IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011 63

A note on estimation of states in HMM with unknown
parameters

Yasunari Maeda, Fumito Masui and Masakiyo Suzuki

Kitami Institute of Technology, 165 Koen-cho, Kitami-shi, Hokkaido 090-8507 Japan

Summary

Estimation of states in HMM(Hidden Markov Model) with
unknown parameters is very important topic in many fields. In
this paper we propose an optimal estimation method which
minimizes an error rate with reference to the Bayes criterion. We
also propose approximate method in order to reduce
computational complexity.
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1. Introduction

Estimation of states in HMM(Hidden Markov Model) with
unknown parameters is one of important topics in many
fields. For example in natural language processing, a
morphological analysis is equal to estimation of states in
HMM with unknown parameters. And multi-topic
document classification is also equal to estimation of
states in HMM with unknown parameters. In this research
we study estimation of states in HMM with unknown
parameters under the condition that a learning data is
given. And the learning data consists of pairs of a known
state in HMM and a known symbol in HMM.

In previous research[3][4] of morphological analysis
estimation of states in HMM with unknown parameters
has been divided into two problems, estimating the
unknown parameters of HMM and estimating the states.
MLE(Maximum Likelihood Estimate) was used in the
previous research basically, but there was no reason why
MLE was used. There was no theoretical guarantee when
the number of data for learning was finite.

In this research we treat estimating the unknown
parameters and estimating the states as one problem based
upon statistical decision theory.[1] And we propose Bayes
optimal method which minimizes an error rate with
reference to a Bayes criterion and approximate method in
order to reduce computational complexity.
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2. Definitions and Previous Research

2.1 Definitions

First, we describe some definitions. Let t, t €T be a
state of HMM. T, T = {tl,tz,...,tm} is a set of states. w,,
w, eW is a symbol which occurs at each state. W ,
W ={w,w,,...,w, | is a set of symbols. p(t]o) is an
initial state probability of HMM. plt,[t,0) is a state
transition probability of HMM. The probability
distributions p(t|0) and p(t,ft,6) are dominated by a
parameter 8, 8 ® . And a true parameter 8, 8" €O is
unknown. p(wj |t|,y/) is the probability of an event that the

symbol w, occurs at the state t . The probability

distribution p(wj|ti,1//) is dominated by a parameter y ,
w €Y. And atrue parameter ", v e ¥ is unknown.
Oty ey = ey ey ) s
data for learning the unknown parameters 8" and w ™. n
xyt)
(XNHYN‘)=<X.‘1X.‘z"'X.‘N,,yi,iy.,z"'yi,N,) is the i th data in

is the number of data.

(x,y"). x" is the string of states in the i th data. And
y" is the string of symbols in the ith data. N, is the

length of x“ and y"“. x . is the jth state in x", and

i
y,, is the j th symbol in y™ . All x" and y" in
(x",y") are known.

The probability of an event that the learning data

(x",y") occur is described as follows:
pllc.y* i)
100 J0)ply,sbeo T Pl e 1, 0)pL3 o)

i=1

M

(x'N', y’”') is a new pair of a string of states x'* and a

IN’

string of symbols y™ . y'v is known, but x is



64 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

unknown. The probability of an event that (X’N',y’”')
occurs is described as follows:
p(X!N’,y!N’|9,V/)

= plx[o)plyix v )T plxx. O)plyix v )

In this research the task of estimation of states in HMM
with unknown parameters is estimating the new string of

states x’V" under the condition that the learning data
(x“,y“)" and the new string of symbols y"" are given.

)

2.1 Previous Research

In the previous research the task of estimation of states in
HMM with unknown parameters has been divided into
two problems, estimating the unknown parameters and

estimating the new string of states x'V . In the basic
method of the previous research x' was estimated by
egs.(3).

Ay v (v ) )= arg ma b, ()8, (v

il’j ﬁML ()’ZI’|)2|’—1)E)ML (y:|)’z.’)1
where p,, was MLE. In egs.(3) MLE was used, but the

reason why MLE was used was not precise. There was no
theoretical guarantee when the number of data for learning
was finite.

In this paper we treat estimating the unknown parameters
and estimating the new string of states x™ as one
problem based upon statistical decision theory. In the task
of estimation of states in HMM with unknown parameters
there are three kinds of purposes, estimation of the new
string of states x' , estimation of x' in x and

®)

estimation of existence of state t, in x'"". In this paper we
study the first purpose.

3. Estimation of The New String of States
based upon Statistical Decision Theory

3.1 Bayes Optimal Method

A loss function when a purpose is estimation of the new
string of states is given by

b ey )
s i’”'(y'”',(xN,y”)");éX’”'; (4)
o e

where R'“'(y’”',(x“,y“)") is a decision function which

returns an estimate of x'"'.
A risk function is given by

Ry ety Jow)

(¢t 4 rgz(w Wiy (w“:w”%r”',ww) 5)
pllx", v lo.w oy Jo.w)
il ey ).

This is equal to an error rate which is the probability of an
event that the R'“'(y’”',(x“ A )") returns a wrong estimate.

A Bayes risk is given by

BR(p(6) p(y))
= [ [p@)p R [y (e vV Jow puao, ©

where p(@) is a prior density function for &, p(y) is a
prior density function for y . The Bayes optimal decision

which minimizes the Bayes risk is given by

Bd (y’“' , (xN Lyt )")
=arg max [ p(H‘(xN )} )p()?1’|¢9)d0
1 ol ol by 0
Q(j p(&‘(x“ Y5 p(%]%,, 0)d0

1 P('//\(XN )Ry (v ”’j .

When a Dirichlet distribution is used as the prior density
for 6 and w , the integration calculation in egs.(7) is

easily calculated. For example
[, p(y/‘(x” y" )”)p(yl’|>21',y/)dx// is calculated as follows:

1 ol Y ol b
B Flyoc v ) ) £lvie) ®)

2 Flfocy ) ) b))

eW

where F()Z[W‘(XN,yN)“) is the number of times that the
symbol w occurs at the state X| in the learning data
(x",y") cf(w|§<1’) is the parameter of the Dirichlet
distribution for p(vv|>‘<1’,://).

The Bayes optimal decision by egs.(7) can be calculated

using a dynamic programming(DP) method. At first we
introduce a DP-tree. Fig.1 is an example of DP-tree. A

root node of the DP-tree is a null string. There are [T|
nodes at the depth of 1, and each node represents X/,
X €T . There are [T| nodes at the depth of i, and each

node represents X', X" eT'.
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T =16

N'-1, /N'-1

depth N’ -1 <>2' Ty ’>
U
Fig.1 An example of DP-tree.

The Bayes optimal decision can be calculated by
continuing calculation at each node from the depth of
N'—1 to O as follows.

Stepl. At each node at the depth of N'—-1 calculate as
follows:

qt( N1 !N 1)
=argmax j p(H(x“)",)“(’N"l)p(ﬁ’,|>?[w,l,0)d6 9)

1 ol v V%2, v ol 8 Yo

where qt( Wy s a function which returns an

estimate of x|,

qp( IN' 1er 1)
“max { ol ) 3 ol oke o
§pl oy Ry ol K

where qp( Ny l) holds the probability of the estimate
by egs.(9).

qX( IN-1 rN 1) qt("rN 1IN 1)’ (11)
where g&(¥™ 1y l) holds the string of states.
Step g (2<g<N'-1). At each node at the depth of
N’—g calculate as follows:

at(xey™)

—argxzna;(T I p( ( )H’X,N,_g )p(f(’N'fgﬂ %Lg’ebe
(12)
g P('// [y ) g,y )p(y’w,m Ko v
qp( N g+ly!N g+1)
ap(x™ey™)
—XNmale J ( ( N)H’X'N/_g )p<)2:ﬂ’fg+l i;l’fg’e}je ( 3)
1
1, p( (", y" ) 2 y’N"‘?’)p(y'Nr,M>‘<’Nr,g+1,w)dw
qp( IN g+1 IN' g+1)
gx(x" 0y ) "

= qt( e erug )Q)z()A('N"gqt()'{'N'*g er'fg )le'—gﬂ)l

Step N'. At the root node calculate as follows:
at( )= argmax | plefix*) Jo(xjo)o

1, ol ol b oty

ax( )= qt( Jax(at( )y:). (16)
Finally eqs.(16) yields the same result as egs.(7). If the
Dirichlet distribution is used as the prior density, the
integration calculation is done easily. But the
computational complexity of the Bayes optimal method is
still very big. The number of four arithmetic operations in

the Bayes optimal method is about 13Y;T|™ , it is an

(15)

exponential order on N’. So, we propose an approximate
method in order to reduce the computational complexity.

3.2 Approximate Method

In the approximate method predictive distributions

( (x" )”) and
b

parameters. The predictive distributions are also used in
eqs.(7). So there is a precise reason to use the predictive
distributions. At first we describe some definitions. Let

Polt) p05( |t) and ﬁpos(wj|ti) be the predictive
distributions as follows:

ﬁpos(ti) ( )) ( |‘9)d9 (((

F,
that an initial state of each string of states in the learning
data (x",y")" is equal to the state t,, £lt,) is the

parameter of the Dirichlet distribution for p(tj|6’).
Buali)= 1 lefoe) ol okto
F(titj (x" )")+ §<tj|ti) (18)
BENRED

(x” )”) is the number of times that a transition

(x”,y”)") are used as estimates for the unknown

X )+ &)
")

‘.1) is the number of times

(17)

where X', =X, X,, - X

nl?

where F(t,tk

from the state t, to the state t, occurs in the learning data
(" y) §(tk|ti) is the parameter of the Dirichlet
distribution for pltJt,,6).

ﬁpos (Wj |ti): VL p(‘/’
_

- > (Fltw,

Wy €

(XN 2% )n )p(Wj|ti,(//)d(//
Jor v )+ ) (19)
(x”,y”)")+ f,’(Wk|ti)),
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where F(tiwk (x”,y”)") is the number of times that the

symbol w, occurs at the state t in the learning data
(x"y" ), §(Wk|t,) is the parameter of the Dirichlet
distribution for p(w,ft,, ).

The approximate method is equal to a Viterbi algorithm
in coding theory.[2] The Viterbi algorithm is also used in
the previous research[3][4]. But MLEs are used as
estimates for the unknown parameters in the previous
research. Fig.2 is an example of trellis diagram.

time N'+1

time N’

time 1 time 2 time 3
Fig.2 An example of trellis diagram.
At each time(from time 1 to time N') there are [T| states

on the trellis diagram. The trellis diagram ends at time
N’+1. Attime N’+1 there is only an end state. There is

a metric m, (t'|t) for each branch on the trellis diagram as
follows:

(20)

m,(t1t)=m, (%, =t]% =t)
= 109 B .. (Y/1t)B,.. (') = 100 B (vt) + 10g B... (1 ]t).
Let M, (t), ps,(t) and path,(t) be as follows:
M, (t)= rxnrel%((M L&)+ mifl(t|§(i[1)). (21)
ps,(t)=arg g@((M L)+ R ). (22)
path, (t)lz path,_ (ps, (t))t. (23)

Using egs.(20), egs.(21), egs.(22) and egs.(23) we can find
an approximate estimate for the new string of states x".
The approximate method is described as follows:

Stepl. Let M,(t) and path,(t) be as follows:

M,(t)=log p.(t) ,vteT. (24)

path(t)=t ,vteT. (25)

Step g (2<g <N"). Using egs.(20), egs.(21), eqs.(22),

egs.(23), egs.(24) and egs.(25) calculate M (t), ps,(t)
and path,(t) forall teT.

Step N'+1 . Calculate M, (end) , ps,.,(end) and

path,.,(end ), where
mN(end|t): Iog ﬁpos(y’N|t) (26)
path,.,(end ) = path, (ps,., (end)). @7)

Finally egs.(27) yields the approximate estimate for the
new string of states. The number of four arithmetic

operations in the approximate method is about 3|'I'|2 N’. So,

the computational complexity of the approximate method
is proportional to N'.

4. Numerical Experiments
We investigate performance of our proposed approximate

method by simulations. Fig.3 and Fig.4 are results of the
simulations.
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We compared three methods, Pos is our proposed
approximate method, ML is the method of previous
research by egs.(3), Tr is a method which knows true
parameters of HMM(The true parameters are used in
egs.(3)). We examined two types of conditions. In typel
and type2 [T|=5, W|=5, length of each string in

learning data and new string is 10, comparison times is
10000, a Jeffrey's prior is used as the prior density for 6
and w . True parameters in typel are

[l 9’*)_ 08
P(tzé’) 0.05
plt.|o)| =| 0.05], (28)
p(t4 9*) 005
Al [0.0s
_p(tsﬁ )
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Accuracy rates on Fig.3 and Fig.4 are given by

the number of true estimates
accuracy rate = - . (34)
the number of all estimates

When the number of learning data is big the accuracy
rates of Pos and ML are equal to the rate of Tr. When the
number of learning data is small the accuracy rates of Pos
and ML are smaller than the rate of Tr. But the rate of Pos
is bigger than the rate of ML.

5. Conclusion

In this research we proposed the Bayes optimal method for
estimation of states in HMM with unknown parameters. In
order to reduce the computational complexity we also
proposed the approximate method using the predictive
distributions calculated by using the posterior density

p(@‘(x“ )") and p(y/‘(x” Lyt )") The predictive distributions

are also used in the Bayes optimal method. So, our
approximate method is based upon an idea of statistical
decision theory.

We also studied basic properties of our approximate
method from some simulations. As further works we want
to study more about properties of our approximate method.
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