
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

255

Manuscript received March 5, 2011
Manuscript revised March 20, 2011

The Lagrange Interpolation Polynomial for Neural Network
Learning

Khalid Ali Hussien

Mustansiriyah University, Educational College, Baghdad, Iraq

Abstract
One of the methods used to find this polynomial is called the
Lagrange method of interpolation. In this research, the Lagrange
interpolation method was used in a new neural network learning
by develops the weighting calculation in the back propagation
training. This proposed developing decrease the learning time
with best classification operation results. Also, the Langrage
interpolation polynomial was used to process the image pixels
and remove the noise the image. This interpolation gives the
effective processing in removing the noise and error in the image
layers. One of the advantages of this method is reduce the noise
to minimum value by replacing the noisy pixels (detected by
Lagrange Back propagation Neural Network LBPNN) by results
calculated by the Lagrange interpolation with high speed
processing and best RMSE results.
Keyword:
Interpolation polynomial, Lagrange Interpolation,
Lagrange neural network, neural learning, Lagrange
learning, Denoising, Neural denoising.

1. Introduction

The numerical analysis is both a science and an art is a
cliché to specialists in to the field but is often
misunderstood by non-specialists. Is calling it an art and a
science only a euphemism to hide the fact that numerical
analysis is not a sufficiently precise discipline to merit
being called a science? Is it true that “numerical analysis"
is something of a misnomer because the classical meaning
of analysis in is not applicable to numerical work? In fact,
the answer to both these questions is no. The juxtaposition
of science and art is due instead to an uncertainty principle
which often occurs in solving problems, namely that to
determine the best way to solve a problem may require the
solution of the problem itself in other cases. The best way
to solve u problem may depend upon a knowledge of the
properties of the functions involved which is unobtainable
either theoretically or practically. [1]
Numerical analysis is the study of algorithms that use
numerical values (as opposed to general symbolic
manipulations) for the problems of continuous
mathematics (as distinguished from discrete mathematics).
One of the earliest mathematical writings is the
Babylonian tablet YBC 7289, which gives a sexagesimal
numerical approximation of √2, the length of the diagonal

in a unit square.[2,3] Being able to compute the sides of a
triangle (and hence, being able to compute squares roots)
is extremely important, for instance, in carpentry and
construction.[4]
Numerical analysis continues this long tradition of
practical mathematical calculations. Much like the
Babylonian approximation to √2, modern numerical
analysis does not seek exact answers, because exact
answers are often impossible to obtain in practice. Instead,
much of numerical analysis is concerned with obtaining
approximate solutions while maintaining reasonable
bounds on errors. [3]
Numerical analysis naturally finds applications in all fields
of engineering and the physical sciences, but in the
21st century, the life sciences and even the arts have
adopted elements of scientific computations. Ordinary
differential equations appear in the movement of heavenly
bodies (planets, stars and galaxies); optimization occurs in
portfolio management; numerical linear algebra is
important for data analysis; stochastic differential
equations and Markov chains are essential in simulating
living cells for medicine and biology.[3],[4]
Polynomials can be used to approximate more complicated
curves, for example, the shapes of letters in typography,
given a few points. A relevant application is the evaluation
of the natural logarithm and trigonometric functions: pick
a few known data points, create a lookup table, and
interpolate between those data points. This results in
significantly faster computations. Polynomial interpolation
also forms the basis for algorithms in numerical
quadrature and numerical ordinary differential equations.
[5]
Polynomial interpolation is also essential to perform sub-
quadratic multiplication and squaring such as Karatsuba
multiplication and Toom–Cook multiplication, where an
interpolation through points on a polynomial which
defines the product yields the product itself. For example,
given a = f(x) = a0x0 + a1x1 + ... and b = g(x) = b0x0 + b1x1
+ ... then the product ab is equivalent to W(x) = f(x)g(x).
Finding points along W(x) by substituting x for small
values in f(x) and g(x) yields points on the curve.
Interpolation based on those points will yield the terms of
W(x) and subsequently the product ab. In the case of
Karatsuba multiplication this technique is substantially

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

256

faster than quadratic multiplication, even for modest-sized
inputs. This is especially true when implemented in
parallel hardware.[5]
In this research, numerical analysis in proposed a new
technique for learning the neural network. The Lagrange
interpolation polynomial was used in back propagation
neural learning in order to increase the decision accuracy
of the neural network with decrease the learning time and
more stability of neural network. Also, the Lagrange
interpolation polynomial was used in image denoising
process under control of the proposed neural network.

2. The Lagrange Interpolation Polynomial

The problem of constructing a continuously defined
function from given discrete data is unavoidable whenever
one wishes to manipulate the data in a way that requires
information not included explicitly in the data. The
relatively easiest and in many applications often most
desired approach to solve the problem is interpolation,
where an approximating function is constructed in such a
way as to agree perfectly with the usually unknown
original function at the given measurement points. In the
practical application of the finite calculus of the problem
of interpolation is the following: given the values of the
function for a finite set of arguments, to determine the
value of the function for some intermediate argument. [6]

2.1 The Problem of Interpolation

The problem of interpolation consists in the following:
Given the values yi corresponding to xi, i = 0, 1, 2, . . . , n,
a function f(x) of the continuous variable x is to be
determined which satisfies the equation:
 yi = f(xi) for i = 0, 1, 2 . . . , n
and finally f(x) corresponding to x = x0 is required. (i.e.
x0 different from xi, i = 1, n.)
In the absence of further knowledge as to the nature of the
function this problem is, in the general case,
indeterminate, since the values of the arguments other than
those given can obviously assigned arbitrarily. [6]
If, however, certain analytic properties of the function be
given, it is often possible to assign limits to the error
committed in calculating the function from values given
for a limited set of arguments. For example, when the
function is known to be representable by a polynomial of
degree n, the value for any argument is completely
determinate when the values for n + 1 distinct arguments
are given.

2.2 Lagrange Interpolation

Consider the function f: [x0, xn] → R given by the
following table of values:

xk are called interpolation nodes, and they are not
necessary equally distanced from each other. We seek to
find a polynomial P(x) of degree n that approximates the
function f(x) in the interpolation nodes, i.e. [6]

f (xk) = P(xk); k = 0, 1, 2, . . . , n.
The Lagrange interpolation method finds such a
polynomial without solving the system.

Theorem: Lagrange Interpolating Polynomial [6]
The Lagrange interpolating polynomial is the polynomial
of degree n that passes through (n + 1) points y0 = f(x0),
y1 = f(x1), . . . yn = f(xn) . Let:

Where

Written explicitly:

Lagrange interpolating polynomials are implemented in
Mathematica as Interpolating
Polynomials[data,var]. For the case n = 4, i.e. interpolation
through five points, we have:

and

Note that the function P(x) passes through the points (xi,
yi), i.e. P(xi) = yi.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

257

For Examples: The Lagrange interpolating polynomial is
given by[7]

 ∑
=

=
n

i
iin xfxLxf

0
)()()(

where n in)(xfn stands for the thn order polynomial

that approximates the function)(xfy = given at 1+n
data points as
() () () ()nnnn yxyxyxyx ,,,,......,,,, 111100 −− , and

 ∏
≠
= −

−
=

n

ij
j ji

j
i xx

xx
xL

0

)(

)(xLi is a weighting function that includes a product of

1−n terms with terms of ij =

Figure 1 Interpolation of discrete data.[9]

Let Y = F(x) such that yo = f(xo) , y1 =f(x1) , y2 =f(x2) , … ,

yn =f(xn) , then to estimate value of f(x) we use :[8]

x xo X1 x2 … xn

F(x) yo Y1 y2 … yn

F(x*) =
)ixjx(

)ixx*(n
)x j(

n
f

ji
0i0j −

−
∏∑

≠
==

……………….. (1)

Example 1: By Lagrange formula , find the value of f(3)

and f(5) frome the table .

X 0 1 2 4

F(x) 1 1 2 5

Solution:

F(3) =
)ixjx(

)ix3(3
)x j(

3
f

ji
0i0j −

−
∏∑

≠
==

 = f(xo)
)xx()xx()xx(

)x3()x3()x3(

3o2o1o

321

−−−
−−−

 + f(x1)

)xx()xx()xx(
)x3()x3()x3(

3121o1

32o

−−−
−−−

+

 f(x2)
)xx()xx()xx(

)x3()x3()x3(

32122

31

−−−
−−−

o

o + f(x3)

)xx()xx()xx(
)x3()x3()x3(

2313o3

21o

−−−
−−−

F(3) = 3.5

So by the same way we have F(5)=6 .

2.3 Inverse Interpolation

As shown, the equation of how to interpolation for
function value corresponding to a given independent
variable x was addressed. Suppose that, we have now
reverse the equation so that we seek to determine on x
value corresponding to a given functional value , then the
problems becomes inverse interpolation , so we have : [8]

x*=
)iyjy(

)iyy*(n
x j

n

ji
0i0j −

−
∏∑

≠
==

………(2)

Example: find the value of x* , when y* = 2 ,

Y 1 3 5

x 15 20 2

Solution:

x * =
)iyjy(

)iyy*(2
x j

2

ji
0i0j −

−
∏∑

≠
==

()00, yx

()11, yx

()22 , yx

()33 , yx

()xf

x

y

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

258

 = xo
)yy()1yy(

)y2()y2(

2oo

21

−−
−−

 + x1

)yy()yy(
2)y2()y2(

21o1

o

−−
−−

 + x2
)yy()yy(

)y2()y2(

12o2

1o

−−
−−

 = 20.375.

3. Example 2 [7]

The upward velocity of a rocket is given as a function of
time in Table 1 and Fig.(2).

Fig. (2) Graph of velocity vs. time data for the rocket

example.

Table 1: Velocity as a function of time.

t (s))(tv (m/s)

0 0
10 227.04
15 362.78
20 517.35
22.5 602.97
30 901.67

Determine the value of the velocity at 16=t seconds
using a first order Lagrange polynomial.

Solution
For first order polynomial interpolation (also called linear
interpolation as shown in Fig. (3)), the velocity is given by

 ∑
=

=
1

0

)()()(
i

ii tvtLtv

)()()()(1100 tvtLtvtL +=

Fig.(3) Linear interpolation.

Since we want to find the velocity at 16=t , and we are
using a first order polynomial, we need to choose the two

data points that are closest to 16=t that also bracket
16=t to evaluate it. The two points are 150 =t and

201 =t .
Then
() 78.362 ,15 00 == tvt
() 35.517 ,20 11 == tvt

gives

∏
≠
= −

−
=

1

0
0 0

0)(
j
j j

j

tt
tt

tL

10

1

tt
tt

−
−

=

∏
≠
= −

−
=

1

1
0 1

1)(
j
j j

j

tt
tt

tL

01

0

tt
tt

−
−

=

Hence

)()()(1
01

0
0

10

1 tv
tt
tt

tv
tt
tttv

−
−

+
−
−

=

2015),35.517(
1520

15)78.362(
2015

20
≤≤

−
−

+
−

−
= ttt

)35.517(
1520
1516)78.362(

2015
2016)16(

−
−

+
−
−

=v

)35.517(2.0)78.362(8.0 +=
 m/s 69.393=

x

()00 , yx

()yx
f

y

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

259

You can see that 8.0)(0 =tL and 2.0)(1 =tL are like

weightages given to the velocities at 15=t and 20=t
to calculate the velocity at 16=t .

4. Back –Propagation Neural Network

The back propagation neural is a multilayered, feed
forward neural network and is by far the most extensively
used. Back Propagation works by approximating the non-
linear relationship between the input and the output by
adjusting the weight values internally. A supervised
learning algorithm of back propagation is utilized to
establish the neural network modeling. A normal back-
propagation neural (BPN) model consists of an input
layer, one or more hidden layers, and output layer. There
are two parameters including learning rate (0 < α <1) and
momentum (0 < η <1) required to define by user. The
theoretical results showed that one hidden layer is
sufficient for a BP network to approximate any continuous
mapping from the input patterns to the output patterns to
an arbitrary degree freedom. The selection and nodes of
hidden layers primarily affect the classification
performance. The following figure shows the topology of
the black-propagation neural network that includes and
input layer, one hidden layer and output layer. [9]

Fig. 4 Two category model of back-propagation

5. Proposed Lagrange BPN network

A new learning for BPN network was proposed to achieve
more stability of the neural network and increase the
accuracy of the BPN network results using the
modification of Lagrange interpolation polynomial. The
Lagrange interpolation used to change the ratio of learning
weights for each layer of neural network to add more
stability in each neural network layer and to reduce the
minimum and global energy loops of back propagation

neural learning. Below the proposed Lagrange BPN
network learning algorithm:
Step 1: Design the structure of neural network and input
parameters of the network.
Step2: Get initial weights W and initial (threshold 　
values) from randomizing.
Step 3: Input training data matrix X and output matrix Y.
Step 4: Compute the output vector of each neural units.
(a) Compute the output vector H of the hidden layer

(b) Compute the output vector Y of the output layer

Step 5: Compute Lagrange interpolation for Hidden and
Output layer

)ixx(

)ixx*(nn
)(

i
0i0 −

−
∏∑=

≠
== k

knetnkL

k
k

)ixjx(

)ixx*(nn
)(

ji
0i0j −

−
∏∑=

≠
==

jHnjL

Step 6: Compute the modification of W and θ (ηis the
learning rate, α is the momentum coefficient)

(a) Compute the modification of W and θ of the
output layer

Δwkj(n)=η HK +αΔwkj(n-1)+ η α Lj(n)
 Δθj (n) = η Lj(n) +αΔθj(n-1)

(b) Compute the modification of W and θ of the

hidden layer
Δwjk(n) =η Xj +αΔwjk(n-1)+ η α Lk(n)
Δθκ(n) = −η Lk(n) +αΔθκ(n-1)

Step 7: Renew W and θ
(a) Renew W and _ of the output layer

wkj(p) = wkj(p-1) + Δwkj
 θj (p) =θj (p-1) + Δθj

(b) Renew W and θ of the hidden layer
wjk(p) = wjk(p-1) + Δwjk

 θk (p) =θκ (p-1) + Δθk
Step 8: Repeat step 3 to step 7 until converge

X1

X2

X3

X4

Y

Input
Layer

Hidden
Layer

Output
Layer

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

260

6. The proposed Lagrange Back Propagation
Neural Network System (LBNPNN)

The proposed Lagrange back propagation neural network
was used to develop the image denoising system explains
in [10]. In begin; we must explain the denoising operation.
Being a simple inverse problem, the denoising is a
challenging task and basically addresses the problem of
estimating a signal from the noisy measured version
available from that. A very common assumption is that the
present noise is additive zero-mean white Gaussian with
standard deviation ó. Many solutions have been proposed
for this problem based on different ideas, such as spatial
adaptive filters, diffusion enhancement, statistical
modeling, transfer domain methods, order statistics and
yet many more. Among these methods, a method based on
with sparse and redundant representations has recently
attracted lots of attentions. Many researchers have
reported that such representations are highly effective and
promising toward this stated problem [11].

There are many different cases of distortions. One of the
most prevalent cases is distortion due to additive white
Gaussian noise which can be caused by poor image
acquisition or by transferring the image data in noisy
communication channels. Early methods to restore the
image used linear filtering or smoothing methods. These
methods where simple and easy to apply but their
effectiveness is limited since this often leads to blurred or
smoothed out in high frequency regions.[12]

All denoising methods use images artificially distorted
with well defined white Gaussian noise to achieve
objective test results. Note however that in real world
images, to discriminate the distorting signal from the
“true” image is an ill posed problem since it is not always
well defined whether a pixel value belongs to the image or
it is part of unwanted noise.[12]

The proposed system used to reduce the noise in the image
and applying the Lagrange interpolation method with the
proposed LBPNN for the denoising operation with the
new denoises calculation technique.

After loading image, the proposed system starts
calculation of The Lagrange interpolation by using 2D
mask and initial the proposed LBPN network with a neural
configuration build from (16, 25,1) 16 input nodes, 25
hidden nodes, and one output node. This mask take two
rows for each time calculation and repeat calculation until
the image completes. From these rows, the calculated The
Lagrange values for each row depend on the previous row.
In the same time, the proposed LBPN network will apply
to the same 2D mask pixels to distinguish between normal

pixel and noisy pixel. Where, the proposed LBPN network
learned using some types of the training image sets with
different types of noise distribution.

For each pixel in the selected 2D mask, the Lagrange
interpolation resulted values will replace the pixel value if
proposed LBPN network flagged the tested pixel is a noisy
pixel. The proposed system steps are:

1. Loading the image.
2. Divide the image into squares with size 16x16 pixels.
3. Applying The Lagrange interpolation calculation on the

loaded image squares parts.
4. Applying the proposed LBPN network.
5. if proposed LBPN network flags the pixel is noisy then

applying the denoising operation by replace noisy by
Lagrange interpolation resulted value.

6. Calculate RMS
7. Save the resulted image. The block diagram of the

proposed system is as shown below:

Fig.(6) The proposed system block diagram

7. Experimental Results & Discussions

 The performance of the Lagrange interpolation method
and Proposed Lagrange Interpolation polynomial Back
Propagation Neural Network that have been proposed in
this research is investigated with simulations and give a
very good results for some types of noise like Gaussian
noise and Laplace noise. Also, denoising is carried out for
image with noise of variance types. The proposed mask
has the best nonlinear filtering possible due to the LBPNN
and Lagrange interpolation polynomial math calculations,
the mask replacing noisy pixels depend on LBPNN
decision and the content of the neighbor pixels values in
the suggested mask. Fig(7) shows some proposed system
results.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011

261

(S1) before (S1) After

(S2) before (S2) after

Fig (7) some results of the proposed system.

The performance of the different denoising samples is
compared in Table 2.
Table 2 The RMSE for the Test Samples after denoising

Sample name RMSE Size
S1 43.90 512x512
S2 48.54 640x480
S3 44.98 600x800
S4 47.12 512x 512
S5 45.89 512x480

8. Reference

[1] Ralston, A., & Rabinowtiz, P. A First Course in Numerical
Analysis (2nd Edition Ed). (Paperback (Feb. 6, 2001) ed.):
Dover Publications.2001.

[2] Gilat, A.. MATLAB: An Introduction with Applications
(2nd edition Ed.). John Wiley & Sons. ISBN 0-471-69420-
7. (2004).

[3] Leader, J. J. (2004). Numerical analysis and scientific
computation: Pearson Addison Wesley.

[4] Hildebrand, F. B. Introduction to numerical analysis: Dover
Pubns. (1987).

[5] Crandall, R. E., & Pomerance, C. (2005). Prime numbers: a
computational perspective: Springer Verlag.

[6] Kovلcs, A., Kovلcs, L., & Fazekas, F. The Lagrange
Interpolation Formula in Determining the Fluid’s Velocity
Potential through Profile Grids (pp. 26-29). (2005).

[7] Kaw, A., & Paul, J. Computer Engineering Example on the
Lagrange Method of Interpolation . Retrieved 16 Feb 2010,
from
http://numericalmethods.eng.usf .edu/topics/lagrange_metho
d.html.

[8] Al-Khafaji, A. W., Tooley, J. R., & Al-Khafaji, A. W.
Numerical methods in engineering practice: Holt, Rinehart
and Winston. (1986).

[9] Lee, M. C., & To, C. Comparison of Support Vector
Machine and Back Propagation Neural Network in
Evaluating the Enterprise Financial Distress. International
Journal of Artificial Intelligence & Applications (IJAIA),
1(3), (2010).

[10] Hussien, A. K., & Naif, J. R. Lagrange Interpolation
Polynomial For Images. Iraqi Jorunal of Information
Technology , 3(1) , (2010) .

[11] Mathews, J. H., & Fink, K. D. Numerical methods using
MATLAB: Prentice Hall. (4th edition Ed.). (2004).

[12] Barthel, K. U., Cycon, H. L., & Marpe, D. (Eds.). (Vols.
5266). (2004).

[13] Anthony, M., & Bartlett, P. L. Neural network learning:
Theoretical foundations: Cambridge Univ Pr. (1999).

[14] Wilamowski, B. M., & Yu, H. Neural network learning
without backpropagation (Vol. 21, pp. 1793-1803):
IEEE.(2010).

[15] Archer, N. P., & Wang, S. Application of the Back
Propagation Neural Network Algorithm with Monotonicity
Constraints for Two Group Classification Problems* (Vol.
24, pp. 60-75): Wiley Online Library. (1993).

Khalid A. Hussein Bs.c. in mathematics
from Iraq , Ms.c. in applied mathematics
from Jordan in Al-al Byte university. Senior
lecturer in numerical methods ,al-
Mustansiryah University / Educational
college / computer Dpt.

