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Summary 
Estimation of states in HMM(Hidden Markov Model) with 
unknown parameters is very important topic in many fields. In 
this paper we propose an optimal estimation method which 
minimizes an error rate with reference to the Bayes criterion. We 
also propose approximate method in order to reduce 
computational complexity. 
Key words: 
estimation of states, Hidden Markov Model, statistical decision 
theory, error rate 

1. Introduction 

Estimation of states in HMM(Hidden Markov Model) with 
unknown parameters is one of important topics in many 
fields. For example in natural language processing, a 
morphological analysis is equal to estimation of states in 
HMM with unknown parameters. And multi-topic 
document classification is also equal to estimation of 
states in HMM with unknown parameters. In this research 
we study estimation of states in HMM with unknown 
parameters under the condition that a learning data is 
given. And the learning data consists of pairs of a known 
state in HMM and a known symbol in HMM. 
In previous research[3][4] of morphological analysis 

estimation of states in HMM with unknown parameters 
has been divided into two problems, estimating the 
unknown parameters of HMM and estimating the states. 
MLE(Maximum Likelihood Estimate) was used in the 
previous research basically, but there was no reason why 
MLE was used. There was no theoretical guarantee when 
the number of data for learning was finite. 
In this research we treat estimating the unknown 

parameters and estimating the states as one problem based 
upon statistical decision theory.[1] And we propose Bayes 
optimal method which minimizes an error rate with 
reference to a Bayes criterion and approximate method in 
order to reduce computational complexity. 

2. Definitions and Previous Research 

2.1 Definitions 

First, we describe some definitions. Let it , Tti ∈  be a 
state of HMM. T , { }TtttT ,,, 21 K=  is a set of states. iw , 

Wwi ∈  is a symbol which occurs at each state. W , 
{ }WwwwW ,,, 21 K=  is a set of symbols. ( )θitp  is an 

initial state probability of HMM. ( )θ,ij ttp  is a state 
transition probability of HMM. The probability 
distributions ( )θitp  and ( )θ,ij ttp  are dominated by a 

parameter θ , Θ∈θ . And a true parameter *θ , Θ∈*θ  is 
unknown. ( )ψ,ij twp  is the probability of an event that the 
symbol jw  occurs at the state it . The probability 

distribution ( )ψ,ij twp  is dominated by a parameter ψ , 

Ψ∈ψ . And a true parameter *ψ , Ψ∈*ψ  is unknown. 

( )nNN yx , , ( ) ( )( ) ( )nn NNNNNNnNN yxyxyxyx ,,,, 2211 L=  is 
data for learning the unknown parameters *θ  and *ψ . n  
is the number of data. ( )ii NN yx , , 
( ) ( )

ii

ii
NiiiNiii

NN yyyxxxyx ,2,1,,2,1, ,, LL=  is the i th data in 

( )nNN yx , . iNx  is the string of states in the i th data. And 
iNy  is the string of symbols in the i th data. iN  is the 

length of  iNx  and iNy . jix ,  is the j th state in iNx , and 

jiy ,  is the j th symbol in iNy . All Nx  and Ny  in 

( )nNN yx ,  are known. 
The probability of an event that the learning data 
( )nNN yx ,  occur is described as follows: 

( )( )
( ) ( ) ( ) ( ).,,,

,,

1 2
,,1,,1,1,1,∏ ∏=

= =
−

n

i

N

j
jijijijiiii

nNN

i

xypxxpxypxp

yxp

ψθψθ

ψθ
 (1) 

( )NN yx ′′ ′′ ,  is a new pair of a string of states Nx ′′  and a 
string of symbols Ny ′′ . Ny ′′  is known, but Nx ′′  is 
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unknown. The probability of an event that ( )NN yx ′′ ′′ ,  
occurs is described as follows: 

( )
( ) ( ) ( ) ( ).,,,

,,

2
1111 ∏ ′′′′′′′=

′′
′

=
−

′′

N

i
iiii

NN

xypxxpxypxp

yxp

ψθψθ

ψθ
    (2) 

In this research the task of estimation of states in HMM 
with unknown parameters is estimating the new string of 
states Nx ′′  under the condition that the learning data 
( )nNN yx ,  and the new string of symbols Ny ′′  are given. 

2.1 Previous Research 

In the previous research the task of estimation of states in 
HMM with unknown parameters has been divided into 
two problems, estimating the unknown parameters and 
estimating the new string of states Nx ′′ . In the basic 
method of the previous research Nx ′′  was estimated by 
eqs.(3). 
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where MLp̂  was MLE. In eqs.(3) MLE was used, but the 
reason why MLE was used was not precise. There was no 
theoretical guarantee when the number of data for learning 
was finite. 

In this paper we treat estimating the unknown parameters 
and estimating the new string of states Nx ′′  as one 
problem based upon statistical decision theory. In the task 
of estimation of states in HMM with unknown parameters 
there are three kinds of purposes, estimation of the new 
string of states Nx ′′ , estimation of ix′  in Nx ′′  and 
estimation of existence of state it  in Nx ′′ . In this paper we 
study the first purpose. 

3. Estimation of The New String of States 
based upon Statistical Decision Theory 

3.1 Bayes Optimal Method 

A loss function when a purpose is estimation of the new 
string of states is given by 

( )( )( )
( )( )
( )( )⎪⎩

⎪
⎨
⎧

′=′′

′≠′′
=

′′′

′′′

′′′

′′′

,,,ˆ,0

;,,ˆ,1

,,,ˆ

NnNNNN

NnNNNN

NnNNNN

xyxyx

xyxyx

xyxyxL

             (4) 

where ( )( )nNNNN yxyx ,,ˆ ′′ ′′  is a decision function which 
returns an estimate of Nx ′′ . 
A risk function is given by 
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( ) ( )( ) ( )
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             (5) 

This is equal to an error rate which is the probability of an 
event that the ( )( )nNNNN yxyx ,,ˆ ′′ ′′  returns a wrong estimate. 
A Bayes risk is given by 

( ) ( )( )
( ) ( ) ( )( )( ) ,,,,,ˆ

,
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ψθ

θ ψ
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′′    (6) 

where ( )θp  is a prior density function for θ , ( )ψp  is a 
prior density function for ψ . The Bayes optimal decision 
which minimizes the Bayes risk is given by 
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    (7) 

When a Dirichlet distribution is used as the prior density 
for θ  and ψ , the integration calculation in eqs.(7) is 
easily calculated. For example 

( )( ) ( )∫ ′′
ψ ψψψ dxypyxp nNN ,ˆ, 11  is calculated as follows: 

( )( ) ( )
( )( ) ( )
( )( ) ( )( ) ,

ˆ,ˆ

ˆ,ˆ

,ˆ,
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where ( )( )nNN yxwxF ,ˆ1′  is the number of times that the 

symbol w  occurs at the state 1x̂′  in the learning data 

( )nNN yx , , ( )1x̂w ′ξ  is the parameter of the Dirichlet 

distribution for ( )ψ,ˆ1xwp ′ . 
The Bayes optimal decision by eqs.(7) can be calculated 

using a dynamic programming(DP) method. At first we 
introduce a DP-tree. Fig.1 is an example of DP-tree. A 
root node of the DP-tree is a null string. There are T  
nodes at the depth of 1, and each node represents 1x̂′ , 

Tx ∈′1ˆ . There are iT  nodes at the depth of i , and each 

node represents ix′ˆ , ii Tx ∈′ˆ . 
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Fig.1 An example of DP-tree. 

The Bayes optimal decision can be calculated by 
continuing calculation at each node from the depth of 

1−′N  to 0  as follows. 
Step1 . At each node at the depth of 1−′N  calculate as 
follows: 
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where ( )11ˆ −′−′ ′′ NN yxqt  is a function which returns an 
estimate of Nx ′′ . 
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where ( )11ˆ −′−′ ′′ NN yxqp  holds the probability of the estimate 
by eqs.(9). 

( ) ( ) ,ˆˆˆ 1111 −′−′−′−′ ′′=′′ NNNN yxqtyxxq                   (11) 
where ( )11ˆˆ −′−′ ′′ NN yxxq  holds the string of states. 
Step g ( 12 −′≤≤ Ng ). At each node at the depth of 

gN −′  calculate as follows: 
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Step N ′ . At the root node calculate as follows: 
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( ) ( ) ( )( ) .ˆˆ 1yqtxqqtxq ′=                         (16) 
Finally eqs.(16) yields the same result as eqs.(7). If the 
Dirichlet distribution is used as the prior density, the 
integration calculation is done easily. But the 
computational complexity of the Bayes optimal method is 
still very big. The number of four arithmetic operations in 
the Bayes optimal method is about ∑ −′

=

+1
0

113 N
i

iT , it is an 
exponential order on N ′ . So, we propose an approximate 
method in order to reduce the computational complexity. 

3.2 Approximate Method 

In the approximate method predictive distributions 
calculated by using posterior density ( )( )nNxp θ  and 

( )( )nNN yxp ,ψ  are used as estimates for the unknown 

parameters. The predictive distributions are also used in 
eqs.(7). So there is a precise reason to use the predictive 
distributions. At first we describe some definitions. Let 

( )ipos tp̂ , ( )ijpos ttp̂  and ( )ijpos twp̂  be the predictive 
distributions as follows: 
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where 1,1,21,11, n
n xxxx L=⋅ , ( )n

j xtF 1,⋅  is the number of times 
that an initial state of each string of states in the learning 
data ( )nNN yx ,  is equal to the state jt , ( )jtξ  is the 

parameter of the Dirichlet distribution for ( )θjtp . 
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where ( )( )nN
ki xttF  is the number of times that a transition 

from the state it  to the state kt  occurs in the learning data 

( )nNN yx , , ( )ik ttξ  is the parameter of the Dirichlet 

distribution for ( )θ,ik ttp . 
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where ( )( )nNN
ki yxwtF ,  is the number of times that the 

symbol kw  occurs at the state it  in the learning data 

( )nNN yx , , ( )ik twξ  is the parameter of the Dirichlet 

distribution for ( )ψ,ik twp . 
The approximate method is equal to a Viterbi algorithm 

in coding theory.[2] The Viterbi algorithm is also used in 
the previous research[3][4]. But MLEs are used as 
estimates for the unknown parameters in the previous 
research. Fig.2 is an example of trellis diagram. 
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1t
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4t

1t
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4t

end

1time time 2 time 3 time N ′ time 1+′N  
Fig.2 An example of trellis diagram. 

At each time(from time 1  to time N ′ ) there are T  states 
on the trellis diagram. The trellis diagram ends at time 

1+′N . At time 1+′N  there is only an end state. There is 
a metric ( )ttmi ′  for each branch on the trellis diagram as 
follows: 
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Let ( )tM i , ( )tpsi  and ( )tpathi  be as follows: 
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iiiiTxi xtmxMtps

i
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( ) ( )( ) .1 ttpspathtpath iii −=                       (23) 
Using eqs.(20), eqs.(21), eqs.(22) and eqs.(23) we can find 
an approximate estimate for the new string of states Nx ′′ . 
The approximate method is described as follows: 
Step1 . Let ( )tM1  and ( )tpath1  be as follows: 

( ) ( ) .,ˆlog1 TttptM pos ∈∀=                    (24) 
( ) .,1 Ttttpath ∈∀=                         (25) 

Step g ( Ng ′≤≤2 ). Using eqs.(20), eqs.(21), eqs.(22), 
eqs.(23), eqs.(24) and eqs.(25) calculate ( )tM g , ( )tpsg  
and ( )tpathg  for all Tt∈ . 
Step 1+′N . Calculate ( )endM N 1+′ , ( )endpsN 1+′  and 

( )endpathN 1+′ , where 
( ) ( ).ˆlog typtendm NposN ′′ ′=                     (26) 
( ) ( )( ).11 endpspathendpath NNN +′′+′ =               (27) 

Finally eqs.(27) yields the approximate estimate for the 
new string of states. The number of four arithmetic 
operations in the approximate method is about NT ′23 . So, 

the computational complexity of the approximate method 
is proportional to N ′ . 

4. Numerical Experiments 

We investigate performance of our proposed approximate 
method by simulations.  Fig.3 and Fig.4 are results of the 
simulations. 
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Fig.3 Comparison(type1). 
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Fig.4 Comparison(type2). 

We compared three methods, Pos is our proposed 
approximate method, ML is the method of previous 
research by eqs.(3), Tr is a method which knows true 
parameters of HMM(The true parameters are used in 
eqs.(3)). We examined two types of conditions. In type1 
and type2 5=T , 5=W , length of each string in 
learning data and new string is 10, comparison times is 
10000, a Jeffrey's prior is used as the prior density for θ  
and ψ . True parameters in type1 are 
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True parameters in type2 are 
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                        (33) 
Accuracy rates on Fig.3 and Fig.4 are given by 

.
estimates all ofnumber the
estimates  trueofnumber  therateaccuracy =       (34) 

When the number of learning data is big the accuracy 
rates of Pos and ML are equal to the rate of Tr. When the 
number of learning data is small the accuracy rates of Pos 
and ML are smaller than the rate of Tr. But the rate of Pos 
is bigger than the rate of ML. 

5. Conclusion 

In this research we proposed the Bayes optimal method for 
estimation of states in HMM with unknown parameters. In 
order to reduce the computational complexity we also 
proposed the approximate method using the predictive 
distributions calculated by using the posterior density 

( )( )nNxp θ  and ( )( )nNN yxp ,ψ . The predictive distributions 

are also used in the Bayes optimal method. So, our 
approximate method is based upon an idea of statistical 
decision theory. 
We also studied basic properties of our approximate 

method from some simulations. As further works we want 
to study more about properties of our approximate method. 
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