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Summary 
In this paper we have addressed the delay problem for real time 

control system. Real time control systems response is critical for 

any abnormal condition. We have modeled a communication and 

control system for system delay by using dymonda software that 

describes both the system hardware and software conditions. We 

have programmed an echo server and client application on 

VMware player for a parallelized client server delay computation 

and a single program, parent child thread application to compute 

elapsed time for resource allocation for parent and child threads 

in Matlab. We have modeled a communication network delay for 

a proposed CANDU SCWR Hydrogen co-generation unit, using 

state of the art Dynamic Flow Graph (DFM) methodology to 

analyze the system delays. Model expressions and results yield 

insight into the design of communication delay model.   
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1. Introduction 

System reliability and safety analysis has always been an 

important topic in industry and reliable communication 

network can enhance system safety and reliability.  

Echo server is similar to IPCONFIG command that echo 

calls to all the associated hardware devices. In control 

network the echo server is an application receiving 

multiple communications from echo clients. We can 

assume echo server as a Structured Query Language 

(SQL) database application accepting connections of echo 

clients through their unique mac or IP address. Sensors 

and actuator nodes lack memory and transmit information 

in the form of unified data and control information on 

packets with embedded mac address. In our Echo model 

we have programmed an echo server call and an echo 

client response for a client server connection for a 

clustered control network. Our model uses the multiple 

parallelized thread or hardware clusters using Flynn’s 

taxonomy.  

The paper is organized into eight sections. Section two is 

the background section that develops the DFM 

methodology knowledge base. Section three defines the 

network delay model and levels of its control. In section 

four and five the java coding of echo server and echo 

client is described. The logic for concurrent  

parallelized model is explained in section seven of the 

paper and total computed delay for context switching and 

interrupt latency are shown. Section eight discusses the 

outcomes of the computations.    

2. Background 

CANDU SCWR is proposed nuclear power plant model 

that can generate electricity with lower cost and improved 

efficiency [1]. The Ontario region of Canada is producing 

22000 MWe [2] of electricity (on average) from both 

conventional and non conventional sources and only 68 

percent of it is utilized by the consumers. We assume that 

this energy network has the CANDU SCWR unit and the 

excess heat and power generated can be integrated to a 

carbon free hydrogen production unit. This integration not 

only can improve the power generation throughput but can 

also produce carbon free hydrogen fuel.  

Amongst various risk assessment methodologies the 

dynamic flowgraph methodology (DFM) [3-6] is 

considered as an advance approach for a dynamic system 

reliability analysis. A dynamic system can be modeled and 

analyzed for reliability and safety through DFM. In a 

dynamic system DFM model, the variables and control 

system are represented through a time based logical cause 

and effect relationship. The results generated through 

DFM analysis are multi valued discrete events that can be 

initial, intermediate, and final events. These set of events 

that generate an unanticipated condition due to software 

logic errors, hardware failures and environmental 

conditions or can generate anticipated conditions 

representing the system behavior.               

The DFM model works on two algorithms and it contains 

various components that are described as below: 

 

2.1 Deductive Algorithm:  
 

It is the backward analysis from effects to causes. The 

backward analysis finds the set of variables through nodes, 

edges, transfer and transition boxes that generate a set of 

prime implicants. 

 

2.2 Inductive Algorithm: 

 

It is the forward cause and effect analysis. For a particular 

set of inputs, the outputs can be normal outputs or may 

contain errors. The desired states can verify the system 
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requirements whereas the undesired states can verify the 

system safety behaviour.  

 

2.3 Prime Implicants: 

  
The DFM system model represents both the hardware and 

software conditions. All the system components in a DFM model 

have pre-defined conditions. Similarly the software used for 

system control and monitoring has initial set points. The 

combination of both the system and the software conditions 

produce a set of prime implicants. Based on the system 

knowledge the user can define the system top events. The system 

top events are normally critical conditions that may lead to 

system failure. Prime implicants are output of deductive analysis. 

The shortest way from fault to an initiating event in a DFM 

model is called a Minimal Cut Set (MCS) which eventually leads 

to a top event that can cause system failure. A qualitative analysis 

of DFM model with unknown event and failure probabilities 

gives us the MCS. MCS is said to be in disjunctive normal form 

if either an MCS `A` is in a fundamental conjunction (AND) or 

in a disjunction (OR) of two or more fundamental conjunctions. 

As DFM model deals with a set of large size of variable 

functions, and we get a product form that cannot be reduced by 

further merging, is called prime implicant. 

A DFM model analysis produces a set of prime implicants, 

and a complete base that contains all of the system prime 

implicants generates a top event, which is the final state of 

the DFM model. A DFM model comprises variable and 

condition nodes; causality and condition edges; and 

transfer and transition boxes with decision tables.  

 

2.4 Process Variable Nodes:  

 

These nodes represent the physical variables and 

corresponding control system states. Digital control 

system processes can be represented by software or 

hardware node. The node can be discrete or continuous 

with multiple states that can be generated according to the 

particular variable. It can be failure or working, true or 

false, normal or exception, low or high, or multiple 

conditions.  

2.5 Causality Edges: 

 

The cause and effect relationship between different 

variables within the DFM model is defined through 

causality edges. The edges functional relationship is 

developed by connecting to a transition box, or to a 

transfer box with the process variable nodes. 

 

2.6 Transfer Boxes and Associated Decision Tables: 

 

The transfer box can represent the outcome of two or more 

process variables. The system knowledge can generate a 

logical relation between the anticipated outputs. The 

possible combinations that can truly reflect the system 

behavior can develop the decision table. The table is based 

on logical operators and the number of inputs associated 

with it. The Pseudo code forms a logical link between 

various possible system states and predicts system 

behavior in normal and abnormal conditions. The decision 

table entries are crucial for the system model, as improper 

selection can result in erroneous outcomes. A judicial 

combination results in stable system model.  

 

2.7 Condition Edge: 

 

These are used to represent the control logic mapping 

input variable to output variable states. The conditional 

connection sets possible logical conditions for the 

associated transfer box. The set of inputs together with 

specific conditions associated with the transfer box can 

produce specific outputs.  
 
2.8 Condition Nodes: 
 

The nodes represent the physical or software parameters. 

The conditions can be failure of component, process 

changes or software switching mode. The conditions are 

discrete variable with finite possible outputs. 

 

2.9 Logic Operators: 

 

Dynamic flow graph methodology generates logical 

decision tables which are combination of Boolean 

operation of NOT (negation), AND (conjunction), OR 

(disjunction), XNOR (equivalence), NAND (NOT AND), 

XNOR (bi-conditional) and XOR (implication). 

 

 
 

 

 

 

Fig. 1 shows the DFM model components of the proposed 

co-generation model. 

3. The Network Delay Model: 

The network delay model we are assuming for the co-

generation model is shown in Fig. 2.  

Low Level -1 
Normal 0 
High Level 1 

Fig. 1 DFM Model Component of CANDU SCWR 

Hydrogen Co-generation Model 
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Fig. 2 Co-Generation Plant Delay Model 

 

The DFM Network delay model nomenclature is given as 

follows: 

 

HCD: Hardware Computation Delay 

HRD: Hardware Response Delay 

DS: Device Status 

HD: Hardware Delay 

ALD: Application Layer Delay 

MLD: Mac Layer Delay 

PLD: Physical Layer Delay 

OLD: OSI Layer Delay 

SS: Software Status 

PRE: Pre-Processing Delay 

POST: Post-Processing Delay 

DR: Data Rate 

DS: Data Size 

PF: Protocol Frame 

FD: Frame Delay 

CMD: Communication Medium Delay 

RTD: Retransmission Delay 

BD: Back off Delay 

QD: Queuing Delay 

NS: Network Status 

TD: Transmission Delay 

CD: Communication Delay 

DEL: Total Delay 

 

The control network of the co-generation model has delays 

between sensor and controller and between controller and 

actuator. We have formed six levels of controls shown in 

Fig. 3.  

Level 1: The delays can be broadly categorized into as 

hardware and software delays. This level describes the 

hardware component computation delay and the response 

delay that is when a component receives the input it 

computes the values by a pre-programmed logic and then 

takes an action. The time delay between the signal 

received and computational result is computation delay 

and the time elapsed between the computation and actual 

response is the response delay. 

Level 3: This level describes the same delays for the 

receiver node. 

Level 2: The Pre-processing delays are normally 

calculated at the sender end. For communication network 

between sender and receiver, three OSI model layers are 

involved. The software is at the application layer and the 

delays due to software are described as (software) 

application layer delays. The second OSI layer involved in 

communication delays is OSI MAC layer. It is part of the 

data link layer and it forms an interface between the 

software which is the application layer and the hardware 

which is the physical layer. . The delays at the physical 

layer depend on the hardware such as cables, nodes, 

junctions, repeaters, amplifiers and many other types of 

equipment. The physical layer converts digital data to 

analog signals and adds the necessary headers and senses 

the carrier medium before transmission.  

Level 4: This level describes the same type of processing 

delays for the receiver end. 

Level 5: The transmission delay depends on the data rate 

of the transmission from sender to receiver, the data size or 

payload that needs to be transmitted between sender and 

receiver, and finally on the protocol frame format. For 

example many protocols involve retransmission techniques, 

error checking headers, acknowledgement, encoding bits, 

and various other information therefore frame size is a 

major component in the frame transmission delays. 

Level 6: Different medium of transmission have different 

delays. The medium can be a wired or wireless. The 

medium delays depend on the distance of transmission, 

adjacent interference and the given transmission frequency 

per unit time. For multiple frames competing for a single 

medium a buffered queue is used to minimize packet drop 

rate and to optimize the packet transmission. Number of 

packets arriving at the buffer, number of packets leaving 

the buffer, and the queue size can play an important role in 

the buffer delays. There are several queuing techniques 

that are commonly used in communication channel to cope 

with congestion. In wireless communication the chances of 

collision or packet drop are higher therefore a 

retransmission algorithm is employed by the protocol 

selected and these retransmissions cause delays. These 

three delays combined with the frame transmission delay 

are the actual transmission delays. 

For hardware delay, Ds is the device status.Hardware 

delay control involves device status, sleep, idle and 

working. The hardwired devices compute the commands 

and generate response. These delays are also called 

interrupt latency that involves system main controller 

BIOS host, dependent slave devices and the bridge that is 

hardwired interface between interrupt requests (IRQs).  

IRQs are tri-state mechanism with sample, recovery and 

turn around phase all depending on the CPU clock cycle. 

 

 
Actuator  Cu-Cl Hydrogen 

Plant 
 

Sensor  

Communication  
Network Delay 
 

Communication  
Network Delay 
 

Controller 

Actuator  
CANDU-SCWR 
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Sensor  
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The CPU clock cycle delay for one clock cycle is assumed 

as 170 nano seconds for our system. Vendors have 

specified their system clock cycles, and we are assuming 

the PCI Bus delays for a 25 MHz CPU clock cycle as 3.84 

micro seconds and for 33 MHz CPU clock cycle as 2.88 

micro seconds. 
OSI layer delay which comprises has node condition of SS, 

which is the software status with busy, idle and wait states. 

Transmission Delay (TD) comprises NC, which is the 

network condition; and either it is contention free or 

contention full. 

In our dymonda [7] DFM model, we have modelled the 

communication system delays. Application layer is the 

upper most layer on OSI model, and we have defined 

permissible and exception level of delays on the OSI 

application layer. In concurrent programming 

various applications are working in parallel and are 

assigned thread numbers from 1 to n. These threads can be 

prioritized or non-prioritized, synchronized or a 

synchronized.  

Every thread is timed in and timed out by thread server 

application which throws an exception on thread time out 

and takes in another application in a round robin 

mechanism. Polling is done through an echo server to all 

of the client applications.  

Parallelization can also be achieved at physical layer 

through multiple processors, by adding new hardware 

interfaced through Message Passing Interface (MPI). 

Parallelization at hardware level is expensive and requires 

additional interfaces and programming skills to compute. 

Recent advancements in Very Large Scale Integration 

(VLSI) micro chip technologies have introduced personal 

computers that can perform exponential computations. 

Flynn’s taxonomy of parallel programming is a 

classification method for instructions and data processing. 

The taxonomy classifies four distinct features for 

instructions and data. Flynn’s taxonomy was initially 

developed for hardware interfaces but it is recently 

adapted for single processor multi-data and instructions 

architecture. Various GUI tools like java and dot net 

technologies have built in libraries for threads 

programming. In our model we are assuming software 

parallelized model which can run multiple context 

switched programs. 

 

 

 
Fig. 3 Co-Generation Plant Delay Model 

 

We have analyzed the entire model with multiple 

conditions that can generate more than hundred 

combinations. The discrete values produce top events that 

are critical for the network system. 

For software delay we have defined the conditions as 

threshold minimum, threshold maximum and normal. The 

communication between software and hardware takes 

place through media access layer. The Mac layer delay is 

commonly associated with the communication between the 

concurrent programs and protocols. 

Real time control systems must respond within specific 

time limit and any high order delay can throw an exception 

for a timed out thread. Software and hardware interface for 

controller, sensor or actuator can be interfaced through 

network interface card. The command signals coming in 

from the sensor, controller or actuator and the signals 

going out from the software are time in and time out 

entities respectively. Software delays are associated with 

application, Mac and physical layer. 

We have programmed client server environment for echo-

server connection application for echoing server ports to 

the clients. The port we assumed for broadcast is 69. We 

have designed both the client and server application as 

multi-thread client and server echo application, so that 
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multiple client programs can run concurrently using port 

69. The advantages of thread based communication 

between server and client is that threads share same 

memory address space within the program, context 

switching and communication between threads is 

inexpensive and CPU cycles are efficiently utilized by the 

thread programming. Fig. 4a and b shows the coding in 

java on JCreator LE tool [8]. The results show that server 

echoes the port number ready for client connection. The 

client echoes their identification to the server and a multi-

threaded connection is established through the server 

virtual port and client virtual IP address. 

Fig. 4 and 5 shows the output of server and client echo-

server applications, The Server was run in windows 7 and 

client was run in VM-ware player with Linux (Ubuntu) 

platform. 

4. The Echo Server Code: 

import java.io.*; 

import java.net.*; 

import java.util.Date; 

import java.text.DateFormat; 

import java.text.SimpleDateFormat; 

public class EchoServer extends Thread { 

static final String APP_NAME = "EchoServer"; 

static final int PORT = 6991; 

static ServerSocket serverSocket; 

static int port = PORT; 

Socket clientSocket; 

BufferedReader is = null; 

BufferedWriter os = null; 

public EchoServer(Socket cs) { 

clientSocket = cs;} 

public static void main(String args[]) { 

if (usageOnly(args)) { 

System.exit(0);} 

initialize(args); 

printMsg("EchoServer running on port: " + port + 

"...Ready to accept connections..."); 

while (true) { 

try { 

Socket clientSocket = serverSocket.accept(); 

EchoServer es = new EchoServer(clientSocket); 

es.start(); 

} catch (IOException e) { 

printMsg("Cannot accept client connection.");} } } 

public void run() { 

processClientRequest();} 

private static boolean usageOnly(String args[]) { 

if (args.length > 1 || (args.length == 1 

&& (args[0].equalsIgnoreCase("‐usage") 

|| args[0].equalsIgnoreCase("‐help") 

|| args[0].equalsIgnoreCase("‐h")))) { 

System.out.println("Usage: java " + APP_NAME + " 

[<port>]"); 

System.out.println(" The default port is " + port + "."); 

return true;} else { return false;} } 

private static void initialize(String args[]) { 

processCommandLine(args); 

try {serverSocket = new ServerSocket(port); } catch 

(IOException e) { 

printMsg("Cannot create server socket " + "on port: " + 

port + ". Exiting..."); 

 System.exit(0);}} 

private void processClientRequest() { 

try {os = new BufferedWriter( 

new 

OutputStreamWriter(clientSocket.getOutputStream())); 

is = new BufferedReader( 

new InputStreamReader(clientSocket.getInputStream()));} 

catch (IOException e) { 

printMsg("Cannot handle client connection."); 

cleanup(); 

return;} 

try {String input = is.readLine(); 

if (input != null) { 

input = APP_NAME + ": " + input + " " + getDateTime(); 

os.write(input, 0, input.length()); 

os.flush();} 

} catch (IOException e) { 

printMsg("I/O error while processing client's print file.");} 

cleanup();} 

private void cleanup() { 

try {if (is != null) { 

is.close();} 

if (os != null) { 

os.close();} 

if (clientSocket != null) { 

clientSocket.close();} 

} catch (IOException e) { 

printMsg("I/O error while closing connections.");}} 

private static void processCommandLine(String args[]) {if 

(args.length != 1) {return;} 

port = Integer.parseInt(args[0]); 

if (port < 1 || port > 6881) {port = PORT; 

printMsg("Using port " + port + " instead.");}} 

private static void printMsg(String msg) { 

System.out.println(APP_NAME + ": " + msg);} 

private String getDateTime() {DateFormat dateFormat = 

new SimpleDateFormat("yyyy/MM/dd HH:mm:ss"); 

Date date = new Date(); 

return dateFormat.format(date);}} 
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Fig. 4 Echo Server Output 

5. The Echo Client Code: 

import java.net.*; 

import java.io.*; 

public class EchoClient 

{ 

public static void main(String[] args) throws IOException 

{ 

if (args.length < 2) { 

System.err.println("Usage: java EchoClient 

<99.253.76.32> <255.255.255.0>"); 

System.exit(0);} 

BufferedReader in = null; 

PrintWriter out = null; 

BufferedReader fromUser = null; 

Socket sock = null; 

try { 

sock = new Socket(args[0], Integer.parseInt(args[1])); 

// set up the necessary communication channels 

in = new BufferedReader(new 

InputStreamReader(sock.getInputStream())); 

fromUser = new BufferedReader(new 

InputStreamReader(System.in)); 

out = new PrintWriter(sock.getOutputStream(),true); 

while (true) { 

String line = fromUser.readLine(); 

if (line == null || line.equals("bye")) 

{ 

out.println("bye"); 

break; 

} 

out.println(line); 

System.out.println(in.readLine()); 

} 

} 

catch (IOException ioe) { 
System.err.println(ioe); 

} 

finally { 

if (in != null) 

in.close(); 

if (fromUser != null) 

fromUser.close(); 

if (out != null) 

out.close(); 

if (sock != null) 

sock.close();}}} 

 

 
Fig. 5 Echo Client Output 

 

In parallel programmed client/server, multithreaded socket 

server application accepts multiple client connections and 

creates thread to service every new client. Socket server 

identifies each client connection with a unique ID through 

its IP address. For any residual thread, public void flush() 

flushes the stream. This is done by writing any buffered 

output bytes to the underlying output stream and then 

flushing that stream. The public interface flushable is a 

destination of the data that can be flushed. Socket server 

on receiving quit command quits residual threads. 

Normally running both server and client on the same 

system, gets 0 second because the communication is less 

than 1 ms. For real time system we can measure the delay 

by System.nanoTime() command to measure delay in nano 

seconds. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011 

 

 

153 

6. The Process Time Output: 

 
Fig. 6 Accumulated Delays for Latency and Context 

Switching 

 
Our test for latency and context switching on VMware 

player generates a delay of 26 milliseconds. In all our 

computations and programs we do not consider the system 

idle state processes. System in idle state is still doing some 

processing and delays can be computed for system idle 

state when no application is running and no program is 

computed. It can be understood by the example that a node 

while not transmitting can be sensing the medium and 

receiving beacons and broadcast traffic for the network. 

We assume zero delays for system idle state. 

 

7. Concurrent Programming Logic 

 
The logic behind the concurrent programming model is 

based on Flynn’s taxonomy classification. The single 

program single data model is omitted as it does not satisfy 

the basic parallelized program model. The three logics for 

sensor, controller and actuator model are: 

 

 SPMD = Single Program Multiple Data 

 MPMD = Multiple Program Multiple Data 

 MPSD = Multiple Program Single Data 

 

The logics are defined below: 

 

- If Logic = SPMD 

Initialize Sensor1 Data, Sensor 2 Data 

Initialize Actuator1 Data, Actuator 2 Data 

Start thread 

Program (try, catch) 

Output result 

 

- If Logic = MPSD 

Initialize Sensor Data 

Start thread 

Program1 (try, catch) 

Program2 (try, catch) 

Program3 (try, catch) 

Program4 (try, catch) 

Output result 

                             

- If Logic = MPMD 

Initialize Sensor1 Data, Sensor 2 Data 

Initialize Actuator1 Data, Actuator 2 Data 

Start thread 

Program1 (try, catch) 

Program2 (try, catch) 

Program3 (try, catch) 

Program4 (try, catch) 

Output result 

 

We have implemented the MPMD logic and plot the 

delays of MPMD for three programs i.e. program 1 with 

10 threads, program 2 with 20 threads and program 3 with 

40 threads. The delays are shown in micro seconds for a 

number of iterations. The simulation results show that up 

to 10000 iterations the delays are much higher for the 

program 2 and 3 as compared to program 1 delays. For 

further iterations, the delays of program 1 and program 2 

are more or less similar. The output for multithread control 

network shows that delays of lower order programs (10 to 

20 threads) are much lower than delays of higher order 

programs (40 threads). 

For a multi-thread delay we have used matlab code to 

show the elapsed time between the threads, the total time 

taken by the threads iterations and time taken by the parent 

and child threads as shown in Fig. 8. The graphical 

representation in Fig. 9 shows the parent thread which is 

the main program delay with two child threads delay. The 

program threads occupying the CPU cycle release the 

resources and the CPU cycle time seems to go in negative, 

it is called the wrap around time to reset systems resources 

for the next run. The time in nano seconds appear as zero 

seconds. 

 
Fig. 7 MPMD Logic output for a Control Network 

 

The resources are assigned to the program main thread that 

is the parent thread, with a delay of e seconds. The elapsed 

time is for time switching between threads from parent to 

child or from child to child. The resources allocation and 

deallocation creates a negative void for CPU cycles which 

is actually the wrap around time for the control switch 
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between threads. Its actual value is zero yet it seems 

negative during simulation. 

 

 
Fig. 8 MatLab Delay for Parent Child threads and Elapsed 

time 

 

 
Fig. 9 MatLab Delay for Parent Child threads and Wrap 

around time 

 

8. Conclusion 
 

We have generated a communication delay model using 

the dynamic flow graph methodology. We have considered 

the delays of the co-generation hydrogen production 

communication model. An echo server application is 

programmed that calls the clients connection and establish 

a parallelized connection between the server and the client. 

Real time Network control system reliability increases 

with decrease in delays and we have analyzed that 

concurrent programmed thread applications have higher 

throughput and lesser delays. These delays are associated 

with control levels 1 to 4 of the DFM model. In future 

research we would analyze the DFM control levels 5 and 6 

for queuing and scheduling delays. 

Acknowledgments 

The research is funded by AECL, Canada research funding 

for the clean energy research labs at UOIT, Ontario, 

Canada.  

 

References 
[1] Duffey R. B., I. Pioro and X. Zhou, “Supercritical Water-

Cooled Nuclear Reactors (SCWRs): Current and Future 

Concepts - Steam-Cycle Options”, Proc. ICONE-16, 

Orlando, FL, USA, May 11-15, Paper #48869, 2008, 9 

pages. 

[2] www.weathernetwork.com, Accessed on January 2011. 

[3] Garrett, S., S. Guarro and G. Apostolakis: “The Dynamic 

Flowgraph Methodology for Assessing the Dependability of 

Software Systems,” IEEE Transactions on Systems, Man 

and Cybernetics 25, pp.824-840, 1995. 

[4] Yau, M., S. Guarro and G. Apostolakis: “Demonstration of 

the Dynamic Flowgraph Methodology using the Titan II 

Space Launch Vehicle Digital Flight Control Software,” 

Reliability Engineering and System Safety 49, pp.335-353, 

1995. 

[5] Garrett, S., M. Yau, S. Guarro and G. Apostolakis: 

“Assessing the Dependability of Embedded Software 

Systems Using the Dynamic Flowgraph Methodology,” in 

Dependable Computing and Fault-Tolerant Systems Vol. 9, 

F. Cristian, G. Le Lann, T. Lunt (eds.), Springer-Verlag 

Wien, New York, 1995. 

[6] Houtermans M., G. Apostolakis, A. Brombacher and D. 

Karydas. “Programmable electronic system design & 

verification utilizing DFM.” In SAFECOMP 2000 (F. 

Koornneef and M. van der Meulen, eds.), Lecture Notes in 

Computer Science 1943 (2000), 275-285. 

[7] www. Asecanic.com, accessed on January 2011. 

[8] www.jcreator.org, accessed on May 2011. 

 

Fayyaz Ahmed is currently Research 

Assistant at University of Ontario 

Institute of Technology, Oshawa, 

Ontario, Canada. Previously he has                             

been teaching assistant at McMaster 

University, Hamilton, Ontario, Canada 

for two years. He has also taught at 

Institute of Business Administration Karachi and Hamdard 

University Karachi, Sind, Pakistan. Before moving to 

Canada, he has worked as Nuclear Engineer in Pakistan 

Atomic Energy Commission for twenty years. He 

completed his BA Computer Applications from Allama 

Iqbal Open University, Islamabad, Pakistan in 1996. He 

graduated in Electrical Engineering from University of 

Engineering and Technology, Lahore, Pakistan in 1998.  

He completed his MSc in Computer Sciences, from Al-

Khair University, AJK, Pakistan, MS in Information 

Technology, from Hamdard University, Karachi, Pakistan 

and MSc in Computational Engineering from McMaster 

University, Hamilton, Canada in 2001, 2004 and 2009 

respectively.  Currently he is a PhD student at UOIT, 

Oshawa, ON, Canada. He has worked for Sympatico Bell 

and Alcatel Lucent Canada and is certified with Microsoft, 

Oracle and IBM programming and networking 

technologies since 2000. 

http://www.weathernetwork.com/

