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Summary 
Hadoop is a large-scale distributed processing infrastructure, 
designed to efficiently distribute large amounts of work across a 
set of machines. Scheduling of jobs or work is very important in 
order to achieve efficiency. The proposed work incorporates the 
design of a new scheduler that will not overload any TaskTracker 
at any time and thus preventing the unnecessary re-launch of 
tasks. The scheduler also classifies the job into CPU bound and 
IO bound. So, a balance is maintained between either of them. 
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1. Introduction 

 MapReduce[5] is a framework, a pattern, and a 
programming paradigm that allows us to carry out 
computations over several terabytes of data in a matter of 
seconds. When it comes to massive-scale architecture and 
a huge amount of data, with built-in fault tolerance, there’s 
nothing better than this. But when we come to define 
MapReduce programming, it is just combination of two 
functions-a map function, and a reduce function. This 
shows not just the amount of simplicity exposed by the 
framework in the terms of the efforts of the programmer, 
but also the sheer power and flexibility of the code that 
runs under the hood. 
  
 MapReduce is a good fit for problems that can easily 
be divided into a number of smaller pieces, which can thus 
be solved independently. The data is ideally (but not 
necessarily) in the form of lists, or just a huge chunk of 
raw information waiting to be processed-be it log files, 
geospatial data, genetic data to be used in biochemistry, or 
web pages to be indexed in search engines. The use of 
MapReduce is on the rise in Web analytics, data mining, 
and various other housekeeping functions in combination 
with other forms of databases. It is also used in complex 
fields ranging from graphics processing in Nvidia’s GPUs, 
to animation and machine learning algorithm.  
 

 MapReduce borrows heavily from the languages of 
the functional programming model, like Lisp, etc., which 
are focused on processing lists. Although MapReduce 
programming gives programmers with no experience in 
distributed systems an easy interface, the programmer does 
have to keep in mind the bandwidth considerations in a 
cluster, and the amount of data that is being passed around. 
Carefully implemented MapReduce algorithms can go a 
long way in improving the performance of a particular 
cluster. Also, all the computations performed in a 
MapReduce operation are batch processes, as opposed to 
SQL, which has an interactive query like interface. While 
solving a problem using MapReduce, it is obvious that the 
problem has to be divided into two functions, i.e., map and 
reduce: 
 
 The map function inputs a series of data streams and 
processes all the values that follow in a sequence. It takes 
the initial set of key-value pairs, and in turn, produces an 
intermediate pair to be passed on to the reducer. The 
reduce function typically combines all the elements of 
processed data generated by the mappers. Its job is mainly 
to take a set of intermediate key-value pairs and output a 
key-value pair that is basically an aggregate of all the 
values received by it from the mapper. Combiner functions 
are sometimes used to combine data on the mapper node, 
before it goes to the reducer. Mostly, the code used to 
apply a combiner and a reducer functions is the same. This 
allows us to save a lot of data—transfer bandwidth, and 
can improve efficiency noticeably. But, this doesn’t mean 
that the combiners should be implemented in every case, 
since if there is not much data to combine, it can take up 
unnecessary processing power that could be used in a 
better manner. 
   
 Hadoop is the open source implementation of 
MapReduce. Main areas in research in Hadoop are HDFS 
(Hadoop Distributed File System) and the scheduler. In 
this paper, a new scheduler for Hadoop is proposed. 
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2. Background Work 
 

 
Fig. 1 MapReduce Architecture 

 Hadoop borrows much of its architecture from the 
original MapReduce system at Google. Figure 1 depicts 
the architecture of Hadoop’s MapReduce implementation. 
Although the architecture is centralized, Hadoop is known 
to scale well from small (single node) to very large (up to 
4000 nodes) installations. HDFS (Hadoop Distributed File 
Systems) deals with storage and is based on the Google 
File System and MapReduce deals with computation.  
 
 Each MapReduce job is subdivided into a number of 
tasks for better granularity in task assignment. Individual 
tasks of a job are independent of each other, and are 
executed in parallel. The number of Map tasks created for 
a job is usually proportional to size of input. For very large 
input size (of the order of petabytes), several hundred 
thousand of tasks could be created. 
 
 Scheduling [4] in Hadoop is centralized, and worker 
initiated. Scheduling decisions are taken by a master node, 
called the JobTracker, whereas the worker nodes, called 
TaskTrackers are responsible for task execution. The 
JobTracker maintains a queue of currently running jobs, 
states of TaskTrackers in a cluster, and list of tasks 
allocated to each TaskTracker. Every TaskTracker 
periodically reports its state to the JobTracker via a 
heartbeat mechanism. The contents of the heartbeat 
message are: 

(i) Progress report of tasks currently running on 
sender TaskTracker. 

(ii) Lists of completed or failed tasks. 
(iii) State of resources – virtual memory, disk space, 

etc. 
(iv) A Boolean flag (acceptNewTasks) indicating 

whether the sender TaskTracker should be 

assigned additional tasks. This flag is set if the 
number of tasks running at the TaskTracker is less 
than the configured limit. 

 
 Task or worker failures are dealt by re-launching tasks. 
The JobTracker keeps track of the heartbeats received 
from the workers and uses it in task assignment. If a 
heartbeat is not received from a TaskTracker for a 
specified time interval, then that TaskTracker is assumed 
to be dead. The JobTracker then re-launches all the tasks 
previously assigned to the dead TaskTracker that could not 
be completed. The Heartbeat mechanism also provides a 
communication channel between the JobTracker and a 
TaskTracker. Any task assignment is sent to the 
TaskTracker in the response of a heartbeat. The 
TaskTracker spawns each MapReduce task in a separate 
process, in order to isolate itself from faults due to user 
code in the tasks. 
 When Hadoop started out, it was designed mainly for 
running large batch jobs such as web indexing and log 
mining. Users submit jobs to a queue, and the cluster runs 
them in order. However, as organizations placed more data 
in their Hadoop clusters and developed more computations 
they wanted to run, another use case became attractive: 
sharing a MapReduce cluster between multiple users. The 
benefits of sharing are tremendous: with all the data in one 
place, users can run queries that they may never have been 
able to execute otherwise, and costs go down because 
system utilization is higher than building a separate 
Hadoop cluster for each group. However, sharing requires 
support from the Hadoop job scheduler to provide 
guaranteed capacity to production jobs and good response 
time to interactive jobs while allocating resources fairly 
between users. 
  
Default Scheduler 
  

Default Scheduler or Default Hadoop Scheduler 
is the Scheduler which is used in default with Hadoop 
without any extra configuration. This Scheduler schedules 
jobs in first in first out basis irrespective of job size. The 
main drawback here is starvation of small jobs in the event 
of resources being utilized by large jobs.  
 
Fair Scheduler 
  
 Fair scheduling is a method of assigning 
resources to jobs such that all jobs get, on average, an 
equal share of resources over time. When there is a single 
job running, that job uses the entire cluster. When other 
jobs are submitted, tasks slots that free up are assigned to 
the new jobs, so that each job gets roughly the same 
amount of CPU time. Unlike the default Hadoop scheduler, 
which forms a queue of jobs, this lets short jobs finish in 
reasonable time while not starving long jobs. It is also a 
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reasonable way to share a cluster between a number of 
users. Finally, fair sharing can also work with job priorities 
- the priorities are used as weights to determine the 
fraction of total compute time that each job should get. 
 
 The scheduler actually organizes jobs further 
into "pools", and shares resources fairly between these 
pools. By default, there is a separate pool for each user, so 
that each user gets the same share of the cluster no matter 
how many jobs they submit. However, it is also possible to 
set a job's pool based on the user's Unix group or any other 
jobconf property, such as the queue name property used by 
Capacity Scheduler. Within each pool, fair sharing is used 
to share capacity between the running jobs. Pools can also 
be given weights to share the cluster non-proportionally in 
the config file. 
  
Capacity Scheduler 
  
 Capacity Scheduler is a pluggable Map/Reduce 
scheduler for Hadoop which provides a way to share large 
clusters. The scheduling is based on capacity of the 
resources.  In capacity scheduling, queues are guaranteed 
a fraction of the guaranteed capacity. The free resources 
allocated to any queue beyond its guaranteed capacity are 
reclaimed within N minutes of need.  
 
 Whenever a TaskTracker is free, the Capacity 
Scheduler first picks a queue that needs to reclaim any 
resources the earliest (this is a queue whose resources were 
temporarily being used by some other queue and now 
needs access to those resources). If no such queue is found, 
it then picks a queue which has most free space (whose 
ratio of # of running slots to guaranteed capacity is the 
lowest). 
 
 Once a queue is selected, the scheduler picks a 
job in the queue. Jobs are sorted based on their priorities 
(if the queue supports priorities). Jobs are considered in 
order, and a job is selected if its user is within the 
user-quota for the queue, i.e., the user is not already using 
queue resources above his/her limit. The scheduler also 
makes sure that there is enough free memory in the 
TaskTracker to run the job's task, in case the job has 
special memory requirements. 
 
 Data locality and speculative execution are two 
important features of Hadoop’s scheduling. Data locality is 
about executing tasks as close to their input data as 
possible. Speculative execution tries to rebalance load on 
the worker nodes and tries to improve response time by 
re-launching slow tasks on different TaskTrackers with 
more resources. The administrator specifies the maximum 
number of Map and Reduce tasks 
(mapred.map.tasks.maximum and 

mapred.reduce.tasks.maximum in Hadoop’s configuration 
files) that can simultaneously run on a TaskTracker. If the 
number of tasks currently running on a TaskTracker is less 
than this limit, and if there is enough disk space available, 
the TaskTracker can accept new tasks. This limit should be 
specified before starting a Hadoop cluster. This 
mechanism makes some assumptions that are 
objectionable: 
 

(i) In order to correctly set the limit, the 
administrator has detailed knowledge about the 
resource usage characteristics of MapReduce 
applications running on the cluster. Deciding the 
task limit is even more difficult in cloud 
computing environments such as the Amazon 
EC2, where the resources could be virtual. 

 
(ii) All MapReduce applications have similar 

resource requirements. 
 

(iii) The limit on max number of concurrent tasks 
correctly describes the capacity of a machine. 

. 
 Clearly, these assumptions do not hold in real world 
scenarios given the range of applications for which 
Hadoop is becoming popular. As the above assumptions 
have been built into Hadoop, all the current schedulers 
available with Hadoop, the Hadoop default scheduler, 
FAIR scheduler and the capacity scheduler suffer from this 
limitation. 
 
3 Proposed System 
 
 The task assignment algorithm is explained in this 
section. The algorithm runs at the JobTracker. Whenever a 
heartbeat from a TaskTracker is received at the JobTracker, 
the scheduler chooses a task from the MapReduce job that 
is expected to provide maximum utility after successful 
completion of the task.  
 
 First a pool of candidate jobs is built. Initially the 
requirements of the job are not known and they are not 
requested from the user too. So, one instance of map and 
one instance of reduce task for a job are obtained and they 
are scheduled on a worker node. The worker nodes are 
monitored. Once both the instances of the same job are 
complete, the requirements for the entire job can be 
determined. This is based on the fact that the jobs has the 
same characteristics as their map and reduce tasks.  
  
 Now, the job can be classified into IO bound job or 
CPU bound job. After classification to find the job type, 
say x and the other is y, the task trackers containing less 
tasks of the type x than y are selected.  
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The task trackers are prioritized based on the following 
factors. 
  

(i) Number of failed tasks on the node. 
(ii) Number of tasks from the same job that run 

earlier on that node 
(iii) Resources available for disposal 

 
After prioritizing the TaskTrackers, the best one is selected 
with the hope that the selected task will run at that node. 
Now, the selected task is classified into good or bad task 
with respect to the TaskTracker. If the task is good, then 
the task is scheduled to run on that node. If not, another 
TaskTracker is selected and the process is repeated over. 
This makes sure that any task that may overload a 
TaskTracker is not scheduled to run at all, which meets the 
objective of the scheduler. 
 
4 Implementation 
 

 
Fig 2 Scheduler Implementation 

 In figure 2, when the job is submitted for the first time, 
one instance of map and one instance of reduce task is 
submitted and the job type is determined. The 
TaskTrackers are prioritized and the tasks are classified 
good or bad with respect to the TaskTrackers. If, the task is 
good, the task is scheduled to that TaskTracker. 
 
4.1 Heterogeneous Workloads 
 
 By including the concept of heterogeneous workloads 
[2] [3] [6], the project tries to improve the hardware 
utilization rate when different kinds of workloads run in 
the clusters of MapReduce framework. In practical, 
different kinds of jobs often simultaneously run in the 
same cluster. These different jobs make different 
workloads on the cluster, including the IO bound and CPU 
bound workloads. But currently, the characters of the jobs 
are not aware by the Hadoop’s scheduler which prefers to 
simultaneously run map tasks from the same job on the top 

of the queue. This may reduce the throughput of the whole 
system which seriously influences the productivity of the 
data center, because the tasks from the same job always 
have the same character. 
 According to the utilization of IO and CPU, the job 
can be classified as IO bound job or CPU bound job. The 
ratio of the amount of map input data (MID) and the map 
output data (MOD) depends on the type of workload. A 
variable ρ defined in the equation (1) 
 
                MOD= ρ  ∗ MID               (1) 
 
The quantity q is calculated using equation (2) when a new 
job is submitted. 
 

                 
( )

MTCT
MIDρ+1

               (2) 

where MTCT is the Map Task Completed Time. If the 
quantity is less than the Disk IO rate, then the task is CPU 
bound else IO bound. 
 
4.2 Task Classifier 
 
 Tasks of good jobs do not overload resources at the 
TaskTracker during their execution. Jobs labeled bad are 
not considered for task assignment. If the classifier labels 
all the jobs as bad, no task is assigned to the TaskTracker. 
 If after classification, there are multiple jobs 
belonging to the good class, then the task of a job is 
chosen that maximizes the following quantity: 
 
E.U.(J) = U(J)P(J = good|F1, F2, ., Fn)              (3) 
 
where, E.U.(J) is the expected utility, and U(J) is the value 
of utility function associated with the MapReduce job J. J 
denotes a task of job J, and P(J = good | F1, F2, . . . , Fn) 
denotes the probability that the task  J is good. The 
probability is conditional upon the feature variables F1, 
F2, . . . , Fn. Feature variables are described in more detail 
later in this section.  
  
 The cluster is assumed to be dedicated for MapReduce 
processing, and that the JobTracker is aware and 
responsible for every task execution in the cluster. The 
proposed scheduling algorithm is local as it considers the 
state of only the concerned TaskTracker while making an 
assignment decision. The decision does not depend on 
state of resources of other TaskTrackers.  
 
 The assignment decisions are tracked. Once a task is 
assigned, effect of the task is observed from information 
contained in subsequent heartbeat from the same 
TaskTracker. If based on this information, the TaskTracker 
is overloaded; it is concluded that last task assignment was 
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incorrect. The pattern classifier is then updated (trained) to 
avoid such assignments in the future. If however, the 
TaskTracker is not overloaded, then the task assignment 
decision is considered to be successful. 
 
 Users configure overload rules based on their 
requirements. For example, if most of the jobs submitted 
are known to be CPU intensive, then CPU utilization or 
load average could be used in deciding node overload. For 
jobs with heavy network activity, network usage can also 
be included in the overload rule. In a cloud computing 
environment, only those resources whose usage is billed 
could be considered in the overload rule. For example, 
where conserving bandwidth is important, an overload rule 
could declare a task allocation as incorrect if it results in 
more network usage than the limit set by the user. The 
overload rules supervise the classifiers. But, as this process 
is automated, the learning in our algorithm is automatically 
supervised. The only requirement for an overload rule is 
that it can correctly identify given state of a node as being 
overloaded or under loaded. It is important that the 
overload rule remains the same during the execution of the 
system. Also, the rule should be consistent for the 
classifiers to converge. 
 
4.2.1 Feature Variables 
  
 During classification, the pattern classifier takes into 
account a number of features variables, which might affect 
the classification decision. The features considered are 
described below: 
 
Job Features  
 
 These features describe the resource usage patterns of 
a job. These features could be calculated by analyzing past 
execution traces of the job. It is assumed that there exists a 
system which can provide this information. In absence of 
such a system, the users can utilize these features to 
submit ’hints’ about job performance to the classifier. Once 
enough data about job performance is available, user hints 
could be mapped to resource usage information. The job 
features considered are: job mean CPU usage, job mean 
network usage, mean disk I/O rate, and mean memory 
usage. The users estimate the usages on the scale of 10. A 
value of 1 for a resource means minimum usage, whereas 
10 correspond to maximum usage. For a given MapReduce 
job, the resource usage variables of the Map part and the 
Reduce part are considered different.  
 
Node Features  
 
 Node Static Features change very rarely, or remain 
constant throughout the execution of the system. These 
include number of processors, processor speed, total 

physical memory, total swap memory, number of disks, 
name and version of the Operating System at the 
TaskTracker, etc. Node Dynamic Features include 
properties that vary frequently with time. Examples of 
such properties are CPU load averages, % CPU usage, I/O 
read/write rate, Network transmit/receive rates, number of 
processes running at the TaskTracker, amount of free 
memory, amount of free swap memory, disk space left etc. 
Processor speed could be a dynamic feature on nodes 
where CPUs support dynamic frequency and voltage 
scaling. 
 
4.2.2 Naive Bayes Classifier 
  
 A Bayes classifier [1] is a simple probabilistic 
classifier based on applying Bayes' theorem (from 
Bayesian statistics) with strong (naive) independence 
assumptions. A more descriptive term for the underlying 
probability model would be "independent feature model". 
 In spite of their naive design and apparently 
over-simplified assumptions, naive Bayes classifiers have 
worked quite well in many complex real-world situations. 
In 2004, analysis of the Bayesian classification problem 
has shown that there are some theoretical reasons for the 
apparently unreasonable efficiency of naive Bayes 
classifiers. Still, a comprehensive comparison with other 
classification methods in 2006 showed that Bayes 
classification is outperformed by more current approaches, 
such as boosted trees or random forests. 
The Bayes theorem can be applied to the task classification 
problem using the below formula. 
 

( )
)...3,2,1(
)|....3,2,1()(

FnFFFP
goodjPgoodjFnFFFPJU ==

∗
ττ

  (4) 

  
 The denominator in the equation (4) can be treated as 
a constant as its value is independent of the jobs, and thus 
its calculation can be skipped during comparison. 
 Both P (J = good|F1, F2, . . . , Fn) and P(J = bad|F1, 
F2, . . . , Fn) is calculated. Job is labeled as good or bad 
depending on which of the two probabilities is higher. 
Under the assumption of Naive Bayes conditional 
independence, 
 

∏
=

===
n

i

goodjFiPgoodjFnFFFP
1

)|()|....3,2,1( ττ  (5) 

 Once the effects of task assignments are observed, the 
probabilities are updated accordingly so that future 
decisions could benefit from the lessons learnt from the 
effects of current decisions.  
 Here, it is assumed that the probabilities of all feature 
variables are conditionally independent of each other. This  
may not always be true. However, it is observed that this 
assumption can yield a much simpler implementation.  



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011 
 

 

73

 

4.3 Utility Functions 
 
 Utility functions are used for prioritizing jobs and 
policy enforcement. An important role of the utility 
functions is to make sure that the scheduler does not 
always pick up ‘easy’ tasks. If the utility of all the jobs is 
same, the scheduler will always pick up tasks that are more 
likely to be labeled good, which are usually the tasks that 
demand lesser resources. Thus, by appropriately adjusting 
job utility it could be made sure that every job gets a 
chance to be selected. It is possible that a certain job is 
always classified as bad regardless of the values of feature 
vectors. This could happen if the resource requirements of 
the job are exceptionally high. However, this also indicates 
that the available resources are clearly inadequate to 
complete such a job without overloading. Utility functions 
could also be used in enforcing different scheduling 
policies. Examples of some such policies are given below. 
One or more utility functions could be combined in order 
to enforce hybrid scheduling policies. 
 
Map before Reduce 
  In MapReduce, it is necessary that all Map tasks of a 
job are finished before Reduce operation begins. This can 
be implemented by keeping the utility of Reduce tasks 
zero until a sufficient number of Map tasks have 
completed.  
 
First Come, First Serve 
 FCFS policy can be implemented by keeping the 
utility of the job proportional to the age of the job. Age of 
a job is zero at submission time.  
 
Budget Constrained  
 In this policy, tasks of a job are allocated until the user 
of a job has sufficient balance in his/her account. As soon 
as the balance reaches zero, the utility of jobs of the said 
user becomes zero, thus no further tasks of jobs from the 
said user will be assigned to worker nodes.  
 
Dedicated Capacity 
 In this policy a job is allowed a guaranteed access to a 
fraction of the total resources in the cluster.  
 
Revenue oriented utility 
 In this policy, utility of a job is directly proportional to 
the amount the job’s submitter is willing to pay for 
successful completion of the job. This makes sure that the 
algorithm always picks tasks of users who are offering 
more money for the service. 
 
 
 

5 Results and Conclusion 
 
 The proposed scheduler for MapReduce will not 
overload any TaskTracker at point of time. Thus the 
burden of re-launching the tasks at different TaskTrackers 
is not necessary. This scheduler classifies the job into IO 
bound and CPU bound jobs. So, there will be a balance 
between the number of IO bound tasks and the number of 
CPU bound tasks running at every TaskTracker. This 
increases the hardware resource utilization.  
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