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Abstract 
This paper presents an improved version of opt-aiNet, which 

is an algorithm for multimodal function optimization based on 

the natural immune system metaphor. The proposed algorithm 

has some major and minor changes on the way the clonal 

selection principle is applied within the original opt-aiNet 

algorithm which allows for fast localization of the optima. The 

output of the proposed algorithm is tested on the same data as 

the original opt-aiNet and the results show the validity of the 

new improved one. 
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1. Introduction 

Artificial Immune Systems (AIS) are computational 

systems inspired by theoretical immunology, observed 

immune functions, principles and mechanisms in order 

to solve problems [1]. The fundamental features of the 

natural immune system, like distribution, adaptability, 

learning from experience, complexity, and coordination 

have decided that immune algorithms have been applied 

to a wide variety of tasks, including optimization. 

The task of natural immune system is to identify and 

destroy foreign invaders or antigens. The basic elements 

of natural immune system are immune cells (such as B 

cells, T cells, and other lymphocytes), B-cells produce 

antibodies, which bind to the invading antigens and help 

destroy them. Each B-cell produces only one kind of 

antigenic receptors. When an antigen enters the body, it 

activates only the lymphocytes whose receptors can 

bind to it. Activated by an antigen and with a second 

signal from accessory cells, such as the T-cells, the B-

cells proliferates (divides) producing large number of 

clones. In the final stage these clones can mutate in 

order to produce antibodies with very high affinity to a 

specific antigen [2]. 

This process is explained by the clonal selection 

principle [3], according to which only those cells that 

recognize the antigens are selected to proliferate. The 

selected cells are subject to affinity maturation, which 

improves their affinity to the antigens. 
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This paper reviews work done in optimization using AIS 

and briefly introduce immune optimization algorithm 

(opt-aiNet). An improved version of opt-aiNet is 

presented with detailed description of the modifications 

made together with a theoretical comparison to original 

opt-aiNet algorithm followed by the results of 

experimental comparison of the proposed and the original 

one. The paper ends with conclusion of the proposed 

work. 

2. Optimization using Artificial Immune 

Systems 

There is a natural parallel between the immune system 

and optimization. Whilst the immune system is not 

specifically an optimizer, the process of the production of 

antibodies in response to an antigen is evolutionary in 

nature; hence the comparison with optimization, the 

location of better solutions. The process of clonal 

selection (a theory widely held by many immunologists 

[4]) describes how the production of antibodies occurs in 

response to an antigen, and also explains how a memory 

of past infections is maintained. This process of clonal 

selection has proved to be a source of inspiration of many 

people in AIS and there have been a number of algorithms 

developed for optimization inspired by this process [5].  

 

Opt-aiNet, proposed in [1], is an optimization version of 

aiNet which is a discrete immune network algorithm that 

was developed for data compression and clustering [6]. 

AiNet and has subsequently been developed further and 

applied to areas such as bioinformatics [7] and even 

modeling of simple immune responses [8]. Opt-aiNet 

evolves a population that consists of a network of 

antibodies (considered as candidate solutions to the 

function being optimized). These undergo a process of 

evaluation against the objective function, clonal 

expansion, mutation, selection and interaction between 

themselves. Opt-aiNet creates a memory set of antibodies 

that represent (over time) the best candidate solutions to 

the objective function. Opt-aiNet is capable of either 

unimodal or multimodal optimization and it has defined 

stopping criteria. 
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In order to keep track of local optima as well as global 

optima, opt-aiNet has to select all cells for cloning. 

However, according to the clonal selection theory of 

acquired immunity presented in [3], only a set of cells are 

selected to be cloned. 

 

Another thing to note about opt-aiNet is the number of 

clones per cell in the cloning process. Opt-aiNet gives all 

cells the same number of clones for each iteration as 

published in [1]. That’s because opt-aiNet aims to 

preserve local optima’s so it needs to explore the whole 

space. Doing so contradicts again with the clonal selection 

theory of acquired immunity. As [5, 9] stated that the 

proliferation rate of each immune cell is proportional to its 

affinity with the selective antigen (higher the relative 

affinity, the more progeny). It is obvious that opt-aiNet 

had to sacrifice many of clonal selection theory ideas for 

the benefit of maintaining local optima’s. 

 

Also, the stopping criterion adopted for opt-aiNet is based 

upon the size of the memory population. After network 

suppression, a fixed number of cells remain. If this 

number does not vary from one suppression to another, 

then the network is said to have stabilized and the 

remaining cells are memory cells corresponding to the 

solutions of the problem [1]. This stopping criterion does 

not necessarily correspond to algorithm convergence since 

it is prone to bottlenecks. 

 

To overcome all the previous shortages of opt-aiNet 

algorithm, an improved version of opt-aiNet algorithm is 

proposed and demonstrated through the rest of the paper. 

3. The proposed algorithm (I-opt-aiNet) 

 

As discussed earlier, opt-aiNet never pretends to be fast in 

terms of number of function evaluations [2]. Its strategy 

concentrates on finding as well as maintaining all the 

global and local optima and if applicable determining their 

number. 

An improved version of opt-aiNet algorithm (I-opt-aiNet) 

is introduced to modify some shortages of opt-aiNet 

algorithm in order to achieve better performance. The 

modifications made includes the number of selected cells 

each iteration and how to select them, the number of cells 

that could be removed and number of cells that could be 

added, which cells may be cloned and how many clones 

would be created, optimizing evaluation processes, and 

replacing one stopping condition with a more effective 

one. 

 

The most general view of the I-opt-aiNet while searching 

for function minimum is shown in Figure 1. 

1. Initialization: Generate a set N of candidate solutions. 

2. While a stopping criterion is not met do 

a. Evaluation (phase one): Evaluate all unevaluated 

cells and mark them as “EVALUATED”.  

b. Selection (phase one): Select all cells with affinity 

higher than Best Fitness Average and remover the 

rest. The Best Fitness Average is the best population 

fitness average over all iterations including the 

current. 

c. Cloning: Create a number of clones to each cell 

proportional to the cell affinity 

d. Mutation: Mutate each clone inversely proportional 

to its fitness 

e. Evaluation (phase two): Evaluate all mutated clones 

and mark them as “EVALUATED” 

f. Selection (phase two): Select the best clones with 

respect to Best Fitness Average and add them to the 

population 

g. Network interaction: For each antibody in the 

population determine the similarity with other 

antibodies in the population. From any pair of 

antibodies whose affinity is less than a specified 

threshold, eliminate the worse element 

h. Diversity: Add new cells to the population as much 

as removed cells from step 2.c 

3. End While 

Figure 1: Pseudo code of the proposed algorithm I-opt-aiNet 

A complementing diagrammatic representation of the 

tasks and workflow of the I-opt-aiNet algorithm is also 

provided in Figure 2. 

 

Figure 2: Flowchart of I-opt-aiNet 
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The behavior of the new algorithm can be explained in 

detailed steps as follows next. 

 Initialization 

A population is initialized randomly. The number of 

generated cells is a parameter of the algorithm, chosen 

experimentally to help achieving high quality solutions in 

less time. For simple objective functions we can use small 

values for this parameter yet solution quality is still 

maintained. For more complex problems there will be a 

need to raise the value of the parameter a bit to ensure 

enough space for the algorithm to converge. 

 The main loop 

After initializing the population, the algorithm starts the 

main loop in which cells are going to undergo clonal 

selection until a stopping condition is satisfied. I-opt-aiNet 

has two stopping conditions defined to control the 

algorithm flow. The first is the maximum number of 

iterations to be used. This parameter is inherited from opt-

aiNet without a change. The second stopping condition is 

a new one introduced to aid the algorithm to converge in 

less time. This stopping condition terminates the run if a 

cell remains the best solution for a specified number of 

iterations, a new parameter, claiming this cell to be the 

optimum solution to the proposed objective function. For 

this we chose to remove one of opt-aiNet stopping 

conditions that depend on comparing the average of two 

consecutive iterations until there’s no significant 

difference. 

 Evaluation (Phase one) 

At the beginning of each iteration, all new cells are 

exposed to the objective function. I-opt-aiNet adds further 

step here; that all exposed cells are marked as 

“EVALUATED”. The marks on the cells prevents the 

algorithm from evaluating them anymore in their life time 

which means that the total number of evaluation would be 

lesser and the algorithm converges faster. 

 Selection (Phase one) 

A number of cells are then selected to be cloned. I-opt-

aiNet uses a unique approach for selecting cells. We 

introduce a new term called Best Fitness Average (BFA). 

This term, as it sounds, represents the best fitness average 

over all iterations preceding the current one. BFA has a 

dynamic nature by design. At the first iteration, BFA is 

initialized with the fitness average of all the cells in the 

population. For all iterations afterwards, the current 

population fitness average is calculated and if it was less 

than BFA, then BFA will be updated. Otherwise, it keeps 

its value without any change. 

After calculating the BFA, every cell with fitness less 

than or equal to the BFA are selected for the next phase. 

The remaining cells are then killed and removed from the 

population but we keep track of their count. 

It is worth to note about I-opt-aiNet that the number of 

cells removed each iteration is dynamic and depends 

indirectly on the value of BFA. While the original opt-

aiNet uses a fixed parameter to remove a percentage from 

the population [1]. 

 Cloning 

In our implementation, the number of clones generated 

for any selected cell is proportional to the cell’s fitness 

value. And there’s a new parameter introduced to set the 

maximum number of clones to any cell. Here’s how the 

process goes, the number of clones that should be created 

for a candidate cell    is given by:    
   

     Where’s: 

 µ is the maximum number of clones that any cell 

could have (fixed parameter). 

   
  is the fitness norm to cell number  , and is 

calculated by :   
  

       

         
 which is obviously a 

number in the range ,   - 
 

For example, let us have a minimization problem with 5 

cells that have the finesses:                     
             

Hence,                    and this leads to   
  

    
         

         
             

   . 

 Now for different values of   we find that: 

𝝁 Number of clones for cells 

10    
       

      
      

      
   

20    
       

        
       

      
   

 
It’s clear that I-opt-aiNet is biased towards cell’s fitness’s 

values at the cloning process. Because despite that the first 

cell has the least fitness, it still gets much more clones 

than the other cells. 

 Mutation 

All clones then undergo somatic mutation so that they 

become variations of their parent. The affinity 

proportional mutation works in the same way as in [1]. It 

is performed according to the following expression: 

        (   )  

  (  )    
⁄   

Where    is a mutated cell  ,  (   ) is a Gaussian random 

variable of zero mean and standard deviation    ,   is a 
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parameter that controls the decay of the inverse 

exponential function, and    is the fitness of an individual 

normalized in the interval  ,   - . A mutation is only 

accepted if the mutated cell    is within its range of 

domain. 

 Evaluation (Phase two) 

All newly created mutated clones needs to be evaluated. 

The evaluation process goes the same way as the first 

evaluation phase. Those clones get evaluated against the 

objective function and are then marked as 

“EVALUATED”. 

 Selection (Phase two) 

A subset of the mutated clones is selected to be added to 

the population and the rest is removed from the cloning 

pool. The selection is made using the same method 

discussed in the first selection phase with the help of BFA. 

That is, all mutated clones with fitness less than BFA of 

the current iteration are kept in the pool, while the rest are 

removed. 

This selection phase is necessary to ensure that no bad 

cells exist in the population so the algorithm converges 

faster. 

 Network interaction 

Next the algorithm determines the affinity of all cells in 

the network. Suppress all but the highest fitness of those 

cells whose affinities are less than the suppression 

threshold (a parameter) and determine the number of 

network cells, named memory cells, after suppression. 

 Diversity 

At the end of any iteration, new cells are generated 

randomly to be added to the population in the next 

iteration. The number of cells to be generated is the same 

number of cells removed in parent cell’s selection stage. 

It should be noticed that the number of removed cells (or 

added cells) in I-opt-aiNet is not fixed and varies 

dynamically throughout the iterations. 

4. Validating the performance of I-opt-aiNet 

The new variant of opt-aiNet proposed in Section 4, I-opt-

aiNet, was implemented by modifying the opt-aiNet code 

kindly obtained from [10] which formed part of [11]. The 

implementation had been experimented against the opt-

aiNet with two metrics were tested. These were the 

number of evaluations taken to obtain a solution and the 

quality of the solution obtained, which is a standard 

benchmark criteria. Table 1 contains the details of suitable 

number of functions (ranging in dimensions) that were 

selected from an established literature on which to 

perform these tests. In addition, the parameters for I-opt-

aiNet have been selected experimentally and the values 

presented for the original opt-aiNet were empirically the 

best performing parameters for these functions and all the 

parameters values can be reviewed in Table 2. The reader 

is referred to [1] for further analysis of the sensitivity of 

original opt-aiNet parameters.  

Table 1: Functions Employed For Experimentation 

Name Function 

F1 
 ( )    (      )     (        )        

Where,       

F3 
 ( )    ∑     ,(   )   - 

     

Where,          

Branin 

 (   )    (          )   (   )    ( )    
 

Where,                    ⁄⁄  

              ⁄  

                    

Pshubert 1 

 (   )   *∑     ,(   )   - 
   +  *∑     ,(   

   

 )   -+   ,(         )  (         ) -  
 

Where,                 
             

Pshubert 2 

 (   )   *∑     ,(   )   - 
   +  *∑     ,(   

   

 )   -+   ,(         )  (         ) -  
 

Where,               
             

Quartic 
 (   )  

  

 
 

  

 
 

 

  
 

  

 
 

 

Where,                      

Shubert 

 (   )   *∑     ,(   )   - 
   +  

 *∑     ,(   )   - 
   +  

 

Where,                       

Table 2: Algorithm Parameters 

Algorithm Parameter Value 

I-opt-aiNet 

Initial population size In {10, 100} 

Maximum number of clones 10 

Stable state limit 100 

Suppression threshold 0.2 

Scale of affinity proportion selection 100 

Opt-aiNet 

Initial population size  20 

Suppression threshold  0.2 

Number of clones generated  10 

Percentage of random new cells each 

iteration 

40% 

Scale of affinity proportion selection 100 

 

The new algorithm was then applied to the selected 

functions to compare it with the results obtained for 

applying the original opt-aiNet on the same functions 

published in [12]. Tables 3.a and 3.b provides a set of 

results averaged over 50 runs for the functions being 
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optimized. I-opt-aiNet was executed until either the 

minimum value was found, or 500 iterations had passed 

just as in [12]. All results reported presented with standard 

deviations where greater than zero. The columns in Table 

3.a represent (in order from left to right): the objective 

function, the minimum possible value for that function, 

the next two columns show the value located by each 

algorithm for that function. Table 3.b shows the average 

and the standard deviation of the number of evaluations 

taken to achieve that minimum result. The number of 

evaluations is the cumulative value for the number of 

times an individual in the population called the evaluate 

function method. 

Table 3.a: Optimum value averaged over 50 runs for the functions being 

optimized 

Table 3.b: Average and standard deviations of the number of evaluations 
over 50 runs for the functions being optimized 

 

 

Figure 3: Average number of evaluations for functions F1 and Branin 

 

Figure 4: Average number of evaluations for functions Pshubert 1 and 

Pshubert 2 

 

Figure 5: Average number of evaluations for functions F3, Quartic, and 

Shubert 

Looking at the data provided in Tables 3.a, 3.b and 

Figures 3, 4, and 5 above; both the algorithms performed 

well at finding optimal solutions for all of functions 

presented. Therefore, in terms of the metric for quality of 

solutions there seems little to distinguish the two 

algorithms. However, when the number of evaluations is 

taken into account, there is a significant difference in the 

number of evaluations taken to obtain the solution. That 

significant difference is a strong evident on the less time 

needed by I-opt-aiNet to converge to global optimum. 

Also, the standard deviation of the number of evaluations 

was very small for I-opt-aiNet in comparing with opt-

aiNet. This is a good indicator on how stable is the 

solutions in case of using I-opt-aiNet. Using these 

statistics we can see that I-opt-aiNet outperformed the 

original algorithm noticeably. 
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Function 
Actual 

optimum 
opt-aiNet I-opt-aiNet 

F1 -1.12 -1.12 -1.12 

F3 -12.03 -12.03 -12.03 

Branin 0.40 0.39 0.39 

Pshubert 1 -186.73 -180.83 -186.72 

Pshubert 2 -186.73 -173.16 -186.71 

Quartic -0.35 -0.26 -0.35 

Shubert -186.73 -186.73 -186.73 

Function opt-aiNet I-opt-aiNet 

F1 6717 ±.538 388.7 ± 106.5 

F3 41419 ± 25594 973.74 ± 282.82 

Branin 6346 ± 4656 2275.6 ± 422.61 

Pshubert 1 363528 ± 248161 25331.3 ± 9264 

Pshubert 2 346330 ± 255980 25762.3 ± 4574.1 

Quartic 54703 ± 29701 2658.6 ± 451.2 

Shubert 50875 ± 45530 3270 ± 887.9 
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Conclusion 

This paper has presented I-opt-aiNet algorithm, which is 

an improved version of the well-known immune algorithm 

opt-aiNet for solving optimization problem for multimodal 

functions. The improved version of opt-aiNet has 

introduced new method for selecting cells, cloning cells, 

adding cells for diversity and replaced a stopping 

condition for a smarter one. It was theoretically and 

experimentally compared with opt-aiNet. The 

performance was illustrated for seven functions. The 

algorithm demonstrated to be capable of finding global 

optima with much smaller number of function evaluations, 

comparing to the original algorithm. The promising results 

of this version of the algorithm obtained for multimodal 

function optimization encourage using the algorithm for 

other optimization or even dynamic optimization problems. 
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