
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

80

An Improved Version of opt-aiNet Algorithm (I-opt-aiNet) for

Function Optimization

Hamdy N. Agiza
†
, Ahmed E. Hassan

††
, Ahmed M. Salah

†††

agizah@mans.edu.eg arwaahmed1@gmail.com a_salah@mans.edu.eg

† Mathematics Department, Faculty of Science, Mansoura University, Egypt

†† Electrical Engineering Department, Faculty of Engineering, Mansoura University, Egypt

††† Mathematics Department, Statistics and Computer Science Branch, Faculty of Science, Mansoura University, Egypt

Abstract
This paper presents an improved version of opt-aiNet, which

is an algorithm for multimodal function optimization based on

the natural immune system metaphor. The proposed algorithm

has some major and minor changes on the way the clonal

selection principle is applied within the original opt-aiNet

algorithm which allows for fast localization of the optima. The

output of the proposed algorithm is tested on the same data as

the original opt-aiNet and the results show the validity of the

new improved one.

Key words:
 Artificial Immune Systems, Clonal Selection, opt-aiNet,

Function Optimization

1. Introduction

Artificial Immune Systems (AIS) are computational

systems inspired by theoretical immunology, observed

immune functions, principles and mechanisms in order

to solve problems [1]. The fundamental features of the

natural immune system, like distribution, adaptability,

learning from experience, complexity, and coordination

have decided that immune algorithms have been applied

to a wide variety of tasks, including optimization.

The task of natural immune system is to identify and

destroy foreign invaders or antigens. The basic elements

of natural immune system are immune cells (such as B

cells, T cells, and other lymphocytes), B-cells produce

antibodies, which bind to the invading antigens and help

destroy them. Each B-cell produces only one kind of

antigenic receptors. When an antigen enters the body, it

activates only the lymphocytes whose receptors can

bind to it. Activated by an antigen and with a second

signal from accessory cells, such as the T-cells, the B-

cells proliferates (divides) producing large number of

clones. In the final stage these clones can mutate in

order to produce antibodies with very high affinity to a

specific antigen [2].

This process is explained by the clonal selection

principle [3], according to which only those cells that

recognize the antigens are selected to proliferate. The

selected cells are subject to affinity maturation, which

improves their affinity to the antigens.

Manuscript received March 5, 2011

Manuscript revised March 20, 2011

This paper reviews work done in optimization using AIS

and briefly introduce immune optimization algorithm

(opt-aiNet). An improved version of opt-aiNet is

presented with detailed description of the modifications

made together with a theoretical comparison to original

opt-aiNet algorithm followed by the results of

experimental comparison of the proposed and the original

one. The paper ends with conclusion of the proposed

work.

2. Optimization using Artificial Immune

Systems

There is a natural parallel between the immune system

and optimization. Whilst the immune system is not

specifically an optimizer, the process of the production of

antibodies in response to an antigen is evolutionary in

nature; hence the comparison with optimization, the

location of better solutions. The process of clonal

selection (a theory widely held by many immunologists

[4]) describes how the production of antibodies occurs in

response to an antigen, and also explains how a memory

of past infections is maintained. This process of clonal

selection has proved to be a source of inspiration of many

people in AIS and there have been a number of algorithms

developed for optimization inspired by this process [5].

Opt-aiNet, proposed in [1], is an optimization version of

aiNet which is a discrete immune network algorithm that

was developed for data compression and clustering [6].

AiNet and has subsequently been developed further and

applied to areas such as bioinformatics [7] and even

modeling of simple immune responses [8]. Opt-aiNet

evolves a population that consists of a network of

antibodies (considered as candidate solutions to the

function being optimized). These undergo a process of

evaluation against the objective function, clonal

expansion, mutation, selection and interaction between

themselves. Opt-aiNet creates a memory set of antibodies

that represent (over time) the best candidate solutions to

the objective function. Opt-aiNet is capable of either

unimodal or multimodal optimization and it has defined

stopping criteria.

mailto:agizah@mans.edu.eg
mailto:arwaahmed1@gmail.com
mailto:a_salah@mans.edu.eg

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

81

In order to keep track of local optima as well as global

optima, opt-aiNet has to select all cells for cloning.

However, according to the clonal selection theory of

acquired immunity presented in [3], only a set of cells are

selected to be cloned.

Another thing to note about opt-aiNet is the number of

clones per cell in the cloning process. Opt-aiNet gives all

cells the same number of clones for each iteration as

published in [1]. That’s because opt-aiNet aims to

preserve local optima’s so it needs to explore the whole

space. Doing so contradicts again with the clonal selection

theory of acquired immunity. As [5, 9] stated that the

proliferation rate of each immune cell is proportional to its

affinity with the selective antigen (higher the relative

affinity, the more progeny). It is obvious that opt-aiNet

had to sacrifice many of clonal selection theory ideas for

the benefit of maintaining local optima’s.

Also, the stopping criterion adopted for opt-aiNet is based

upon the size of the memory population. After network

suppression, a fixed number of cells remain. If this

number does not vary from one suppression to another,

then the network is said to have stabilized and the

remaining cells are memory cells corresponding to the

solutions of the problem [1]. This stopping criterion does

not necessarily correspond to algorithm convergence since

it is prone to bottlenecks.

To overcome all the previous shortages of opt-aiNet

algorithm, an improved version of opt-aiNet algorithm is

proposed and demonstrated through the rest of the paper.

3. The proposed algorithm (I-opt-aiNet)

As discussed earlier, opt-aiNet never pretends to be fast in

terms of number of function evaluations [2]. Its strategy

concentrates on finding as well as maintaining all the

global and local optima and if applicable determining their

number.

An improved version of opt-aiNet algorithm (I-opt-aiNet)

is introduced to modify some shortages of opt-aiNet

algorithm in order to achieve better performance. The

modifications made includes the number of selected cells

each iteration and how to select them, the number of cells

that could be removed and number of cells that could be

added, which cells may be cloned and how many clones

would be created, optimizing evaluation processes, and

replacing one stopping condition with a more effective

one.

The most general view of the I-opt-aiNet while searching

for function minimum is shown in Figure 1.

1. Initialization: Generate a set N of candidate solutions.

2. While a stopping criterion is not met do

a. Evaluation (phase one): Evaluate all unevaluated

cells and mark them as “EVALUATED”.

b. Selection (phase one): Select all cells with affinity

higher than Best Fitness Average and remover the

rest. The Best Fitness Average is the best population

fitness average over all iterations including the

current.

c. Cloning: Create a number of clones to each cell

proportional to the cell affinity

d. Mutation: Mutate each clone inversely proportional

to its fitness

e. Evaluation (phase two): Evaluate all mutated clones

and mark them as “EVALUATED”

f. Selection (phase two): Select the best clones with

respect to Best Fitness Average and add them to the

population

g. Network interaction: For each antibody in the

population determine the similarity with other

antibodies in the population. From any pair of

antibodies whose affinity is less than a specified

threshold, eliminate the worse element

h. Diversity: Add new cells to the population as much

as removed cells from step 2.c

3. End While

Figure 1: Pseudo code of the proposed algorithm I-opt-aiNet

A complementing diagrammatic representation of the

tasks and workflow of the I-opt-aiNet algorithm is also

provided in Figure 2.

Figure 2: Flowchart of I-opt-aiNet

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

82

The behavior of the new algorithm can be explained in

detailed steps as follows next.

 Initialization

A population is initialized randomly. The number of

generated cells is a parameter of the algorithm, chosen

experimentally to help achieving high quality solutions in

less time. For simple objective functions we can use small

values for this parameter yet solution quality is still

maintained. For more complex problems there will be a

need to raise the value of the parameter a bit to ensure

enough space for the algorithm to converge.

 The main loop

After initializing the population, the algorithm starts the

main loop in which cells are going to undergo clonal

selection until a stopping condition is satisfied. I-opt-aiNet

has two stopping conditions defined to control the

algorithm flow. The first is the maximum number of

iterations to be used. This parameter is inherited from opt-

aiNet without a change. The second stopping condition is

a new one introduced to aid the algorithm to converge in

less time. This stopping condition terminates the run if a

cell remains the best solution for a specified number of

iterations, a new parameter, claiming this cell to be the

optimum solution to the proposed objective function. For

this we chose to remove one of opt-aiNet stopping

conditions that depend on comparing the average of two

consecutive iterations until there’s no significant

difference.

 Evaluation (Phase one)

At the beginning of each iteration, all new cells are

exposed to the objective function. I-opt-aiNet adds further

step here; that all exposed cells are marked as

“EVALUATED”. The marks on the cells prevents the

algorithm from evaluating them anymore in their life time

which means that the total number of evaluation would be

lesser and the algorithm converges faster.

 Selection (Phase one)

A number of cells are then selected to be cloned. I-opt-

aiNet uses a unique approach for selecting cells. We

introduce a new term called Best Fitness Average (BFA).

This term, as it sounds, represents the best fitness average

over all iterations preceding the current one. BFA has a

dynamic nature by design. At the first iteration, BFA is

initialized with the fitness average of all the cells in the

population. For all iterations afterwards, the current

population fitness average is calculated and if it was less

than BFA, then BFA will be updated. Otherwise, it keeps

its value without any change.

After calculating the BFA, every cell with fitness less

than or equal to the BFA are selected for the next phase.

The remaining cells are then killed and removed from the

population but we keep track of their count.

It is worth to note about I-opt-aiNet that the number of

cells removed each iteration is dynamic and depends

indirectly on the value of BFA. While the original opt-

aiNet uses a fixed parameter to remove a percentage from

the population [1].

 Cloning

In our implementation, the number of clones generated

for any selected cell is proportional to the cell’s fitness

value. And there’s a new parameter introduced to set the

maximum number of clones to any cell. Here’s how the

process goes, the number of clones that should be created

for a candidate cell is given by:

 Where’s:

 µ is the maximum number of clones that any cell

could have (fixed parameter).

 is the fitness norm to cell number , and is

calculated by :

 which is obviously a

number in the range , -

For example, let us have a minimization problem with 5

cells that have the finesses:

Hence, and this leads to

 .

 Now for different values of we find that:

𝝁 Number of clones for cells

10

20

It’s clear that I-opt-aiNet is biased towards cell’s fitness’s

values at the cloning process. Because despite that the first

cell has the least fitness, it still gets much more clones

than the other cells.

 Mutation

All clones then undergo somatic mutation so that they

become variations of their parent. The affinity

proportional mutation works in the same way as in [1]. It

is performed according to the following expression:

 ()

 ()
⁄

Where is a mutated cell , () is a Gaussian random

variable of zero mean and standard deviation , is a

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

83

parameter that controls the decay of the inverse

exponential function, and is the fitness of an individual

normalized in the interval , - . A mutation is only

accepted if the mutated cell is within its range of

domain.

 Evaluation (Phase two)

All newly created mutated clones needs to be evaluated.

The evaluation process goes the same way as the first

evaluation phase. Those clones get evaluated against the

objective function and are then marked as

“EVALUATED”.

 Selection (Phase two)

A subset of the mutated clones is selected to be added to

the population and the rest is removed from the cloning

pool. The selection is made using the same method

discussed in the first selection phase with the help of BFA.

That is, all mutated clones with fitness less than BFA of

the current iteration are kept in the pool, while the rest are

removed.

This selection phase is necessary to ensure that no bad

cells exist in the population so the algorithm converges

faster.

 Network interaction

Next the algorithm determines the affinity of all cells in

the network. Suppress all but the highest fitness of those

cells whose affinities are less than the suppression

threshold (a parameter) and determine the number of

network cells, named memory cells, after suppression.

 Diversity

At the end of any iteration, new cells are generated

randomly to be added to the population in the next

iteration. The number of cells to be generated is the same

number of cells removed in parent cell’s selection stage.

It should be noticed that the number of removed cells (or

added cells) in I-opt-aiNet is not fixed and varies

dynamically throughout the iterations.

4. Validating the performance of I-opt-aiNet

The new variant of opt-aiNet proposed in Section 4, I-opt-

aiNet, was implemented by modifying the opt-aiNet code

kindly obtained from [10] which formed part of [11]. The

implementation had been experimented against the opt-

aiNet with two metrics were tested. These were the

number of evaluations taken to obtain a solution and the

quality of the solution obtained, which is a standard

benchmark criteria. Table 1 contains the details of suitable

number of functions (ranging in dimensions) that were

selected from an established literature on which to

perform these tests. In addition, the parameters for I-opt-

aiNet have been selected experimentally and the values

presented for the original opt-aiNet were empirically the

best performing parameters for these functions and all the

parameters values can be reviewed in Table 2. The reader

is referred to [1] for further analysis of the sensitivity of

original opt-aiNet parameters.

Table 1: Functions Employed For Experimentation

Name Function

F1
 () () ()

Where,

F3
 () ∑ ,() -

Where,

Branin

 () () () ()

Where, ⁄⁄

 ⁄

Pshubert 1

 () *∑ ,() -
 + *∑ ,(

) -+ ,() () -

Where,

Pshubert 2

 () *∑ ,() -
 + *∑ ,(

) -+ ,() () -

Where,

Quartic
 ()

Where,

Shubert

 () *∑ ,() -
 +

 *∑ ,() -
 +

Where,

Table 2: Algorithm Parameters

Algorithm Parameter Value

I-opt-aiNet

Initial population size In {10, 100}

Maximum number of clones 10

Stable state limit 100

Suppression threshold 0.2

Scale of affinity proportion selection 100

Opt-aiNet

Initial population size 20

Suppression threshold 0.2

Number of clones generated 10

Percentage of random new cells each

iteration

40%

Scale of affinity proportion selection 100

The new algorithm was then applied to the selected

functions to compare it with the results obtained for

applying the original opt-aiNet on the same functions

published in [12]. Tables 3.a and 3.b provides a set of

results averaged over 50 runs for the functions being

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

84

optimized. I-opt-aiNet was executed until either the

minimum value was found, or 500 iterations had passed

just as in [12]. All results reported presented with standard

deviations where greater than zero. The columns in Table

3.a represent (in order from left to right): the objective

function, the minimum possible value for that function,

the next two columns show the value located by each

algorithm for that function. Table 3.b shows the average

and the standard deviation of the number of evaluations

taken to achieve that minimum result. The number of

evaluations is the cumulative value for the number of

times an individual in the population called the evaluate

function method.

Table 3.a: Optimum value averaged over 50 runs for the functions being

optimized

Table 3.b: Average and standard deviations of the number of evaluations
over 50 runs for the functions being optimized

Figure 3: Average number of evaluations for functions F1 and Branin

Figure 4: Average number of evaluations for functions Pshubert 1 and

Pshubert 2

Figure 5: Average number of evaluations for functions F3, Quartic, and

Shubert

Looking at the data provided in Tables 3.a, 3.b and

Figures 3, 4, and 5 above; both the algorithms performed

well at finding optimal solutions for all of functions

presented. Therefore, in terms of the metric for quality of

solutions there seems little to distinguish the two

algorithms. However, when the number of evaluations is

taken into account, there is a significant difference in the

number of evaluations taken to obtain the solution. That

significant difference is a strong evident on the less time

needed by I-opt-aiNet to converge to global optimum.

Also, the standard deviation of the number of evaluations

was very small for I-opt-aiNet in comparing with opt-

aiNet. This is a good indicator on how stable is the

solutions in case of using I-opt-aiNet. Using these

statistics we can see that I-opt-aiNet outperformed the

original algorithm noticeably.

0

5000

10000

F1 Branin

opt-aiNET I-opt-aiNET

0

100000

200000

300000

400000

Pshubert 1 Pshubert 2

opt-aiNET I-opt-aiNET

0

20000

40000

60000

F3 Quartic Shubert

opt-aiNET I-opt-aiNET

Function
Actual

optimum
opt-aiNet I-opt-aiNet

F1 -1.12 -1.12 -1.12

F3 -12.03 -12.03 -12.03

Branin 0.40 0.39 0.39

Pshubert 1 -186.73 -180.83 -186.72

Pshubert 2 -186.73 -173.16 -186.71

Quartic -0.35 -0.26 -0.35

Shubert -186.73 -186.73 -186.73

Function opt-aiNet I-opt-aiNet

F1 6717 ±.538 388.7 ± 106.5

F3 41419 ± 25594 973.74 ± 282.82

Branin 6346 ± 4656 2275.6 ± 422.61

Pshubert 1 363528 ± 248161 25331.3 ± 9264

Pshubert 2 346330 ± 255980 25762.3 ± 4574.1

Quartic 54703 ± 29701 2658.6 ± 451.2

Shubert 50875 ± 45530 3270 ± 887.9

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

85

Conclusion

This paper has presented I-opt-aiNet algorithm, which is

an improved version of the well-known immune algorithm

opt-aiNet for solving optimization problem for multimodal

functions. The improved version of opt-aiNet has

introduced new method for selecting cells, cloning cells,

adding cells for diversity and replaced a stopping

condition for a smarter one. It was theoretically and

experimentally compared with opt-aiNet. The

performance was illustrated for seven functions. The

algorithm demonstrated to be capable of finding global

optima with much smaller number of function evaluations,

comparing to the original algorithm. The promising results

of this version of the algorithm obtained for multimodal

function optimization encourage using the algorithm for

other optimization or even dynamic optimization problems.

References

[1] De Castro, L.N and Timmis, J. (2002). An Artificial

Immune Network for Multimodal Function

Optimization. Proc. Of IEEE World Congress on

Evolutionary Computation. Pp. 669-674.

[2] Malgorzata Lucinska and Slawomir T. Wierzchon.

Hybrid Immune Algorithm for Multimodal Function

Optimization. Recent Advances in Intelligent

Information Systems ISBN 978-83-60434-59-8, pages

301-313.

[3] Burnet, F. M. (1959). The Clonal Selection Theory of

Acquired Immunity. Cambridge University Press,

Cambridge.

[4] D. R. FORSDYKE (1995). The Origins of the Clonal

Selection Theory of Immunity. FASEB. Journal 1995,

VOL 9, 164-166.

[5] Jason Brownlee (2007). Clonal Selection Algorithms,

Technical Report. Victoria, Australia: Complex

Intelligent Systems Laboratory (CIS), Centre for

Information Technology Research (CITR), Faculty of

Information and Communication Technologies (ICT),

Swinburne University of Technology; Technical Report

ID: 070209A.

[6] De Castro, L.N., Von Zuben, F.J. (2001). aiNet: An

Artificial Immune Network for Data Analysis, (full

version, pre-print), Book Chapter in Data Mining: A

Heuristic Approach, H. A. Abbass, R. A. Sarker, and C.

S. Newton (eds.), Idea Group Publishing (2001), USA,

Chapter XII, pp. 231-259.

[7] A. Secker, M.N. Davies, A.A. Freitas, J. Timmis, E.

Clark, D.R. Flower (2008). An Artificial Immune

System for Evolving Amino Acid Clusters Tailored to

Protein Function Prediction. Lecture Notes in Computer

Science, Volume 5132/2008, 242-253, DOI:

10.1007/978-3-540-85072-4_22.

[8] Jerne, N (1975). Towards a Network theory for the

Immune System. Annals of Immunology, Inst. Pasture.

[9] Leandro N. de Castro and Jon Timmis. Artificial

Immune Systems: A new computational intelligence

approach, Great Britain: Springer-Verlag

[10] Andrews, P. (2007). Opt-aiNet source code in Java, last

modified October 2005.

[11] Andrews, P. S., & Timmis, J. (2005). On Diversity and

Artificial Immune Systems: Incorporating a Diversity

Operator into aiNet. International Workshop on Natural

and Artificial Immune Systems (NAIS), Vietri sul

Mare, Salerno, Italy. Lecture Notes in Computer

Science 391. pp. 293-306.

[12] Jon Timmis, J., Edmonds, C., Kelsey, J. (2004).

Assessing the performance of two immune inspired

algorithms and a hybrid genetic algorithm for Function

Optimization. In: Evolutionary Computation,

CEC2004.

Hamdy N. Agiza is a professor of

applied mathematics at Mansoura

University, Egypt. He obtained his B.Sc. and

M.Sc. both in Pure Mathematics from

Mansoura University, Faculty of Science,

Egypt in 1976 and 1980 respectively. He

obtained his Ph.D. degree in applied

Mathematics from Heriot-Watt University, UK, in 1987. He

was a member of International Center of Theoretical Physics

(ICTP) 1999-2005 as Senior Associate Group and a member

of Egyptian Mathematical Society since 1991 till now. Prof.

Agiza is currently the manager of Quality Assurance unit in

faculty of science, Mansoura University.

Ahmed E. Hassan is an associate

professor of computer engineering at

Mansoura University, Egypt. He received a

PhD in computer engineering from West

Virginia University, West Virginia USA. He

received a Master in computer engineering

from Stevens Institute of Technology NJ,

USA. Also he got Master of Artificial Intelligence

applications from Mansoura University, Egypt. Ahmed E.

Hassan is IEEE Member since 1998, IEEE Computer Society

since 1999, IEEE Education society since 2002, IEEE

Computational Intelligence Society since 2002, ACM

Member since 2002 and ACM Education Society since 2002.

He is a consultant manager of EgyTronic Co.

www.egytronic.com and he is also the consultant manager of

the “CadTronic” Co. “ww.cadtronic.com”. From 2006 until

now he is the manager of the technical office of Mansoura

University Quality Assurance Center.

Ahmed M. Salah is an assistant

lecturer of computer science at Mansoura

University, Egypt. He has obtained the B.Sc.

in Statistics and Computer Science from

Mansoura University at Faculty of Science,

Egypt in 2005.

