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Summary 
In the last 10 years, Inference of Gene Regulatory Networks from 
Microarray data has become an important research area in 
Bioinformatics. Several algorithms have been proposed and 
Regulatory networks have been inferred with good accuracy for 
Saccromycin cervisea, Escherichia coli, Hela cells etc. A large 
amount of knowledge on various biological systems, e.g. gene 
regulation, metabolic regulations, and signal transduction are 
being continually accumulated over the years, though there 
remains a large portion that is not well understood. This paper is 
a survey of different techniques used for the inference of Gene 
regulatory networks. 
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1. Introduction 

The input to the Gene network inference problem is 
Microarray data. If the Microarray data is Time series, the 
edges of the inferred network indicate the potential 
regulation relationships between genes. Thus a directed 
edge (i, j) would imply that gene i regulates gene j. The 
idea is to consider time-course gene expression 
experiments and correlate sustained positive and negative 
changes in the expression levels while incorporating 
biological considerations. 
Various models have been proposed in literature to 
represent and simulate the behavior of Gene Regulatory 
Networks. Boolean, Bayesian Networks, Differential 
Equations, Weight Matrices, S-System are some of the 
prominent ones.  The actual choice of a modeling 
formalism for a gene network will depend on the type and 
amount of data available, prior knowledge about the 
interactions in the network, nature of the questions one 
needs answered, area of formal training of the modeler, 
experimental and computational resources, and possibly 
other study- or organism-specific factors.  
One important factor in determining a good algorithm is 
the number of time points required to infer the network. 
Most of the algorithms require huge datasets for effective 
determination of the regulatory networks. Another factor is 

the noise in the available gene expression data. Some 
algorithms perform badly in the case of noisy data. 
The models can be classified as deterministic and 
stochastic models.  
In deterministic models the expression states of the genes 
are either given by a formula or belong to a specific class. 
Measured at two different times or places, while keeping 
all other parameters the same, a gene’s expression would 
be the same. The precision of the observed expression 
values, then, depends solely on the experimental setup and 
technological precision, and can be refined indefinitely 
with technological advances. The edges stand for 
relationships, which, like the node states, are also 
deterministic Eg: S-systems, Differential equations. 
Stochastic models, on the other hand, start from the 
assumption that gene expression values are described by 
random variables, which follow probability distributions. 
The difference with the deterministic models is 
fundamental: randomness is modeled to be intrinsic to the 
observed processes, and thus all things being equal, a 
gene’s expression on two different occasions may be 
different. Stochastic edges indicate probabilistic 
dependencies, and their absence may indicate 
independencies between nodes. They are not easy to 
interpret in practice. Eg: Bayesian networks 

2. Differential Equations 

This section reviews the modeling of GRNs using 
Differential equations. 
Differential equations (DE) are the starting point for 
quantitative modeling of complex systems. DEs are 
continuous and deterministic modeling formalisms, 
capable of describing non-linear and emerging phenomena 
of complex dynamical systems. 
DE models of gene networks are based on rate equations, 
quantifying the rate of change of gene expression as a 
function of the expressions of other genes. In this class of 
models, a system of differential equations is used to model 
the behavior of the gene network. This model is best suited 
for inferring structure from data collected from biological 
processes like developmental processes, cell cycle 
processes…etc. 
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Rate equations have the mathematical form 
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Where Each fi(·) quantifies the combined effect of its 
arguments, or regulators, on xi, and it subsumes all the 
biochemical effects of molecular interactions and 
degradation.  
Given observed gene expression data, the first step to 
identifying the gene network is to guess or approximate 
the fi(·)’s. Since the identification process depends solely 
on the form of the fi(·)’s, the functions are typically 
linearized. The reason for linearizing the original system is 
to turn it into a linear differential equation system, in 
which the parameters can easily be fitted to the data using 
linear algebra methods. In practice, the gene expression 
matrix is very long and narrow, that is, there are typically 
many more genes than experiments, 
To infer linear ordinary differential equation systems there 
are two main approaches: (i) Singular Value 
Decomposition (SVD) based methods that calculate a 
solution for the interaction matrix by imposing additional 
mathematical constraints, and (ii) methods to identify 
sparse interaction matrices by combinatorial search 
strategies 

2.1 Linear Differential Equations 

The simplest interesting form that the fi(·)’s can take are 
linear additive functions 

)(.......)()(
)(

11 txwtxwtext
dt

tdx
ninii

i +++=  

With possibly some additional linear terms on the right 
hand side, indicating the degradation rate of gene i’s 
mRNA or environmental effects, which can all be 
incorporated in the wij parameters, assuming their 
influence on xi is linear. The term exti(t) indicates a 
possible controlled external influence on gene i, like a 
perturbation for example, and is directly observable. 
This model takes advantage of the continuous aspect of the 
data and is therefore suitable for genes with periodic 
expression, such as are important in the cell cycle, and all 
genes considered in the model are assumed to show this 
kind of expression pattern.  Disadvantage of this model is 
that very fine sampling times need to be used to 
approximate them. [4], [5] and [31] used linear models to 
infer regulatory networks and claim very good results.  
In the Non-linear Differential Equation model, the 
regulatory effect is represented as a non-linear function. 
[6] Used sigmoid function on the regulators 
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Where the constant k2 represents the rate constant of 
degradation of the target gene product, and k1 is its 
maximal rate of expression; y is approximated with a 
polynomial of degree n 
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Coefficients {a0, . . , an} were computed from the 
experimental gene expression profile using a least squares 
minimization procedure. 
This technique was applied on eukaryotic cell cycle 
dataset published by Spellman et al by [6]. When 
compared to linear model this model gave markedly better 
results both in the sense correct identification of regulators 
and the goodness of fit of the computed target gene 
expression profile. 
Second Order Differential Equation is given as  
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Where Gi(t) is the upstream regulatory function to 
influence the expression profile Xi(t) of the i-th gene while 
ai, and bi are the parameters that characterize the dynamics 
inherent property of the gene like degradation and 
oscillation, and εi(t) is the noise of current microarray data 
or the residue of the model. The regulatory pathway is 
constructed by tracing back Ri regulatory genes from the 
identified regulatory function of the target gene as the 
following kinetic relationship, 
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After the combination of above equations the whole 
regulatory pathway is obtained as 
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[7] Applied this technique to successfully infer the 
circadian regulatory pathway in Arabidopsis thaliana and 
metabolic shift pathway from fermentation to respiration 
in yeast Saccharomyces cerevisiae, It was used in [8] to 
reconstruct the Dynamic Gene regulatory network of 
Cancer cell cycle.  
Stochastic Differential Equation model is given as 
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where Xt  and  Xit are expression level of target gene 
and i-th regulator gene,  ci is contribution of i-th regulator, 
fi is sigmoid function depending on i-th regulator and 
εt,Δt , is a random error generated from the normal 
distribution, i.e. N(0, σ2Δt) 
[9] Suggested and tried to estimate the S.O.S DNA Repair 
network of E.coli with proposed model. The results 
obtained were good but more regulations were liable to be 
detected than expected. [10] coupled the model with 
log-likelihood and Akaike Information Criterion evaluated 
to estimate the goodness-of-fit. An important feature in the 
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SDE model is that dynamics arise as a natural consequence 
of time course in the duration of the cell cycle process. 
The SDE model takes time course into account for 
addressing continuous-time random error in Brownian 
motion. The fitted curves adequately depict differently 
shaped expression patterns while keeping the model 
parameters as few as possible. [11] used enhanced the 
SDE of [10] by using  AIC strategy for the selection of 
the best fitting combination of the pool of regulators. With 
the addition of beta sigmoid pattern, the SDE model 
renders good prediction results even in the case of the 
previously worst fitted genes obtained by [10]  
Any of the above Differential equation models can be 
combined with various Parameter estimation techniques to 
estimate the parameters part of the equation. 
Maximum Likelihood Estimation is one of the widely used 
techniques to estimate the values. For the fixed set of data 
and underlying probability model, this method picks the 
values of the model parameters that make the data "more 
likely" than any other values of the parameters would 
make them. It was used by [7][8]coupled with the Second 
order differential equation technique. 
1.1.1 Least squares minimization technique tries to fit the 
model into the data by estimating the parameters. The 
predicted data and actual data are compared and the error 
is minimized. A related method is the least mean squares 
(LMS) method. It occurs when the number of measured 
data is 1 and the gradient descent method is used to 
minimize the squared residual. LMS is known to minimize 
the expectation of the squared residual, with the smallest 
number of operations per iteration). However, it requires a 
large number of iterations to converge 
AdaBoost was used coupled with SDE in [32] and with 
experiments shown that it was better than any combination 
of SDE, Linear or Weaver model coupled with AIC or 
BIC. 

3. Bayesian Networks 

A Bayesian network consists of an annotated directed 
acyclic graph G (X, E), where the nodes, xi∈X, are 
random variables representing gene expressions and the 
edges indicate the dependencies between the nodes. The 
random variables are drawn from conditional probability 
distributions P(xi|Pa(xi)), where Pa(xi) is the set of parents 
for each node. A Bayesian network implicitly encodes the 
Markov Assumption that given its parents; each variable is 
independent of its non-descendants. With this assumption 
each Bayesian network uniquely specifies a decomposition 
of the joint distribution over all variables down to the 
conditional distributions of the nodes 
 

The approach of Bayesian networks were first applied to 
the problem of reverse engineering genetic networks from 
microarray expression data by (Friedman et al. 2000) 
While a static BN is restricted to be acyclic, a dynamic 
Bayesian network (DBN) can be used to infer cyclic 
phenomena such as feedback loops that are prevalent in 
biological systems. (Murphy and Mian, 2002) are to be 
credited with first employing DBN for modeling 
time-series expression data.  

3.1 Structural Learning of Bayesian Networks  

Structural learning is an unsupervised learning problem 
which can be stated as follows: given a dataset D = {d1; 
d2; :::; dN} of independent observations, find the structure 
that best matches D. Each datapoint dl of the N samples of 
dataset D is a n-dimensional vector dl = {dl1; :::; dln}. 
The process of learning Bayesian networks from the data 
is essentially two-fold 
The first part is model selection: Given observed data find 
the best graph (or model) G of relationships between the 
variables. For model selection, heuristics are used to 
efficiently search the space of models by looking at 
neighboring graphs around a given graph, by adding and 
deleting edges, or reversing directions of edges. Following 
are some of the techniques employed for model selection. 
[33] Used hill-climbing algorithm that at each step 
performs the local change that results in the maximal gain, 
until it reaches a local maximum 
Comparative study of Greedy algorithm, Simulated 
annealing and Genetic algorithm done by [34] proves that 
all three methods return identical networks with high recall 
and precision. However, greedy algorithm performs better 
than the two techniques.  
The second step of Learning Bayesian networks is 
parameter fitting: Given a graph G and observed data find 
the best conditional probabilities for each node. Parameter 
fitting is the easier of the two in general. Given a graph 
model G, good candidates for the best conditional 
probability distributions can be found by various 
techniques 
The expectation-maximization (EM) algorithm is a 
commonly used method to cope with missing data. [17] 
Used a learning algorithm based on the EM algorithm and 
on the Maximum likelihood maximization. [35] Proposed 
a new DBN model embedded with structural expectation 
maximization (SEM), which is capable of efficiently 
dealing with missing data.  
The Bayesian Learning techniques use different scoring 
techniques to evaluate the goodness of the estimation 
done.  
Studies in [34] show that The Bayesian Information 
Criterion (BIC) is a good approximation to the full 
posterior Bayesian Dirichlet equivalent (BDe) score and is 
faster to compute; however, it is known to over-penalize 
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with small amounts of data. BIC penalizes complexity 
more than Akaike Information Criterion (AIC) 
Minimizing the (Minimum Description Length) 
MDL-score is equivalent to maximizing BIC, which is 
exactly the negation of MDL but with a completely 
different origin 

4. Evolutionary Algorithms 

The mathematical modeling of regulatory systems raises 
two problems: 
1. Solutions those appear optimal under the objective 
function, but which do not correspond to the true model. 
These exist, because the system is underdetermined. 
2. Suboptimal solutions, to which the optimization 
methods may converge. 
 
Evolutionary algorithms are stochastic optimization 
techniques that mimic the natural evolution process of 
repeated mutation and selection as proposed by Charles 
Darwin. They have proven to be a powerful tool for 
solving complex optimization problems. 
 
In the evolutionary algorithms technique, there are two 
aspects. 
 
1. Representation of the dynamics of the Gene regulation 
as a model.  
2. Optimization of the parameters of the model using 
evolutionary techniques.  
 
Numerous criteria. e.g., mean squared error, Minimum 
Description Length, Bayesian, Information Criteria, and 
Akaike's Information Criteria, in correspondence with the 
various models that has been employed: 
 
Two popular models used in this technique are S-Systems 
and Linear weight matrices 
 
S-systems allows for capturing the non-linearity and 
general dynamics of the gene regulation. They are a type 
of power-law formalism and can be described by a set of 
nonlinear differential equations:  
 
In Linear weight matrices, the regulative interactions 
between the genes are represented by a weight matrix, W, 
where each row of W represents all the regulatory inputs 
for a specific gene. 
 
Evolved target GRNs is more reliably reconstructed by 
evolutionary algorithms than are 'random' target GRNs, 
and there is often no correlation between the best fit 
expression vector and recovery of the target GRN. 
Therefore, EA methods for biological-GRN reverse 

engineering are favored even if other methods more 
closely match the target expression vector. 

5. Association Rule Mining 

Previous works on gene expression association rule 
mining are mostly based on the ‘support–confidence’ 
framework. In Creighton and Hanash (2003), the Apriori 
algorithm was adopted with some additional criteria, such 
as extracting frequent itemsets larger than size of seven, to 
narrow the search space of candidate itemsets. Even so, 
tens of thousands of frequent itemsets were extracted out, 
many of which were redundant, and it is still very 
time-and-memory consuming to generate rules from such 
large number of itemsets. A manual search was done with 
the itemsets that seemed to be closed (itemsets that were 
not subsets of some larger itemsets), based on which rules 
were finally extracted. Kotala et al. (2001) adopted the 
Peano Count Tree (P-tree) to efficiently calculate the 
support and confidence by a high-order bit first and a 
single attribute first approach. Those methods of setting 
additional criteria to prune the itemsets before and after 
applying Apriori helps to narrow the vast majority of 
frequent itemsets to some extent; however, since the 
relations of gene expression data are very complicated and 
there is little Apriori knowledge about the gene network, it 
is a great challenge for researchers to set the proper 
criteria. 

6. Inference of cancer-specific gene regulatory 
networks  

Inference of gene regulatory network helps in extracting 
lot of information especially in disease related expression 
data. Perturbations of gene regulatory networks are 
essentially responsible for oncogenesis. Therefore, 
inferring the gene regulatory networks is a key step to 
overcoming cancer. Yeh et. al.[39] presented a 
computational method for inferring genetic regulatory 
networks from micorarray data automatically with 
transcription factor analysis and conditional independence 
testing to explore the potential significant gene regulatory 
networks that are correlated with cancer, tumor grade and 
stage in the prostate cancer. A computational framework 
was provided to reconstruct the genetic regulatory network 
from the microarray data using biological knowledge and 
constraint-based inferences. They predicted not only 
individual gene related to cancer but also discovered 
significant gene regulation networks. [40] Proposes a 
method for inferring directed gene regulatory networks 
based on soft computing rules, which can identify 
important cause-effect regulatory relations of gene 
expression. First, important genes associated with a 
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specific cancer are identified (colon cancer) using a 
supervised learning approach. Next, the gene regulatory 
networks are reconstructed by inferring the regulatory 
relations among the identified genes and their regulated 
relations by other genes within the genome. There were 
two meaningful findings. One is that upregulated genes are 
regulated by more genes than downregulated ones, while 
downregulated genes regulate more genes than 
upregulated ones. The other one is that tumor suppressors 
suppress tumor activators and activate other tumor 
suppressors strongly, while tumor activators activate other 
tumor activators and suppress tumor suppressors weakly, 
indicating the robustness of biological systems. These 
findings provide valuable insights into the pathogenesis of 
cancer. 
The complicated molecular mechanism underlying cancer 
lies in the perturbations of gene-interaction networks at 
some level. Therefore, identifying cancer genes and the 
pathways they control through the networks is a key step 
toward overcoming cancer. Generally speaking, directed 
gene regulatory networks reflect the gene interactions 
more genuinely than undirected gene co-expression 
networks in that the principal cause-effect relations 
between genes can be disclosed in directed gene regulatory 
networks. [40] aims at inferring directed gene regulatory 
networks under specific disease conditions using 
formalized rules, which facilitate the interpretability of the 
inference model. First the genes that are relevant to a 
specific disease are identified by supervised learning 
algorithms, and then the regulatory relations among the 
identified genes and their regulated relations by all other 
genes are inferred. Wang et. al’s approach for inferring 
regulation networks is based on soft computing rules. The 
reliability of inferred regulation relations depends on the 
confidence of corresponding rules, which is governed by 
the controllable parameter α. To ensure sufficiently high 
reliabilities of the inferred relations, a high threshold is set 
for α. When analyzing the properties of inferred networks, 
a network was selected induced with a rational value of α, 
which contain substantial and reliable regulatory relations. 

7. Selection of Regulators 

A drawback of all published algorithms for inference of 
transcriptional regulatory networks is that the candidate 
regulators are selected from the pool of potential 
regulators defined independently. If the regulator is not 
identified, it inevitably escapes identification by the 
modeling approach. The less characterized the genome of 
an organism is, the higher the probability of this type of 
error. 
Clustering is one of the techniques used as a preprocessing 
step. If the research covers a large amount of genes then 
the technique adapted is to find clusters of genes, which 

have similar expression patterns, Arguments used, may be 
that co-expressed genes are probable to have related 
functions.  
Several techniques for clustering expression data 
time-series have been proposed in the literature, based on 
measures like Euclidian distance, mutual information, 
linear correlation, and rank correlation. The use of 
clustering algorithms is motivated by the idea that two 
genes exhibiting similar expression patterns over time may 
regulate each other or be co regulated by a third gene. 
Additional analyses may permit one to extract more 
information on putative regulatory connections between 
co-expressed genes in the graph, such as the analysis of 
time lags [19] 

8. Results 

Most of the algorithms have been tried on artificial 
datasets. Some GRNs inferred from biological microarray 
data has been summarized in table 1.  

Table 1: Summary GRN’s inferred from microarray data 

Dataset Size DBN Differential Evolutionary
Saccharomyces 
cerevisiae Cell 

cycle
800 

genes  [6][10] 
 [37] 

Metabolic shift 
pathway from 

fermentation to 
respiration in 

yeast 
Saccharomyces 

cerevisiae 

6400  [7]  

S.O.S. DNA 
Repair network 

of the 
Escherichia 

coli bacterium

9 
genes

[17]
 [36][9]  

Hela Cancer 
cell cycle 

775 
genes  [8]  

9. Conclusion 

In this paper, we provided a survey of different algorithms 
that exist for the inference of Gene Regulatory Networks. 
The Differential equations methods are faster than 
Bayesian and Evolutionary methods. But, their drawback 
is that they can be strongly affected by noise. The 
evolutionary techniques always yield optimal solutions. 
But, they have huge computation times. Therefore, 
evolutionary computation with High performance 
computing resources is a promising direction.  
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