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Abstract 
One of the methods used to find this polynomial is called the 
Lagrange method of interpolation. In this research, the Lagrange 
interpolation method was used in a new neural network learning 
by develops the weighting calculation in the back propagation 
training. This proposed developing decrease the learning time 
with best classification operation results. Also, the Langrage 
interpolation polynomial was used to process the image pixels 
and remove the noise the image. This interpolation gives the 
effective processing in removing the noise and error in the image 
layers. One of the advantages of this method is reduce the noise 
to minimum value by replacing the noisy pixels (detected by 
Lagrange Back propagation Neural Network LBPNN) by results 
calculated by the Lagrange interpolation with high speed 
processing and best RMSE results. 
Keyword: 
Interpolation polynomial, Lagrange Interpolation, 
Lagrange neural network, neural learning, Lagrange 
learning, Denoising, Neural denoising. 

1. Introduction 

The numerical analysis is both a science and an art is a 
cliché to specialists in to the field but is often 
misunderstood by non-specialists. Is calling it an art and a 
science only a euphemism to hide the fact that numerical 
analysis is not a sufficiently precise discipline to merit 
being called a science? Is it true that “numerical analysis" 
is something of a misnomer because the classical meaning 
of analysis in is not applicable to numerical work? In fact, 
the answer to both these questions is no. The juxtaposition 
of science and art is due instead to an uncertainty principle 
which often occurs in solving problems, namely that to 
determine the best way to solve a problem may require the 
solution of the problem itself in other cases. The best way 
to solve u problem may depend upon a knowledge of the 
properties of the functions involved which is unobtainable 
either theoretically or practically. [1] 
Numerical analysis is the study of algorithms that use 
numerical values (as opposed to general symbolic 
manipulations) for the problems of continuous 
mathematics (as distinguished from discrete mathematics). 
One of the earliest mathematical writings is the 
Babylonian tablet YBC 7289, which gives a sexagesimal 
numerical approximation of √2, the length of the diagonal 

in a unit square.[2,3] Being able to compute the sides of a 
triangle (and hence, being able to compute squares roots) 
is extremely important, for instance, in carpentry and 
construction.[4] 
Numerical analysis continues this long tradition of 
practical mathematical calculations. Much like the 
Babylonian approximation to √2, modern numerical 
analysis does not seek exact answers, because exact 
answers are often impossible to obtain in practice. Instead, 
much of numerical analysis is concerned with obtaining 
approximate solutions while maintaining reasonable 
bounds on errors. [3] 
Numerical analysis naturally finds applications in all fields 
of engineering and the physical sciences, but in the 
21st century, the life sciences and even the arts have 
adopted elements of scientific computations. Ordinary 
differential equations appear in the movement of heavenly 
bodies (planets, stars and galaxies); optimization occurs in 
portfolio management; numerical linear algebra is 
important for data analysis; stochastic differential 
equations and Markov chains are essential in simulating 
living cells for medicine and biology.[3],[4] 
Polynomials can be used to approximate more complicated 
curves, for example, the shapes of letters in typography, 
given a few points. A relevant application is the evaluation 
of the natural logarithm and trigonometric functions: pick 
a few known data points, create a lookup table, and 
interpolate between those data points. This results in 
significantly faster computations. Polynomial interpolation 
also forms the basis for algorithms in numerical 
quadrature and numerical ordinary differential equations. 
[5] 
Polynomial interpolation is also essential to perform sub-
quadratic multiplication and squaring such as Karatsuba 
multiplication and Toom–Cook multiplication, where an 
interpolation through points on a polynomial which 
defines the product yields the product itself. For example, 
given a = f(x) = a0x0 + a1x1 + ... and b = g(x) = b0x0 + b1x1 
+ ... then the product ab is equivalent to W(x) = f(x)g(x). 
Finding points along W(x) by substituting x for small 
values in f(x) and g(x) yields points on the curve. 
Interpolation based on those points will yield the terms of 
W(x) and subsequently the product ab. In the case of 
Karatsuba multiplication this technique is substantially 
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faster than quadratic multiplication, even for modest-sized 
inputs. This is especially true when implemented in 
parallel hardware.[5] 
In this research, numerical analysis in proposed a new 
technique for learning the neural network. The Lagrange 
interpolation polynomial was used in back propagation 
neural learning in order to increase the decision accuracy 
of the neural network with decrease the learning time and 
more stability of neural network. Also, the Lagrange 
interpolation polynomial was used in image denoising 
process under control of the proposed neural network.  

2. The Lagrange Interpolation Polynomial  

The problem of constructing a continuously defined 
function from given discrete data is unavoidable whenever 
one wishes to manipulate the data in a way that requires 
information not included explicitly in the data. The 
relatively easiest and in many applications often most 
desired approach to solve the problem is interpolation, 
where an approximating function is constructed in such a 
way as to agree perfectly with the usually unknown 
original function at the given measurement points. In the 
practical application of the finite calculus of the problem 
of interpolation is the following: given the values of the 
function for a finite set of arguments, to determine the 
value of the function for some intermediate argument. [6] 

2.1 The Problem of Interpolation  

The problem of interpolation consists in the following: 
Given the values yi corresponding to xi, i = 0, 1, 2, . . . , n, 
a function f(x) of the continuous variable x is to be 
determined which satisfies the equation:  
                           yi = f(xi) for i = 0, 1, 2 . . . , n   
and finally f(x) corresponding to x = x0 is required. (i.e. 
x0 different from xi, i = 1, n.) 
In the absence of further knowledge as to the nature of the 
function this problem is, in the general case, 
indeterminate, since the values of the arguments other than 
those given can obviously assigned arbitrarily. [6] 
If, however, certain analytic properties of the function be 
given, it is often possible to assign limits to the error 
committed in calculating the function from values given 
for a limited set of arguments. For example, when the 
function is known to be representable by a polynomial of 
degree n, the value for any argument is completely 
determinate when the values for n + 1 distinct arguments 
are given. 

2.2 Lagrange Interpolation 

Consider the function f: [x0, xn] → R given by the 
following table of values: 

 
xk are called interpolation nodes, and they are not 
necessary equally distanced from each other. We seek to 
find a polynomial P(x) of degree n that approximates the 
function f(x) in the interpolation nodes, i.e. [6] 

f (xk) = P(xk); k = 0, 1, 2, . . . , n.  
The Lagrange interpolation method finds such a 
polynomial without solving the system. 
 
Theorem: Lagrange Interpolating Polynomial [6] 
The Lagrange interpolating polynomial is the polynomial 
of degree n that passes through (n + 1) points y0 = f(x0), 
y1 = f(x1), . . . yn = f(xn) . Let: 

 
Where 

 
Written explicitly: 

 
Lagrange interpolating polynomials are implemented in 
Mathematica as Interpolating 
Polynomials[data,var]. For the case n = 4, i.e. interpolation 
through five points, we have: 

 
 
and 

 
Note that the function P(x) passes through the points (xi, 
yi), i.e. P(xi) = yi. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011 
 

 

257

For Examples: The Lagrange interpolating polynomial is 
given by[7] 

 ∑
=
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Figure 1   Interpolation of discrete data.[9] 

 
Let Y = F(x)  such that yo = f(xo) , y1 =f(x1) , y2 =f(x2) , … , 

yn =f(xn) , then to estimate value of f(x) we use :[8] 

x xo X1 x2 … xn  

F(x) yo Y1 y2 … yn 
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Example 1: By Lagrange formula , find the value of  f(3) 

and f(5) frome the table .  

X 0 1 2 4 

F(x) 1 1 2 5 

Solution: 
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F(3) =  3.5  

So by the same way we have F(5)=6 . 

2.3 Inverse Interpolation  

As shown, the equation of how to interpolation for 
function value corresponding to a given independent 
variable x was addressed. Suppose that, we have now 
reverse the equation so that we seek to determine on x  
value corresponding to a given functional value , then the 
problems becomes inverse interpolation , so we have : [8] 
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Example: find the value of  x*  , when  y* = 2 ,  

Y 1 3 5 

x 15 20 2 

 

Solution: 

x * =  
)iyjy(

)iyy*(2
x j
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      = 20.375.  

3. Example 2 [7] 

The upward velocity of a rocket is given as a function of 
time in Table 1 and Fig.(2). 
 

 
Fig. (2)   Graph of velocity vs. time data for the rocket 

example. 
 

Table 1: Velocity as a function of time. 
 

t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

Determine the value of the velocity at 16=t  seconds 
using a first order Lagrange polynomial.  

 

Solution 
For first order polynomial interpolation (also called linear 
interpolation as shown in Fig. (3)), the velocity is given by 
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Fig.(3)   Linear interpolation. 
 

Since we want to find the velocity at 16=t , and we are 
using a first order polynomial, we need to choose the two 

data points that are closest to 16=t  that also bracket 
16=t  to evaluate it.  The two points are 150 =t  and 

201 =t . 
Then 
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gives 

∏
≠
= −

−
=

1

0
0 0

0 )(
j
j j

j

tt
tt

tL  

10

1

tt
tt

−
−

=  

∏
≠
= −

−
=

1

1
0 1

1 )(
j
j j

j

tt
tt

tL  

01

0

tt
tt

−
−

=  

Hence 

)()()( 1
01

0
0

10

1 tv
tt
tt

tv
tt
tttv

−
−

+
−
−

=  

                    

2015    ),35.517(
1520

15)78.362(
2015

20
≤≤

−
−

+
−

−
= ttt

 
 

)35.517(
1520
1516)78.362(

2015
2016)16(

−
−

+
−
−

=v  

                   )35.517(2.0)78.362(8.0 +=  
                   m/s 69.393=  

x

( )00 , yx

( )yx
f

y



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.3, March 2011 
 

 

259

You can see that 8.0)(0 =tL  and 2.0)(1 =tL  are like 

weightages given to the velocities at 15=t  and 20=t  
to calculate the velocity at 16=t . 

4. Back –Propagation Neural Network  

The back propagation neural is a multilayered, feed 
forward neural network and is by far the most extensively 
used. Back Propagation works by approximating the non-
linear relationship between the input and the output by 
adjusting the weight values internally. A supervised 
learning algorithm of back propagation is utilized to 
establish the neural network modeling. A normal back-
propagation neural (BPN) model consists of an input 
layer, one or more hidden layers, and output layer. There 
are two parameters including learning rate (0 < α <1) and 
momentum (0 < η <1) required to define by user. The 
theoretical results showed that one hidden layer is 
sufficient for a BP network to approximate any continuous 
mapping from the input patterns to the output patterns to 
an arbitrary degree freedom. The selection and nodes of 
hidden layers primarily affect the classification 
performance. The following figure shows the topology of 
the black-propagation neural network that includes and 
input layer, one hidden layer and output layer. [9] 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 4 Two category model of back-propagation 

5. Proposed Lagrange BPN network 

A new learning for BPN network was proposed to achieve 
more stability of the neural network and increase the 
accuracy of the BPN network results using the 
modification of Lagrange interpolation polynomial. The 
Lagrange interpolation used to change the ratio of learning 
weights for each layer of neural network to add more 
stability in each neural network layer and to reduce the 
minimum and global energy loops of back propagation 

neural learning. Below the proposed Lagrange BPN 
network learning algorithm:  
Step 1: Design the structure of neural network and input 
parameters of the network. 
Step2: Get initial weights W and initial  (threshold 　
values) from randomizing. 
Step 3: Input training data matrix X and output matrix Y. 
Step 4: Compute the output vector of each neural units. 
(a) Compute the output vector H of the hidden layer 

  
(b) Compute the output vector Y of the output layer 

  
 
Step 5: Compute Lagrange interpolation for Hidden and 
Output layer 
 

)ixx(

)ixx*(nn
)(

i
0i0 −

−
∏∑=

≠
== k

knetnkL

k
k

  

)ixjx(

)ixx*(nn
)(

ji
0i0j −

−
∏∑=

≠
==

jHnjL   

Step 6: Compute the modification of W and θ (ηis the 
learning rate, α is the momentum coefficient) 

(a) Compute the modification of W and θ of the 
output layer 

Δwkj(n)=η HK +αΔwkj( n-1)+ η α Lj(n) 
 Δθj (n) = η Lj(n) +αΔθj(n-1) 

 
(b) Compute the modification of W and θ of the 

hidden layer 
Δwjk(n) =η Xj +αΔwjk(n-1)+ η α Lk(n)   
Δθκ(n) = −η Lk(n) +αΔθκ(n-1) 

 
Step 7: Renew W and θ 
(a) Renew W and _ of the output layer 

wkj( p) = wkj( p-1) + Δwkj 
  θj (p) =θj (p-1) + Δθj 

(b) Renew W and θ of the hidden layer 
wjk( p) = wjk( p-1) + Δwjk 

  θk (p) =θκ (p-1) + Δθk 
Step 8: Repeat step 3 to step 7 until converge 
 

X1 

X2 

X3 

X4 

Y

Input 
Layer 

Hidden 
Layer 

Output 
Layer 
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6. The proposed Lagrange Back Propagation 
Neural Network System (LBNPNN) 

The proposed Lagrange back propagation neural network 
was used to develop the image denoising system explains 
in [10]. In begin; we must explain the denoising operation. 
Being a simple inverse problem, the denoising is a 
challenging task and basically addresses the problem of 
estimating a signal from the noisy measured version 
available from that. A very common assumption is that the 
present noise is additive zero-mean white Gaussian with 
standard deviation ó. Many solutions have been proposed 
for this problem based on different ideas, such as spatial 
adaptive filters, diffusion enhancement, statistical 
modeling, transfer domain methods, order statistics and 
yet many more. Among these methods, a method based on 
with sparse and redundant representations has recently 
attracted lots of attentions. Many researchers have 
reported that such representations are highly effective and 
promising toward this stated problem [11]. 
 
There are many different cases of distortions. One of the 
most prevalent cases is distortion due to additive white 
Gaussian noise which can be caused by poor image 
acquisition or by transferring the image data in noisy 
communication channels. Early methods to restore the 
image used linear filtering or smoothing methods. These 
methods where simple and easy to apply but their 
effectiveness is limited since this often leads to blurred or 
smoothed out in high frequency regions.[12] 
 
All denoising methods use images artificially distorted 
with well defined white Gaussian noise to achieve 
objective test results. Note however that in real world 
images, to discriminate the distorting signal from the 
“true” image is an ill posed problem since it is not always 
well defined whether a pixel value belongs to the image or 
it is part of unwanted noise.[12] 
 
The proposed system used to reduce the noise in the image 
and applying the Lagrange interpolation method with the 
proposed LBPNN for the denoising operation with the 
new denoises calculation technique.  
 
After loading image, the proposed system starts 
calculation of The Lagrange interpolation by using 2D 
mask and initial the proposed LBPN network with a neural 
configuration build from (16, 25,1) 16 input nodes, 25 
hidden nodes, and one output node. This mask take two 
rows for each time calculation and repeat calculation until 
the image completes. From these rows, the calculated The 
Lagrange values for each row depend on the previous row. 
In the same time, the proposed LBPN network will apply 
to the same 2D mask pixels to distinguish between normal 

pixel and noisy pixel. Where, the proposed LBPN network 
learned using some types of the training image sets with 
different types of noise distribution.  
  
For each pixel in the selected 2D mask, the Lagrange 
interpolation resulted values will replace the pixel value if 
proposed LBPN network flagged the tested pixel is a noisy 
pixel. The proposed system steps are: 

1. Loading the image. 
2. Divide the image into squares with size 16x16 pixels. 
3. Applying The Lagrange interpolation calculation on the 

loaded image squares parts. 
4. Applying the proposed LBPN network. 
5. if proposed LBPN network  flags the pixel is noisy then 

applying the denoising operation by replace noisy by 
Lagrange interpolation resulted value. 

6. Calculate RMS 
7. Save the resulted image. The block diagram of the 

proposed system is as shown below:   
 

 
Fig.(6) The proposed system block diagram 

7. Experimental Results & Discussions 

 The performance of the Lagrange interpolation method 
and Proposed Lagrange Interpolation polynomial Back 
Propagation Neural Network that have been proposed in 
this research is investigated with simulations and give a 
very good results for some types of noise like Gaussian 
noise and Laplace noise. Also, denoising is carried out for 
image with noise of variance types. The proposed mask 
has the best nonlinear filtering possible due to the LBPNN  
and Lagrange interpolation polynomial math calculations, 
the mask replacing noisy pixels depend on LBPNN 
decision and the content of the neighbor pixels values in 
the suggested mask. Fig(7) shows some proposed system 
results. 
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(S1) before    (S1) After 

 

 
(S2) before                                            (S2) after 

Fig (7) some results of the proposed system. 
 
The performance of the different denoising samples is 
compared in Table 2. 
Table 2 The RMSE for the Test Samples after denoising 
 

Sample name RMSE Size 
S1 43.90 512x512 
S2 48.54 640x480 
S3 44.98 600x800 
S4 47.12 512x 512 
S5 45.89 512x480
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