
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

109

Manuscript received March 5, 2011
Manuscript revised March 20, 2011

Efficient Dynamic Load Balancing Algorithms for Multiclass Jobs
in Peer to Peer Networks

Pavankumar Kolla* , Kola Haripriyanka**

*School of Computing Sciences, VIT University, Vellore - 632014, TamilNadu, India.

**department of Information Technology, Sri Mittapalli college of Engineering,Guntur(AP),India
.

Abstract:
Load balancing is an important concept for the efficient operation
of peer to peer networks. We present three new dynamic load
balancing algorithms, those performance guarantees optimal. The
first, Queue with consistent hashing algorithm, that balances the
multiclass jobs are executed on the specified range of peers
having its own capability. The second, Rate with random
adjustment algorithm balances the multiclass jobs are executed on
specified peer. The third approach combines the both approaches
to schedule jobs on specified peer. Here, we are taken similar jobs
under single class, and the different classes form a multiclass job.
Keywords:
scheduling, load balancing, peer to peer systems, queuing theory,
mean response time.

1. Introduction

A core problem in peer to peer systems is the distribution
of processes to be stored or computations to be carried out
to the nodes that make up the system. These systems might
have various processors with different processing
capabilities, connected by two-way (either way)
communication links, and each has their own
resources/buffers. In those systems, if some hosts remain
idle while others are too busy with the processes, system
performance will be affected significantly. To avoid this,
load balancing is regularly used to distribute the jobs and
improving its performance measures like mean response
time. Several influencing factors are depending upon the
designing issues of load balancing algorithms, for example,
network bandwidth, network topology, arrival rates of jobs
at each processor in the system. Load balancing algorithms
can be classified as either dynamic or static.
To scale performance, Dynamic Load Balancing distributes
IP traffic across multiple cluster hosts. The client does not
need to wait for long time to complete its process. So, the
throughput is increased, CPU overhead and response time
is reduced. It also ensures high availability by detecting
host failures and automatically redistributing traffic to the
surviving hosts. Dynamic Load Balancing provides remote
controllability and supports rolling upgrades from an
operating system.

A Dynamic algorithm proceeds further based on the status
of the system at that instance. Here the status may be
related to any class of information [2] at each processor.
Where as a static algorithm [2] do its jobs by a fixed policy
irrespective of system status. We can reduce the additional
computation overheads by introducing the proxy like a
coordinator in the distributed systems, which have the
information of all the peers and takes the decision
according to the situation of processors. By introducing a
proxy we will compensate the system performance by
reducing the additional over head. To understand the
distributed peer to peer system working model, each node
(scheduler) independently handles all its overheads, such as
computation and communication overheads. Some
solutions were proposed to decrease the communication
overheads, by estimating the current condition of the peers
in the system. From the literature survey we analyzed how
effectively we can use randomization in the load balancing
problem. On observing the simulations of Li-Kameda [3]
and FD algorithm [4], still the computation overheads are
high. As an example, Li-Kameda algorithm takes more
than 400 seconds (approximately) and FD algorithm is
taking more than 105 seconds for solving a general case [4].
If we use LBVR algorithm [2], which was proved that the
convergence rate of LBVR was super-linear. Convergence
rate give an idea of computation overheads. As the
convergence rate increases computation overheads will be
reduced significantly. It is observed that the LBVR
algorithm generates optimal solution within 0.1 seconds for
distributed systems [2]. Based on LBVR we propose the 3
distributed dynamic load balancing algorithms. And also
we are extending our work in this paper for peer to peer
networks also. The new algorithms are QARVR, RRAVR
and QCHAVR. Now in our paper we show how we
implement these algorithms for multi class of jobs for
processing. We also consider the peer to peer network
nodes also. These algorithms analyzed in terms of
minimization of mean response time, the load balancing
ability. Based on these proposed algorithms the
performance of the distributed dynamic load balancing will
give the optimal solution.
The Proxy mainly perform the following five operations

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

110

• Cluster Identification
• Load Analyzer
• Efficiency Tracker
• Overhead Reducer
• Performance Reporter

Cluster Identification:
This module is for identifying the cluster hosts using the IP
address, which is a unique for each cluster host. Proxies
use this IP address for sending the requests to one
particular server for processing.

Load Analyzer:
This module identifies the configurations of each cluster
hosts and nodes. So, the workload is fully distributed
according to the configurations. It also identifies the server
failure. If any server give a failure report, immediately no
one requests are send to
that server. That failure server’s workload is shared by
other servers that will do the same process. The network
continues its function in good manner.

Efficiency Tracker:
This module which keep track of each cluster hosts and
nodes priority, which maintain the cluster will keep
maximum possible numbers of task's (higher is better). It
will keep the system more effective and efficient.

Overhead Reducer:
This module is for removes the cluster hosts and nodes
which have low prior and requires more time for perform
the workload. Due to this process we can avoid bottlenecks
situation by using a centralized dispatcher. It also used to
maintain a throughput as high. Response time is inversely
proposal to the throughput i.e.) if the throughput is high
then the response time is low. So, the clients did not wait
longtime.

2. The Peer to Peer System Model and
Dynamic Load Balancing Algorithms
Classification

We present a general system model peer to peer [1] in the
design of the algorithms. We consider a general peer to
peer system shown in Fig. 1.
Peer to Peer network:
The system have N peer to peer heterogeneous nodes
having a processor, which represent the node having
different computational capabilities, and these nodes are
communicated with each other via communication links
with full duplex communication. Here there are n different
class of jobs for example such as video, audio, data are
submitted at each node .A class of job arriving at peer j

may either be executed or performed locally or transfer
through to another peer k(k Є N) for remote execution.
The service time of a particular class of job is a random
variable that follows an exponential distribution with mean
1/µj, where µj denotes the average class job service rate of
peer j and represents the rate (in jobs executed per unit
time) at which peer j operates when busy. The queue
having different class of the jobs in each peer is first come
first serve policy and the buffer space is infinite. Once a
class of a job starts executing in a node, it is allowed to
complete execution without interruption and cannot be
transferred to another peer at that time.

In this model, we assume that there exist a communication
delay occurred when a class of a job is transferred from
one peer to another before the class of a job can be
executed in the system and denote pjk(t) as the class job
flow rate from peer j to peer k (k Є N) at time t. Further,
we assume that each link (j,k) can transfer the load at its
own transmission capability .We denote k as the set of
transmission capacities of all the links and kkj as the
transmission capacity of a link (j,k), kjk Є k.
A peer to peer network system for load balancing
algorithms, the model for a node is consists of a scheduler,
an infinite buffer to hold the different class of jobs, and a
cpu. The scheduler is to schedule the jobs arriving at the
peer such that the mean response time of the jobs is a

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

111

minimum. In residing of scheduler we classify the
algorithms as follows presented in section3.

3. Algorithms

All the peer to peer to peer network systems information
such as ip address ,specifications of each processor(speed,
memory, the class of problems it can execute) is shared
among the network before starting its operation. If any new
node wants to be in the network, the
node must share the information about is specification.
Each peer has a database that stores about the specification
of all nodes in the network. Each node has a proxy
scheduler in it. We have a database table that stores the
utilization corresponding to each node is shared and update
the query tables when ever change is occurred.
First, the jobs are submitted to the proxy scheduler in the
node. After then the proxy will decide based on class of job
which has to execute on a node such that load is balanced.
The scheduler in each node follows the three algorithms
(I) when system utilization is low, RRAVR performs much
better than QCHAVR and QARVRW with a relatively
longer status exchange interval, which means less
communication overhead.
(II)When system utilization is very high, QCHAVR
performs the best among the three load balancing policies
with high communication overheads.
(III)When the system utilization changes rapidly, QARVR
is suitable and can achieve good performance with
moderate communication overhead.
The parameters are
N=Number of nodes in the peer to peer netwoks,
U=percentage of utilization of processor
=(number of particular class of jobs executing
currently/maximum number of jobs proceesr execute)*100,
Ipaddr=peer to peer network IP address,
Portno=specifying the particular class of job is goin to
executed on a processor,
Jobid=class name of the job,
Queue=datastructure storing the jobs in first in first order,
QL=number of jobs waiting in the queue,
Cjcount=class job count ;

(i): Rate with random adjustment algorithm via Virtual
Routing (RRAVR):
Procedure for proxy (jobid, portno, ipaddr1)
do
Step1.
Decide the class of job based on job id with port no
and identify the node ipaddr1.
Step2.
Query the database tables that store the information
about the utilization corresponding to the jobid (class
of job) and corresponding proceeds ip addr in which

minimum utilization is there. Result ip address are
sent to step 3
Step3.
If the array of node ips of the result is one of the
nodeip1(its own ip)
Then allocate the job to node, if the ip is itself then
step4;
break;
Else(result array.length == 1)
Then allocate the job to resulted node and retun step4;
break;
Else(result arry.length>1)/*That is two or more nodes
having the minimum value */
Randomly allocate any of the processors available
and return step4
break;
Step 4:
Cjcount=cjcount+1;
Update the utilization factor based on updated
cjcount;
Send this updated value to all other nodes;
Step5:
Return the ipaddr;
Return;
End
}

(ii) Queue with consistent hashing algorithm via Virtual
Routing (QCHAVR):
Procedure for proxy(jobid,portno,ipaddr1)
{
begin
Step1.
Decide the class of job based on jobid with portno and
identify the node ipaddr1.
Step2.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

112

Query the database tables that store the information about
the utilization corresponding to the jobid (class of job)and
corresponding proceers ipaddr in which minimum ql(queue
length) is there.result(arry) ip address are sent to step 3
Step3.
If the array of nodeips of the the result is one of the
nodeip1(its own ip)
Then allocate the job to node it self and goto step4;
break;
Else(result array.length == 1)
Then allocate the job to resulted node and retun step4;
break;
Else(result arry.length>1)/*That is two or more nodes
having the minimum value */
allocate any of the processors available with result form
hash function and return step4
break;
Step 4:
Cjcount=cjcount+1;
Update the utilization factor based on updated cjcount;
Send this updated value to all other nodes;
Step5:
Return the ipaddr;
Return;
End
}

(iii) Queue and rate with algorithm via Virtual Routing
(QARVR):
Procedure for proxy(jobid,portno,ipaddr1)
{
begin
Step1.
Decide the class of job based on jobid with portno and
identify the node ipaddr1.
Step2.
Query the database tables that store the information about
the utilization corresponding to the jobid (class of job)and
corresponding proceers ipaddr in which minimum of

(utilization*ql) is there.result(arry) ip address are sent to
step 3
Step3.
If the array of nodeips of the the result is one of the
nodeip1(its own ip)
Then allocate the job to node it self and goto step4;
break;
Else(result array.length == 1)
Then allocate the job to resulted node and retun step4;
break;
Else(result arry.length>1)/*That is two or more nodes
having the minimum value */
Randomly allocate any of the processors available and
return step4
break;
Step 4:
Cjcount=cjcount+1;
Update the utilization factor based on updated cjcount;
Send this updated value to all other nodes;
Step5:
Return the ipaddr;
Return;
End
}

4. Performance evaluation and Results

We have deployed software which takes ip address as the
nodes identity and a scheduler is placed in each node for
load balancing the multi class jobs. (Here we have taken
three multiclass jobs such as sum, multiplication, division)
we analyze the performances of these algorithms with
respect to the load on the system. First, in our simulation,
we set job arrival rate =0.1 jobs/sec and then increase the
value by 0.005 jobs per step. Also, we set time to service
each job is 60 seconds and time to execute that job 20
seconds in our experiments. When the average system
utilization is greater than 0.95, we terminate the simulation.
The results of our experiments are shown in Fig.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

113

From these simulation experiments, we can conclude that,
when the system load is light or moderate, the algorithms
of RAP policy are preferable to obtain a minimum (or near
minimum) mean response time of the jobs. If the load of
the system is high, the algorithms of the QAP policy can
achieve a better performance. The algorithms of the QRAP
policy are suitable in the cases when the system load is
fluctuating.

Performance Reporter
This modules generates the graphical visual report for the
performances of the each cluster hosts. If there is a
variation in the performance of the each cluster host affects
and effects will be shown as a graphical visual display of
the work load balance. Using this graphical report, the
administrator easily knows the overhead of all servers in
the network.

Testing results:
In Dynamic Load Balancing at we carry out the
PERFORMANCE and VOLUME test. By the performance
test I came to the conclusion that the rate of my products is
Normal. The ITG Rating is 59%. I hope that I will improve
the performance soon. In Volume test I analysis what’s my
capacity on data storage. It is so good on basic level. If
suppose I will use some normalization on accumulate data,
5% of strength is concentrated.

The mean response times for normal class jobs for three algorithms (in
seconds)

Class of job rate queue Rate and queue

Sum 0.2045 0.2080 0.1789
Multiplication 0.3165 0.3125 0.3224

Division 0.3845 0.3467 0.3120

5. Conclusion and future enhancement

In this paper first we have discussed the problem of load
balancing in peer to peer networking systems. Based on the
LBVR algorithm we have extended the features of the
RRAVR AND QCHAVR algorithms and we have

proposed one algorithm for Dynamic Load Balancing
among the peers, hence the computation over heads are
small [3]. Dynamic Load Balancing scalability determines
how its performance improves as hosts are added to the
cluster. Scalable performance requires that CPU overhead
and latency not grow faster than the number of hosts.
If the number of servers and operations of a scheduler
increases, eventually overhead on the proxy to manage the
request also increases. So, in future we can also maintain
more number of proxies in order to perform more number
of tasks. In our paper we are not primarily concerned with
the security issues. We are just sending client requests
through the Network. But if it is for ATM purpose then it
will be prolonged to secure transactions. So, in future we
can add the security purposes to this project.

References:
[1] Ying Qiao,Gregor V.Bochmann,”A Diffusive load Balancing

Scheme for Clustering peer to peer system”,2009,15
International Conference on Parallel and Disrtributed
Systems.

[2] Zeng Zeng, and Bharadwaj Veeravalli, “Design and
Performance Evaluation of Queue-and-Rate-Adjustment
Dynamic Load Balancing Policies for Distributed Networks”
IEEE TRANS. ON COMPUTERS, VOL. 55, NO. 11,
NOVEMBER 2006

[3] Z. Zeng and V. Bharadwaj, “A Static Load Balancing
Algorithm via Virtual Routing,” Proc. Conf. Parallel and
Distributed Computing and Systems (PDCS ’03), Nov. 2003

[4] J. Li and H. Kameda, “Load Balancing Problems for
Multiclass Jobs in Distributed/Parallel Computer Systems,”
IEEE Trans. Computers, vol. 47, no. 3, pp. 322-332.

PAVANKUMAR KOLLA received
B.Tech.,Information Technology, From
JNTU Kakinada and currently pursuing
M.Tech., computer science and
engineering in VIT University
Vellore ,Tamilnadu ,India. His areas of
interest are Algorithms ,computer
Networks, data mining and software
engineering. He got jntu Kakinada 18th

rank out of 300 colleges in B.Tech.

KOLLA HARIPRIYANKA pursuing
B.Tech.,Information Technology, in Sri
Mittapalli college of engineering affiliated
by JNTU Kakinada University India.

