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Summary 
This paper proposes an reconfigurable adaptive threshold 
estimation method for image denoising in the wavelet domain 
based on the generalized Guassian distribution (GGD) modeling 
of sub-band coefficients. The proposed method called Regular-
Shrink is computationally more efficient and adaptive because 
the parameters required for estimating the threshold depend on 
sub-band data Edge information is the most important high 
frequency information of an image, so we should try to maintain 
more edge information while denoising. In order to preserve 
image details as well as canceling image noise, we present a new 
image denoising method: image denoising based on edge 
detection. Before denoising, image’s edges are first detected, and 
then the noised image is divided into two parts: edge part and 
smooth part. We can therefore set high denoising threshold to 
smooth part of the image and low Denoising threshold to edge 
part. The theoretical analyzes and experimental results presented 
in this paper show that, compared to commonly used wavelet 
threshold denoising methods, the proposed algorithm could not 
only keep edge information of an image, but also could improve 
signal-to-noise ratio of the denoised image. 
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1. Introduction 

An image is often corrupted by noise in its acquisition or 
transmission. The goal of denoising is to remove the noise 
while retaining as much as possible the important signal 
features. Traditionally, this is achieved by linear 
processing such as Wiener filtering. A vast literature has 
emerged recently on signal denoising using nonlinear 
techniques, in the setting of additive white Gaussian noise. 
The seminal work on signal denoising via wavelet 
thresholding or shrinkage of Donoho and Johnstone ([1]-
[3]) have shown that various wavelet thresholding 
schemes for denoising have near-optimal properties in the 
minimax sense and perform well in simulation studies of 
one-dimensional curve estimation. It has been shown to 
have better rates of convergence than linear methods for 
approximating functions in Besov spaces ([13], [14]). 
Thresholding is a nonlinear technique, yet it is very simple 
because it operates on one wavelet coefficient at a time. 

Alternative approaches to nonlinear wavelet-based 
Denoising can be found in, for example, [1], [4], [8][10], 
[12], [18], [19], [24], [27][29], [32], [33], [35], and 
references therein. On a seemingly unrelated front, lossy 
compression has been proposed for denoising in several 
works [6], [5], [21], [25], [28]. Concerns regarding the 
compression rate were explicitly addressed. This is 
important because any practical coder must assume a 
limited resource (such as bits) at its disposal for 
representing the data. Other works [4], [12][16] also 
addressed the connection between compression and 
denoising, especially with nonlinear algorithms such as 
wavelet thresholding in a mathematical framework. 
However, these latter works were not concerned with 
quantization and bitrates: compression results from a 
reduced number of nonzero wavelet coefficients, and not 
from an explicit design of a coder. The intuition behind 
using lossy compression for Denoising may be explained 
as follows. A signal typically has structural correlations 
that a good coder can exploit to yield a concise 
representation. White noise, however, does not have 
structural redundancies and thus is not easily compressible. 
Hence, a good compression method can provide a suitable 
model for distinguishing between signal and noise. The 
discussion will be restricted to wavelet-based coders, 
though these insights can be extended to other transform-
domain coders as well. A concrete connection between 
lossy compression and Denoising can easily be seen when 
one examines the similarity between thresholding and 
quantization, the latter of which is a necessary step in a 
practical lossy coder. That is, the quantization of wavelet 
coefficients with a zero-zone is an approximation to the 
thresholding function. Thus, provided that the quantization 
outside of the zero-zone does not introduce significant 
distortion, it follows that wavelet-based lossy compression 
achieves denoising. With this connection in mind, this 
paper is about wavelet thresholding for image denoising 
and also for lossy compression. The threshold choice aids 
the lossy coder to choose its zero-zone, and the resulting 
coder achieves simultaneous denoising and compression if 
such property is desired. 
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The paper is organized as follows. Section 2 introduces 
the concept of wavelet thresholding. Section 3 explains the 
parameter estimation for Regular-Shrink. Section 4 
describes the proposed denoising algorithm. Experimental 
results & discussions are given in section 5 for four test 
images at various noise levels. Finally the conclusions are 
made in section 6. 

2. Wavelet Transform 

Discrete Wavelet transform (DWT) represents an image in 
terms of wavelets which are called energy packets and of 
course they are as a sum of wavelet functions with 
different locations and scales by any factor [17]. Any kind 
of decomposition of an image into wavelets involves a 
pair of waveforms: one to represent the high frequencies 
corresponding to the detailed parts of an image (wavelet 
function) and one for the low frequencies or smooth parts 
of an image (scaling function).  Fig. 1 shows two 
waveforms of a family discovered in the late 1980s by 
Daubechies: the right one can be used to represent detailed 
parts of the image and the left one to represent smooth 
parts of the image. The two waveforms are translated and 
scaled on the time axis to produce a set of wavelet 
functions at different locations and on different scales. 
Each wavelet contains the same number of cycles, such 
that, as the frequency reduces, the wavelet gets longer. 
High frequencies are transformed with short functions 
(low scale). Low frequencies are transformed with long 
functions (high scale). During computation, the analyzing 
wavelet is shifted over the full domain of the analyzed 
function. The result of WT is a set of wavelet coefficients, 
which measure the contribution of the wavelets at these 
locations and scales. 

 

Fig1: A typical Wavelet Transform 

3. Wavelet Thresholding 

Let f=fij j = 1; 2::::M denote the M X M matrix of the 
original image to be recovered and M is some integer 
power of 2. During transmission the signal f is corrupted 
by independent and identically distributed (i.i.d) zero 

mean, white Gaussian Noise nij with standard deviation _ 
i.e. nij N(0; 2) and at the receiver end, the noisy 
observations is obtained. The goal is to estimate the signal 
f from noisy observations gij such that Mean Squared error 
(MSE)[11] is minimum. Let W and W-1 denote the two 
dimensional orthogonal discrete wavelet transform (DWT) 
matrix and its inverse respectively. Then Y = Wg 
represents the matrix of wavelet coefficients of g having 
four subbands (LL, LH, HL and HH) [7], [11]. The sub-
bands HHk, HLk, LHk are called details, where k is the 
scale varying from 1, 2 J and J is the total number of 
decompositions. The size of the subband at scale k is N/2k. 
The subband LLJ is the low-resolution residue. The 
wavelet thresholding denoising method processes each 
coefficient of Y from the detail subbands with a soft 
threshold function to obtain X. The denoised estimate is 
inverse transformed to f = W-1X. In the experiments, soft 
thresholding has been used over hard thresholding because 
it gives more visually pleasant images as compared to hard 
thresholding; reason being the latter is discontinuous and 
yields abrupt artifacts in the recovered images especially 
when the noise energy is significant. 

4. Estimation of the parameter of Regular 
Shrink 

This section describes the method for computing the 
various parameters used to calculate the threshold value 
(TN), which is adaptive to different subband characteristics. 

3

N
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σ

=                             (1) 

Where, the scale parameter  β is computed once for each 
scale using the following equation: 
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0.7651

ij
median Y

σ = σ  is noise standard deviation, 

which is estimated from the subband HH1, using the 
formula [7][13]. 

4. Image Denoising Algorithm 

This section describes the proposed image denoising 
algorithm, which is reconfigurable and also keeps egde 
detection that achieves near optimal soft thresholding in 
the wavelet domain for recovering original image from the 
noisy one. The algorithm is simple to implement and 
computationally very efficient. It has following steps 
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1. Conduct 2-D scale decomposition [11] of the image 
corrupted by Gaussian noise using wavelet transform 
but the edges of the image must not be corrupted. 

2. Calculate the noise variance m2 for each level of 
matrix which can be obtained using performance basis 
of the image that is used in the test bench using 
equation (3). 

3. For each level, compute the scale parameter using 
equation (2) and also calculate that the noise variance 
should be less than that of the Gaussian one. 

4. For each subband which can also include the high 
pass residual noise components  

a. Compute the standard deviation  
b. Compute threshold peaks using equation 

(1). 
c. Apply soft thresholding or baseshrink to 

the noisy coefficients. 
5. Invert the 2D scale decomposition to reconstruct the 

denoised image 

5. Experiment Results 

The simulations have been performed on various natural 
gray scale test images like House, Tree, Lena, and Barbara 
of size 256 X 256 at different noise levels =10, 25, 35, 55. 
The reconfigurable wavelet that has been used here is 
Daubechies because of its least asymmetric compactly 
supported wavelet with eight vanishing moments [14]. To 
assess the performance of Wavelet, it is compared with 
SureShrink, BayesShrink, OracleThresh and Wiener 
algorithm [14, 18, 22, and 31]. To benchmark against the 
best possible performance of a multi-threshold estimate, 
while keeping the edge detection, the comparison include 
OracleShrink, which is treated as the best soft thresholding 
algorithm which exists in the literature. The PSNR from 
various methods are compared in Table I and the data are 
collected from an average of five runs. With no 
explanation the Regular-Shrink outperforms SureShrink 
and BayesShrink, also it is also observed that most of the 
time in terms of PSNR as well as in terms of visual quality. 
Moreover Regular-Shrink is 22% faster than BayesShrink. 
The choice of soft thresholding over median thresholding 
and hard thresholding is justified from the results of best 
possible performance of a hard threshold estimator, with 
respect to reconfigurable wavelet approximations should 
be done OracleThresh. Comparisons are made with the 
best possible techniques, which exits in the literature. The 
results in the table I show that PSNR are considerably 
worse than the nonlinear thresholding methods, especially 
when is large.  The image quality is also not as good as 
those of the thresholding methods. Fig. 1 shows the noisy 
image and resulting images of Preposed Algorithm, 
Wiener filter, BayesShrink and Regular-Shrink for Lena at 
= 30. 

 

Figure 2: Resolution (256 X 256): Lena (Left top), Proposed Algorithm of 
Lena (Right Top), Sureshirnk (left Bottom), BayesShirnk (Left bottom) 

Table 1: Simulation Results which show that proposed algorithm is better 
than other algorithms 

 
References 
[1] Li Su; Guoliang Zhao;  “De-Noising of ECG Signal Using 

Translation- Invariant Wavelet De-Noising Method with 
Improved Thresholding” 27th Annual International 
Conference of the  Engineering in Medicine and Biology 
Society, IEEE-EMBS, pp. 5946-5949, 2005. 

[2] Li Su; Guoliang Zhao; Renyan Zhang;  “Translation-
invariant wavelet de-noising method with improved 
thresholding” IEEE International Symposium on 
Communications and Information Technology,  pp: 619 – 
622,  2005 

[3] Changchun Liu; Fanwei Kong; Zhongguo Liu; Mengsun Yu;  
“Extraction of VEP based on third-order correlation based 

 SureShirnk Bayes 
Shirnk Wiener Proposed 

Algorithm 
Lena 

σ =10 33.1908 33.8998 31.6810 34.9011 
σ =20 31.9810 29.9879 29.1657 32.6733 
σ =30 28.9091 25.2342 26.4161 30.8979 
σ =40 26.1087 23.5721 21.8768 27.7682 

House 
σ =10 38.7282 39.1018 36.9303 39.3030 
σ =20 35.1910 37.1819 33.1203 36.1203 
σ =30 33.8719 34.8393 30.1910 34.1910 
σ =40 31.8191 32.1292 31.9101 33.9101 

Barbara 
σ =10 36.9190 35.8023 38.0981 40.9823 
σ =20 34.9101 33.8098 37.0939 38.2983 
σ =30 33.1011 31.9818 35.9422 36.9822 
σ =40 32.0101 29.0101 31.0982 34.9222 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011 

 

225

filters and wavelet thresholding denoising method” 27th 
Annual International Conference of the  Engineering in 
Medicine and Biology Society, IEEE-EMBS, pp: 2722 – 
2725, 2005. 

[4] Parajuli, A.; DeBrunner, V.;  “Speech Enhancement Using 
Perceptual Wavelet Thresholding with the Ephraim and 
Malah Noise Suppressor and Auditory Masking”  
Conference Record of the Thirty-Ninth Asilomar 
Conference on Signals, Systems and Computers, pp: 301 – 
304, 2005. 

[5] Hadjileontiadis, L.J.;  “Wavelet-based enhancement of lung 
and bowel sounds using fractal dimension thresholding-part 
I: methodology” IEEE Transactions on Biomedical 
Engineering Volume: 52 , Issue: 6,pp. 1143 – 1148, 2005. 

[6] Ng, E.H.-O.; Kainam Thomas Wong; Lam, J.C.L.;  
“Speckle-noise reduction via "rotated elliptical-
thresholding" in an homomorphic complex-wavelet domain 
“ IEEE International Conference on Image Processing, 2005. 
ICIP 2005. Volume: 3 , Page(s): III - 585-8, 2005. 

[7] Jianhua Hou; Jinwen Tian; Jian Liu;  “An improved 
Wienerchop algorithm for image denoising” IEEE 
International Communications, Circuits and Systems 
Volume: 2, pp. 564-568, 2005. 

[8] Jianhua Hou; Jinwen Tian; Jian Liu;  “ Bayesshrink based 
Wiener filter in wavelet domain”  Proceedings of 2005 
IEEE International Workshop on VLSI Design and Video 
Technology, pp. 427 – 430, 2005. 

[9] Hoonbin Hong; Ming Liang;  “De-noising mechanical 
signals by hybrid thresholding” International Workshop 
Robotic Sensors: Robotic and Sensor Environments, pp. 65 
– 70, 2005. 

[10] Hyeokho Choi; Baraniuk, R.;  “Multiscale manifold 
representation and modeling” IEEE International 
Conference Acoustics, Speech, and Signal Processing, pp. 
iv/569 - iv/572 Vol. 4, 2005. 

[11] Angrisani, L.; Battaglia, L.; Delfino, F.; “ GRID-based 
approach for power measurement in digital wireless 
communication systems” IEEE Workshop on Intelligent 
Signal Processing, pp. 137 – 142, 2005. 

[12] Ryeol Kim; Barner, K.E.; “Wavelet Domain Partition-
Based Image Denoising” IEEE International Conference on 
Acoustics, Speech, and Signal Processing, (ICASSP '05). 
Vol 2, pp. 33 – 36, 2005. 

[13] Ping Zhou; Lowery, M.M.; Weir, R.F.; Kuiken, T.A.;  
“Elimination of ECG Artifacts from  Myoelectric Prosthesis 
Control Signals Developed by Targeted Muscle 
Reinnervation” 27th Annual International Conference on 
Engineering in Medicine and Biology Society, pp. 5276 – 
5279, 2005. 

[14] Zeyong Shan; Aviyente, S.;  “Image Denoising Based on 
the Wavelet Co-Occurrence Matrix” ” IEEE International 
Conference on Acoustics, Speech, and Signal Processing, 
(ICASSP '05). Vol 2, pp. 645—648 , 2005.  

[15] Olhede, S.C.; Walden, A.T.;  “Local directional denoising” 
IEEE Transactions on Signal Processing, Volume: 53 , 
Issue: 12 , pp. 4725 – 4730, 2005. 

[16] Tai-Chiu Hsung; Lun, D.P.-K.; Ho, K.C.;  “Optimizing the 
multiwavelet shrinkage denoising” IEEE Transactions on 
Signal Processing Volume: 53 , Issue: 1, pp. 240 – 251, 
2005.  

[17] Luisier, F.; Blu, T.; Unser, M.;  “ A New SURE Approach to 
Image Denoising: Interscale Orthonormal Wavelet 
Thresholding” IEEE Transactions Image Processing 
Volume: 16 , Issue: 3, pp.  593 – 606. 2007. 

[18] Gupta, N.; Swamy, M.N.S.; Plotkin, E.I.;  “Wavelet domain-
based video noise reduction using temporal discrete cosine 
transform and hierarchically adapted thresholding” in IET 
Transactions on Image Processing, Volume: 1 , Issue: 1, pp.  
2 – 12, 2007. 

[19] Angrisani, L.; Battaglia, L.; Delfino, F.;  “GRID-Based 
Power Measurement in Digital Wireless Communication 
Systems” IEEE Transactions on Instrumentation and 
Measurement Volume: 56 , Issue: 5, pp. 1565 – 1572, 2007. 

[20] Brychta, R.J.; Tuntrakool, S.; Appalsamy, M.; Keller, N.R.; 
Robertson, D.; Shiavi, R.G.; Diedrich, A.; “Wavelet 
Methods for Spike Detection in Mouse Renal Sympathetic 
Nerve Activity” IEEE Transactions on Biomedical 
Engineering Volume: 54 , Issue: 1, Page(s): 82 – 93. 2007. 

[21] Florkowski, M.; Florkowska, B.; “Wavelet-based partial 
discharge image denoising” IET Transactions on Generation, 
Transmission & Distribution, Volume: 1 , Issue: 2, pp. 340 – 
347, 2007. 

[22] Kopsinis, Y.; McLaughlin, S.; “Development of EMD-Based 
Denoising Methods Inspired by Wavelet Thresholding” 
IEEE Transactions on Signal Processing, Volume: 57 , Issue: 
4, pp. 1351 – 1362, 2009. 

[23] Bhuiyan, M.I.H.; Ahmad, M.O.; Swamy, M.N.S.;  “Spatially 
adaptive thresholding in wavelet domain for despeckling of 
ultrasound images” IET Transactions on Image Processing, 
Volume: 3 , Issue: 3, pp. 147 – 162, 2009. 

[24] Pesquet, J.-C.; Benazza-Benyahia, A.; Chaux, C.; “A SURE 
Approach for Digital Signal/Image Deconvolution 
Problems” IEEE Transactions on Signal Processing, 
Volume: 57 , Issue: 12, pp. 4616 – 4632, 2009 

[25] Oruklu, E.; Saniie, J.; “Dynamically Reconfigurable 
Architecture Design for Ultrasonic Imaging” IEEE 
Transactions on Instrumentation and Measurement, Volume: 
58 , Issue: 8, pp.2856 – 2866, 2009. 

[26] Sadough, S.M.S.; Ichir, M.M.; Duhamel, P.; Jaffrot, E.; 
“Wavelet-Based Semiblind Channel Estimation for 
Ultrawideband OFDM Systems” IEEE Transactions on 
Vehicular Technology, IEEE Transactions on Volume: 58 , 
Issue: 3, pp. 1302 – 1314, 2009. 

[27] Tang, Q.-X.; Jiao, L.-C.;  “Image denoising with geometrical 
thresholds” IEEE Transactions in Electronics Letters, 
Volume: 45 , Issue: 8, pp. 405 – 406, 2009. 

[28] Athanasiadis, E.I.; Cavouras, D.A.; Glotsos, D.T.; 
Georgiadis, P.V.; Kalatzis, I.K.; Nikiforidis, G.C.; 
“Segmentation of Complementary DNA Microarray Images 
by Wavelet-Based Markov Random Field Model” IEEE 
Transactions on Information Technology in Biomedicine, 
Volume: 13 , Issue: 6 pp. 1068 – 1074, 2009. 

[29] Luisier, F.; Blu, T.; Unser, M.;  “SURE-LET for 
Orthonormal Wavelet-Domain Video Denoising” IEEE 
Transactions on Circuits and Systems for Video Technology, 
Volume: 20 , Issue: 6, pp. 913 – 919, 2010. 

[30] Gal, Y.; Mehnert, A.J.H.; Bradley, A.P.; McMahon, K.; 
Kennedy, D.; Crozier, S.; “ enoising of Dynamic Contrast-
Enhanced MR Images Using Dynamic Nonlocal Means” 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011 

 

226

IEEE Transactions on Medical Imaging, Volume: 29 , Issue: 
2, pp. 302 – 310, 2010. 

[31] Robinson, M.D.; Toth, C.A.; Lo, J.Y.; Farsiu, S.; “Efficient 
Fourier-Wavelet Super-Resolution” IEEE Transactions on 
Image Processing, Volume: 19 , Issue: 10, pp.2669 – 2681, 
2010. 

[32] Nikpour, M.; Hassanpour, H.;  “Using diffusion equations 
for improving performance of wavelet-based image 
denoising techniques” IET Transactions on Image 
Processing, Volume: 4 , Issue: 6, pp. 452 – 462, 2010. 

[33] Yang, Y.; Wei, Y.;  “Random interpolation average for 
signal denoising”  IET Transactions on Image Processing, 
Volume: 4 , Issue: 6, pp. 708-719, 2010. 

[34] Ken-Hao Liu; Wei-Guang Teng; Ming-Syan Chen; 
“Dynamic Wavelet Synopses Management over Sliding 
Windows in Sensor Networks” IEEE Transactions on 
Knowledge and Data Engineering, Volume: 22 , Issue: 2, pp. 
193 – 206. 2010. 

[35] Jianbo Gao; Sultan, H.; Jing Hu; Wen-Wen Tung; 
“Denoising Nonlinear Time Series by Adaptive Filtering 
and Wavelet Shrinkage: A Comparison” IEEE Signal 
Processing Letters, Volume: 17 , Issue: 3, pp. 237 – 240, 
2010.  

 
 

B. Chinna Rao is currently pursuing 
Ph.D from JNTU. He has been actively 
guiding students in the area of Signal 
and Image Processing. He has published 
2 international journals and 6 
International Conferences. Currently, he 
has been working as Associate 
Professor in Dept of Electronics and 
Communication Engineering 
Communication Engineering, RK 

College of Engineering, Ibrahimpatnam, Vijayawada, Andhra 
Pradesh, India. 
 

M. Madhavi Latha is specialized in 
signal and image processing using 
wavelets and Low Power Mixed Signal 
Design in VLSI. She has published 30 
publications in various journals and 
conferences at national and 
International level and presented papers 
in conferences held at Lasvegas, 
Louisiana, USA and Iunstrruck, Austria 
presently guiding Six students for Ph.D 

and one student for M.S by research. At present, working as 
professor of ECE, JNTU College of Engineering, and Hyderabad, 
India. 


