has been proposed, representing a unifying
framework to support most applications of ant algorithms
to combinatorial optimization problems. All the ant

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

76

algorithms applied to the TSP fit perfectly into the ACO
meta-heuristic; therefore, these algorithms are hereinafter
also called ACO algorithms [28].

The steps of the ACO algorithm are illustrated as follows:
Algorithm scheme for Ant Colony Optimization
1. Begin
2. Initialize the pheromone table
3. Randomly allocate ants to every node
4. Every ant must walk to next city, depending on the

probability distribution given in Eq. (2) (local search)
5. Compute the length of the path traveled by each ant,

and allocate a quantity amount of pheromone to the
path, according to the length of its path

6. Perform a local update
7. Compute whether a better solution is obtained in this

time step than the last; if so, then perform a global
update on the solution and empty the Tabu value;
repeat Steps 3 to 7

8. End

3.2 Flowchart of PPGA-ACO

PPGA-ACO mimics the process of parallel computation. It
designates several sub-populations which respectively
evolve as the classic GA does and synchronizes them at
proper time. For every sub-population, its evolvement
process is controlled by genetic operators and at proper
time, the chromosomes of the two sub-populations are
moved between each other, which makes the fitness of the
whole population a wholly improvement and accelerate
the speed of convergence.
The flowchart of the proposed PPGA-ACO is illustrated in
the following. It should be noted that although the
information exchange model is selected to be the island
model, the elite pool estimation principle is also employed.
That is to say, after exchange and evaluation, the fittest ant
will be record as memory and used as the global optimal
solution for further purposes.

Algorithm scheme for PPGA-ACO
1. Begin
2. Set the generation number of PPGA: t=0
3. Randomly generate the initial population P(t), and

divide it into several sub-populations according to
Island model: P(t)={P1(t), P2(t), …, Pi(t), …, PM(t)}

4. Compute the fitness for each sub-population Pi(t)
5. Evolve individuals in each sub-population Pi(t):

5.1 Selection Operator: Pi’(t) = selection[Pi(t)]
5.2 Crossover Operator: Pi’(t) = crossover[Pi(t)]
5.3 Mutation Operator: Pi’(t) = mutation[Pi(t)]

6. Evaluate the fitness for newly sub-population Pi’(t)
7. Place the ants of ACO into each sub-population,

implement the ACO algorithm; the information

exchange will be accomplished through the
pheromone on the TSP map.

8. If the termination conditions are fulfilled, output the
fittest solution; otherwise set t=t+1, go to Step 5

9. End

The details in PPGA-ACO are explained as follows. As
for the single sub-population initialization, in order to
improve the performance of computation, a new
population initialization method-intelligent population
initialization is proposed. With this new method, a created
chromosome will be checked whether it violates the
constraints or not. If it does, it will be discarded and
simultaneously another one, which conforms to the
constraints, is created and replaces it. After initialization,
the initial population contains no chromosome that
violates the constraints. This would be very helpful in
reducing computation burden.
As the operators concerned, the conventional two-
generation competitive selection method was adopted.
Parent generation chromosomes and offspring generation
chromosomes are put together and ranked. Then the top M
(the size of population, which is also the number of
chromosomes in each generation) chromosomes are
chosen as the new son generation. Obviously, this method
can ensure that the average fitness value of population
increases gradually, and it can also maintain the diversity
of the population. The best one in every generation is
passed down directly to the next generation. And at the
same time, the best chromosome and its fitness value in
every generation are recorded in an array. After the
computation is finished, the chromosome with best fitness
value in the array is taken as the optimal solution. The
cycle crossover and one-point mutation [29] are adopted in
this paper.
The followings describe the rules used in ACO. In discrete
time steps, add one element (edge) to the solution of each
ant until the termination condition is met. After an element
is added, the quantity of pheromone associate with that
element is altered. The amount of pheromone is a scalar
value that allows ants to communicate with one another
regarding the utility of an element. The accumulated
strength of the pheromone on element i is represented by
τ(i). At the beginning of each time step, Eq. (1) is applied
to select the next element s to that is added to the solution.
The elements that may still be added to the solution by ant
k in step r are indicated by Jk(r).η(s) measures how good
element s would be for the solution; restated, it represents
an incremental cost measure. With respect to the TSP, the
measure corresponds to the distance between two cities.
The state transition rule, global updating rule, and local
updating rule as Eqs. (1)- (3), respectively:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

77

⎪⎩

⎪
⎨
⎧ ≤∈

=

otherwiseS

qqif
k

Ju
s

0
u)](r,u)].[(r,(r){[maxarg βητ

 (1)

⎪
⎪
⎩

⎪⎪
⎨

⎧

∑
∈

∈=

otherwise

r
k

Jsif

r zrzrsr
k

P

 0

)(

)(
k

Ju)],()].[,([

s)](r,s)].[(r,[

),(βητ

βητ

(2)

),(),()1(),(srsrsr τατατ Δ⋅+⋅−= (3)
where

⎪⎩

⎪
⎨
⎧ −−∈−

=Δ

otherwise

tourbestglobalsrif
gb

L
sr

 0

),(1)(
),(τ

The characteristics of PPGA-ACO can be summarized as
that: by incorporating the ACO into the PPGA, the search
performance of both algorithms is improved. On the one
hand, based on the initial pheromones on the repertoire (i.e.
the map in TSP) secreted by the fittest antibodies in each
sub-population, the ACO is utilized to act as a local search
operator. As a result, the local search ability of GA can be
enhanced. Moreover, due to all of the elite sub-population
take effects synchronously and interact with each other
that is realized by the pheromones, all of the elitist gene
segments in each sub-population have been memorized by
the repertoire and thus the repertoire can give some hits to
lead the PPGA to construct fitter chromosomes based on
these segments in the next generation. On the other hand,
the speed at which the traditional ACO gives the solution
is slow if there is little information pheromone on the path
early. To solve this problem, in our proposed algorithm,
ACO adopts PPGA to give information pheromone to
distribute and thus the convergence speed of ACO can be
accelerated.

4. Experimental Results

To demonstrate the performance of our proposed approach,
we conduct some computer simulations on PC Pentium 4.
In all the experiments of this section we set parameter
values, if not differently indicated, as follows: the number
of total population size is 100, each sub-population has 10
chromosomes, i.e., there are 10 islands in the Island Model.
Besides, the probability of the crossover and mutation
operators is 0.8 and 0.3, respectively. The maximum
generation number for PPGA-ACO is set as 10000. In
each subpopulation, place 30 ants into it and
set 1.0,2 == αβ . All simulations are run 50 repeats to
make a statistical analysis.

First and foremost, the convergence speed of PPGA-ACO
is depicted. The benchmark instance used is Kroa100
taken from the TSPLIB [1]. In order to find out whether
the ACO has taken efforts on PPGA, and further the
effects PPGA takes compared with the simple GA, we
make a comparison with some other typical algorithm.
That is, the simple GA used in [29]; the SA technique [31],
using the 2-opt improvement technique; Budinich's SOM,
which consists of a traditional SOM applied to the TSP,
also presented in [31]; and the expanded SOM (ESom)
[32] which, in each iteration, places the neurons close to
their corresponding input data (cities) and, at the same
time, places them at the convex contour determined by the
cities; the pseudo-parallel GA (PPGA) described in [20].
The experimental results are shown in Fig. 2, where the
horizontal axis denotes the average length of the best-so-
far solutions found over fifty runs, while the vertical axis
represents the generation number (iteration). From Fig. 2,
it can be concluded that, with the iteration number goes,
all the six algorithms are convergent. The fastest
convergent speed is possessed by the proposed PPGA-
ACO. Furthermore, the final solutions found by PPGA-
ACO are also the best during all the algorithms.

Fig. 2: Comparative results of the convergence speed versus the
generation number on six typical algorithm: GA, SA, Budinich, Esom,

PPGA, and PPGA-ACO.

In addition, we make an empirical experiments on a large
number of traditional algorithms, not only some
algorithms used above, but also other powerful approaches.
Those approaches involves: The method that involves
statistical methods between a SOM's neurons' weights [30]
and has a global version (KG: Kohonen network
incorporating explicit statistics global), where all cities are
used in the neuron dispersion process, and a local version
(KL), where only some represented cities are used in the
neuron dispersion step; the efficient and integrated SOM

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

78

(EiSom) [33], where the Esom procedures are used and the
winning neuron is placed at the mean point among its
closest neighboring neurons; the efficient SOM technique
(Setsp) [34], which defines the updating forms for
parameters that use the TSP's number of cities; and
Kohonen's cooperative adaptive network (CAN) [35] uses
the idea of cooperation between the neurons' close
neighbors, uses a number of neurons that is larger than the
number of cities in the problem, and uses one
improvement's technique for routes called near-tour to tour
construction.
For the sake of perspicuity, some indexes are utilized to
analyze the simulation results. The optimum tour length
that listed in the TSPLIB is labeled as Dopt. The PDB
which indicates the percentage deviation from the Dopt of
best distance Db is defined as follows:

opt
D

opt
D

b
DPDB /100)(×−= (4)

Table 1 lists the experimental results of the nine different
methods. The results that recorded are PDBs, whose
property is that the smaller values of which, the better
qualities of the solutions. As can be observed from this
table, PPGA-ACO always performs the best solutions than
the other eight algorithms, revealing that the ACO not
only enables PPGA to find better solutions, but also can
outperform other state-of-art approaches.

Table 1: Experimental results with different methods.

 eil51 rd100 pr124 kroA200 pcb44
2

KG 2.86 2.62 0.49 6.57 10.45
KL 2.86 2.09 0.08 5.72 11.07
SA 2.33 3.26 1.26 5.61 9.15
Budinich 3.10 3.16 1.62 6.13 8.43
ESom 2.10 1.96 0.67 2.91 7.43
EiSom 2.56 - - 1.64 6.11
Setsp 2.22 2.60 - 3.12 10.16
CAN 1.65 1.23 2.36 0.93 5.89
PPGA-ACO 0.00 0.10 0.01 0.31 1.26

5. Conclusions

In this paper, we proposed a hybrid new algorithm call
PPGA-ACO, which combined the pseudo-parallel genetic
algorithm with the ant colony optimization. The ant colony
optimization carried out the function of information
exchange during different sub-population of genetic
algorithms, using a simple but effective island model. The
novelty of this paper was the hybridization of the two
algorithms, which was considered in the reference for the
first time.

The performance of the proposed PPGA-ACO was
verified through applying it to the famous TSP.
Experimental results based on several benchmark
instances taken from TSPLIB demonstrated that the
PPGA-ACO was more robust and effective than its variant
GA, PPGA, and other typical meta-heuristics, such as
neural networks.
In the future, we plan to apply PPGA-ACO to other
combinational optimization problems, such as the graph
planarization problem, the job shop scheduling problem,
and so on.

References
[1] G. Reinelt, “TSPLIB -a traveling salesman problem

library,” ORSA Journal on Computing, vol.3, pp.376-384,
1991.

[2] S. Chatterjee, C. Carrera and L. A. Lynch, “Genetic
algorithms and traveling salesman problems,” European
Journal of Operational Research, vol.93, pp.490-510, 1996.

[3] G. Gutin and A. P. Punnen, The Traveling Salesman
Problem and Its Variations, Kluwer, 2002.

[4] D. S. Johnson and L. A. McGeoch, “The Traveling
Salesman Problem: A Case Study in Local Optimization,”
in E. H. L. Aarts & J. K. Lenstra (Eds.), Local Search in
Combinatorial Optimization (pp.215-310), John Wiley and
Sons, 1997.

[5] M. Mitchell, An Introduction to Genetic Algorithms, MIT
Press, 1996.

[6] Z. H. Shen, Y. K. Zhao and X. R. Wang, “Niche Pseudo-
parallel Genetic Algorithm for Path Optimization of
Autonomous Robot,” Modern Electronics Technique, vol.15,
pp.85-87, 2005.

[7] M. Dorigo and T. Stutzle, Ant Colony Optimization, MIT
Press, 2004.

[8] H. K. Tsai, J. M. Yang, Y. F. Tsai and C. Y. Kao, “An
Evolutionary Algorithm for Large Traveling Salesman
Problems,” IEEE Trans. on Systems, Man, and Cybernetics-
Part B, vol.34, no.4, pp.1718-1729, 2004.

[9] K. F. Man, K. S. Tang and S. Kwong, Genetic Algorithms:
Concepts and Designs, Springer, New York, 1999.

[10] J. E. Rawlins and Gregory, Foundations of Genetic
Algorithms, Morgan Kaufmann, San Mateo, CA, 1991.

[11] L. D. Whitley, Foundations of Genetic Algorithms 2,
Morgan Kaufmann, San Mateo, CA, 1993.

[12] G. Winter, J. Periaux, M. Galan and P. Cuesta, Genetic
Algorithms in Engineering and Computer Science, Wiley,
New York, 1995.

[13] A. M. S. Zalzala and P. J. Fleming, Genetic Algorithms in
Engineering System, The Institution of Electrical Engineers,
London, 1997.

[14] J. T. Alander (Eds.), Proceedings of the First Nordic
Workshop on Genetic Algorithms and their Applications
(INWGA), January 9-12, Vaasa Yliopiston Julkaisuja,
Vaasa, 1995.

[15] J. R. Koza, D. E. Goldberg, D. B. Fogel and R. L. Riolo
(Eds.), Genetic Programming: Proceedings of the First
Annual Conference, Stanford University, July 28-31, MIT
Press, Cambridge, 1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

79

[16] W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V.
Honavar, M. Jakiela and R. E. Smith (Eds.), Proceedings of
the Genetic and Evolutionary Computation Conference,
Orlando, FL, July 13-17, Morgan Kaufmann, San Mateo,
CA, 1999.

[17] J. H. Holland, Adaption in Natural and Artificial System,
MIT Press, Cambridge, MA, 1975.

[18] J. Potvin, “Genetic Algorithms for the Traveling Salesman
Problems,” Annals of Operations Research, vol.63, pp.330-
370, 1996.

[19] L. Schmitt and M. Amini, “Performance Characteristics of
Alternative Genetic Algorithm Approaches to the Traveling
Salesman Problem using Path Representation: An Empirical
Study,” European Journal of Operational Research, vol.108,
no.3, pp.551-570, 1998.

[20] M. Zhou and S. D. Sung, Principle and Application of
Genetic Algorithm, Defense Industries Press, Beijing, 1999.

[21] X. F. Chen, W. H. Gui and M. Wu, “Chaotic migration-
based pseudo parallel genetic algorithm and its application,”
Control Theory & Applications, vol. 21, no. 6, pp. 997-1002,
2004.

[22] L. Zou, J. C. Xia and G. A. Hu, “Real Coding Based Multi-
population Parallel Genetic Algorithm,” Mini-micro
Systems, vol25, no. 6, pp.982-986, 2004.

[23] M. G. Schleuter, “ASPARAGOS: An Asynchronous
Paoallel Genetic Optimization Strategy,” Proc. of 3rd Int.
Conf. On Genetic Algorithms, Morgan Kaufmann, pp. 422-
427, 1989.

[24] M. Dorigo, V. Maniezzo and A. Colorni, “Positive
Feedback as a Search Strategy,” Technical Report 91-106,
Dip. Elettronica, Polotecnico di Milano, 1991.

[25] E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm
Intelligence: From Natural to Artificial Systems, MIT Press,
2000.

[26] M. Dorigo and L. Gambardella, “Ant colony system: a
cooperative learning appraoch to the traveling salesman
problem,” IEEE Transactions on Evolutionary Computation,
vol.1, no.1, pp.53-66, 1997.

[27] C. Blum, “Ant colony optimization: Introduction and recent
trends,” Physics of Life Reviews, vol.2, pp.353-373, 2005.

[28] Z. Lee, S. Su, C. Chuang and K. Liu, “Genetic algorithm
with ant colony optimization (GA-ACO) for multiple
sequence alignment,” Applied Soft Computing, vol.8,
pp.55-78, 2008.

[29] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley,
1989.

[30] N. Aras, B. J. Oommen and I. K. Altinel, “The Kohonen
network incorporating explicit statistics and its apllication
to the travelling salesman problem,” Neural Networks,
vol.12, pp.1273-1284, 1999.

[31] M. Budinich, “A self-organizing neural network for the
traveling salesman problem that is competitive with
simulated annealing,” Neural Computation, vol.8, pp.416-
424, 1996.

[32] K. S. Leung, H. D. Jin and Z. B. Xu, “An expanding self-
organizing neural network for the traveling salesman
problem,” Neurocomputing, vol.62, pp.267-292, 2004.

[33] H. D. Jin, K. S. Leung, M. L. Wong and Z. B. Xu, “An
efficient self-organizing map designed by genetic

algorithms for the traveling salesman problem,” IEEE Trans.
on Systems, Man, and Cybernetics-Part B, vol.33, no.6,
pp.877-887, 2003.

[34] F. C. Vieira, A. D. Doria Neto and J. A. Costa, “An efficient
approach to the traveling salesman problem using self-
organizing maps,” International Journal of Neural Systems,
vol. 13, no.2, pp.59-66, 2003.

[35] E. M. Cochrane and J. E. Beasley, “The co-adaptive neural
network approach to the Euclidean Travelling Salesman
Problem,” Neural Networks, vol.16, no.10, pp.1499-1525,
2003.

Sheng Lir received the B.S. degree from
Nanjing University of Science and
Technology, Nanjing, China in 2006 and
an M.S. degree from University of Toyama,
Toyama, Japan in 2009. Now, he is
working toward the D.E. degree at
University of Toyama, Toyama, Japan. His
main research interests are intelligence
computing, neural networks, swarm

intelligent algorithms, and combinational optimization problems.

Huiqin Chen received the B.S. degree
from HoHai University, Nanjing, China in
2006 and an M.S. degree from University
of Toyama, Toyama, Japan in 2009. Now,
she is working toward the D.E. degree at
University of Toyama, Toyama, Japan. Her
main research interests are intelligence
computing, neural networks, swarm

intelligent algorithms, and combinational optimization problems.

Zheng Tang received the B.S. degree
from Zhejiang University, Zhejiang,
China in 1982 and an M.S. degree and
a D.E. degree from Tshinghua
University, Beijing, China in 1984 and
1988, respectively. From 1988 to 1989,
he was an instructor in the institute of
microelectronics at Tshinghua
University. From 1990 to 1999, he

was an associate professor in the department of electrical
and electronic engineering, Miyazaki University, Miyazaki,
Japan. In 2000, he joined Toyama University, Toyama,
Japan, where he is currently a professor in the department
of intellectual information systems.

