
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

68

Manuscript received April 5, 2011
Manuscript revised April 20, 2011

MapReduce Scheduler Using Classifiers for Heterogeneous

Workloads

Visalakshi P† and Karthik TU††

†Assistant Professor, Department of Computer Science, PSG College of Technology, Coimbatore, India

†† Student, ME - CSE, PSG College of Technology, Coimbatore, India

Summary
Hadoop is a large-scale distributed processing infrastructure,
designed to efficiently distribute large amounts of work across a
set of machines. Scheduling of jobs or work is very important in
order to achieve efficiency. The proposed work incorporates the
design of a new scheduler that will not overload any TaskTracker
at any time and thus preventing the unnecessary re-launch of
tasks. The scheduler also classifies the job into CPU bound and
IO bound. So, a balance is maintained between either of them.

Key words:
Hadoop, MapReduce, Scheduler, Heterogeneous

1. Introduction

 MapReduce[5] is a framework, a pattern, and a
programming paradigm that allows us to carry out
computations over several terabytes of data in a matter of
seconds. When it comes to massive-scale architecture and
a huge amount of data, with built-in fault tolerance, there’s
nothing better than this. But when we come to define
MapReduce programming, it is just combination of two
functions-a map function, and a reduce function. This
shows not just the amount of simplicity exposed by the
framework in the terms of the efforts of the programmer,
but also the sheer power and flexibility of the code that
runs under the hood.

 MapReduce is a good fit for problems that can easily
be divided into a number of smaller pieces, which can thus
be solved independently. The data is ideally (but not
necessarily) in the form of lists, or just a huge chunk of
raw information waiting to be processed-be it log files,
geospatial data, genetic data to be used in biochemistry, or
web pages to be indexed in search engines. The use of
MapReduce is on the rise in Web analytics, data mining,
and various other housekeeping functions in combination
with other forms of databases. It is also used in complex
fields ranging from graphics processing in Nvidia’s GPUs,
to animation and machine learning algorithm.

 MapReduce borrows heavily from the languages of
the functional programming model, like Lisp, etc., which
are focused on processing lists. Although MapReduce
programming gives programmers with no experience in
distributed systems an easy interface, the programmer does
have to keep in mind the bandwidth considerations in a
cluster, and the amount of data that is being passed around.
Carefully implemented MapReduce algorithms can go a
long way in improving the performance of a particular
cluster. Also, all the computations performed in a
MapReduce operation are batch processes, as opposed to
SQL, which has an interactive query like interface. While
solving a problem using MapReduce, it is obvious that the
problem has to be divided into two functions, i.e., map and
reduce:

 The map function inputs a series of data streams and
processes all the values that follow in a sequence. It takes
the initial set of key-value pairs, and in turn, produces an
intermediate pair to be passed on to the reducer. The
reduce function typically combines all the elements of
processed data generated by the mappers. Its job is mainly
to take a set of intermediate key-value pairs and output a
key-value pair that is basically an aggregate of all the
values received by it from the mapper. Combiner functions
are sometimes used to combine data on the mapper node,
before it goes to the reducer. Mostly, the code used to
apply a combiner and a reducer functions is the same. This
allows us to save a lot of data—transfer bandwidth, and
can improve efficiency noticeably. But, this doesn’t mean
that the combiners should be implemented in every case,
since if there is not much data to combine, it can take up
unnecessary processing power that could be used in a
better manner.

 Hadoop is the open source implementation of
MapReduce. Main areas in research in Hadoop are HDFS
(Hadoop Distributed File System) and the scheduler. In
this paper, a new scheduler for Hadoop is proposed.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

69

2. Background Work

Fig. 1 MapReduce Architecture

 Hadoop borrows much of its architecture from the
original MapReduce system at Google. Figure 1 depicts
the architecture of Hadoop’s MapReduce implementation.
Although the architecture is centralized, Hadoop is known
to scale well from small (single node) to very large (up to
4000 nodes) installations. HDFS (Hadoop Distributed File
Systems) deals with storage and is based on the Google
File System and MapReduce deals with computation.

 Each MapReduce job is subdivided into a number of
tasks for better granularity in task assignment. Individual
tasks of a job are independent of each other, and are
executed in parallel. The number of Map tasks created for
a job is usually proportional to size of input. For very large
input size (of the order of petabytes), several hundred
thousand of tasks could be created.

 Scheduling [4] in Hadoop is centralized, and worker
initiated. Scheduling decisions are taken by a master node,
called the JobTracker, whereas the worker nodes, called
TaskTrackers are responsible for task execution. The
JobTracker maintains a queue of currently running jobs,
states of TaskTrackers in a cluster, and list of tasks
allocated to each TaskTracker. Every TaskTracker
periodically reports its state to the JobTracker via a
heartbeat mechanism. The contents of the heartbeat
message are:

(i) Progress report of tasks currently running on
sender TaskTracker.

(ii) Lists of completed or failed tasks.
(iii) State of resources – virtual memory, disk space,

etc.
(iv) A Boolean flag (acceptNewTasks) indicating

whether the sender TaskTracker should be

assigned additional tasks. This flag is set if the
number of tasks running at the TaskTracker is less
than the configured limit.

 Task or worker failures are dealt by re-launching tasks.
The JobTracker keeps track of the heartbeats received
from the workers and uses it in task assignment. If a
heartbeat is not received from a TaskTracker for a
specified time interval, then that TaskTracker is assumed
to be dead. The JobTracker then re-launches all the tasks
previously assigned to the dead TaskTracker that could not
be completed. The Heartbeat mechanism also provides a
communication channel between the JobTracker and a
TaskTracker. Any task assignment is sent to the
TaskTracker in the response of a heartbeat. The
TaskTracker spawns each MapReduce task in a separate
process, in order to isolate itself from faults due to user
code in the tasks.
 When Hadoop started out, it was designed mainly for
running large batch jobs such as web indexing and log
mining. Users submit jobs to a queue, and the cluster runs
them in order. However, as organizations placed more data
in their Hadoop clusters and developed more computations
they wanted to run, another use case became attractive:
sharing a MapReduce cluster between multiple users. The
benefits of sharing are tremendous: with all the data in one
place, users can run queries that they may never have been
able to execute otherwise, and costs go down because
system utilization is higher than building a separate
Hadoop cluster for each group. However, sharing requires
support from the Hadoop job scheduler to provide
guaranteed capacity to production jobs and good response
time to interactive jobs while allocating resources fairly
between users.

Default Scheduler

Default Scheduler or Default Hadoop Scheduler
is the Scheduler which is used in default with Hadoop
without any extra configuration. This Scheduler schedules
jobs in first in first out basis irrespective of job size. The
main drawback here is starvation of small jobs in the event
of resources being utilized by large jobs.

Fair Scheduler

 Fair scheduling is a method of assigning
resources to jobs such that all jobs get, on average, an
equal share of resources over time. When there is a single
job running, that job uses the entire cluster. When other
jobs are submitted, tasks slots that free up are assigned to
the new jobs, so that each job gets roughly the same
amount of CPU time. Unlike the default Hadoop scheduler,
which forms a queue of jobs, this lets short jobs finish in
reasonable time while not starving long jobs. It is also a

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

70

reasonable way to share a cluster between a number of
users. Finally, fair sharing can also work with job priorities
- the priorities are used as weights to determine the
fraction of total compute time that each job should get.

 The scheduler actually organizes jobs further
into "pools", and shares resources fairly between these
pools. By default, there is a separate pool for each user, so
that each user gets the same share of the cluster no matter
how many jobs they submit. However, it is also possible to
set a job's pool based on the user's Unix group or any other
jobconf property, such as the queue name property used by
Capacity Scheduler. Within each pool, fair sharing is used
to share capacity between the running jobs. Pools can also
be given weights to share the cluster non-proportionally in
the config file.

Capacity Scheduler

 Capacity Scheduler is a pluggable Map/Reduce
scheduler for Hadoop which provides a way to share large
clusters. The scheduling is based on capacity of the
resources. In capacity scheduling, queues are guaranteed
a fraction of the guaranteed capacity. The free resources
allocated to any queue beyond its guaranteed capacity are
reclaimed within N minutes of need.

 Whenever a TaskTracker is free, the Capacity
Scheduler first picks a queue that needs to reclaim any
resources the earliest (this is a queue whose resources were
temporarily being used by some other queue and now
needs access to those resources). If no such queue is found,
it then picks a queue which has most free space (whose
ratio of # of running slots to guaranteed capacity is the
lowest).

 Once a queue is selected, the scheduler picks a
job in the queue. Jobs are sorted based on their priorities
(if the queue supports priorities). Jobs are considered in
order, and a job is selected if its user is within the
user-quota for the queue, i.e., the user is not already using
queue resources above his/her limit. The scheduler also
makes sure that there is enough free memory in the
TaskTracker to run the job's task, in case the job has
special memory requirements.

 Data locality and speculative execution are two
important features of Hadoop’s scheduling. Data locality is
about executing tasks as close to their input data as
possible. Speculative execution tries to rebalance load on
the worker nodes and tries to improve response time by
re-launching slow tasks on different TaskTrackers with
more resources. The administrator specifies the maximum
number of Map and Reduce tasks
(mapred.map.tasks.maximum and

mapred.reduce.tasks.maximum in Hadoop’s configuration
files) that can simultaneously run on a TaskTracker. If the
number of tasks currently running on a TaskTracker is less
than this limit, and if there is enough disk space available,
the TaskTracker can accept new tasks. This limit should be
specified before starting a Hadoop cluster. This
mechanism makes some assumptions that are
objectionable:

(i) In order to correctly set the limit, the
administrator has detailed knowledge about the
resource usage characteristics of MapReduce
applications running on the cluster. Deciding the
task limit is even more difficult in cloud
computing environments such as the Amazon
EC2, where the resources could be virtual.

(ii) All MapReduce applications have similar

resource requirements.

(iii) The limit on max number of concurrent tasks
correctly describes the capacity of a machine.

.
 Clearly, these assumptions do not hold in real world
scenarios given the range of applications for which
Hadoop is becoming popular. As the above assumptions
have been built into Hadoop, all the current schedulers
available with Hadoop, the Hadoop default scheduler,
FAIR scheduler and the capacity scheduler suffer from this
limitation.

3 Proposed System

 The task assignment algorithm is explained in this
section. The algorithm runs at the JobTracker. Whenever a
heartbeat from a TaskTracker is received at the JobTracker,
the scheduler chooses a task from the MapReduce job that
is expected to provide maximum utility after successful
completion of the task.

 First a pool of candidate jobs is built. Initially the
requirements of the job are not known and they are not
requested from the user too. So, one instance of map and
one instance of reduce task for a job are obtained and they
are scheduled on a worker node. The worker nodes are
monitored. Once both the instances of the same job are
complete, the requirements for the entire job can be
determined. This is based on the fact that the jobs has the
same characteristics as their map and reduce tasks.

 Now, the job can be classified into IO bound job or
CPU bound job. After classification to find the job type,
say x and the other is y, the task trackers containing less
tasks of the type x than y are selected.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

71

The task trackers are prioritized based on the following
factors.

(i) Number of failed tasks on the node.
(ii) Number of tasks from the same job that run

earlier on that node
(iii) Resources available for disposal

After prioritizing the TaskTrackers, the best one is selected
with the hope that the selected task will run at that node.
Now, the selected task is classified into good or bad task
with respect to the TaskTracker. If the task is good, then
the task is scheduled to run on that node. If not, another
TaskTracker is selected and the process is repeated over.
This makes sure that any task that may overload a
TaskTracker is not scheduled to run at all, which meets the
objective of the scheduler.

4 Implementation

Fig 2 Scheduler Implementation

 In figure 2, when the job is submitted for the first time,
one instance of map and one instance of reduce task is
submitted and the job type is determined. The
TaskTrackers are prioritized and the tasks are classified
good or bad with respect to the TaskTrackers. If, the task is
good, the task is scheduled to that TaskTracker.

4.1 Heterogeneous Workloads

 By including the concept of heterogeneous workloads
[2] [3] [6], the project tries to improve the hardware
utilization rate when different kinds of workloads run in
the clusters of MapReduce framework. In practical,
different kinds of jobs often simultaneously run in the
same cluster. These different jobs make different
workloads on the cluster, including the IO bound and CPU
bound workloads. But currently, the characters of the jobs
are not aware by the Hadoop’s scheduler which prefers to
simultaneously run map tasks from the same job on the top

of the queue. This may reduce the throughput of the whole
system which seriously influences the productivity of the
data center, because the tasks from the same job always
have the same character.
 According to the utilization of IO and CPU, the job
can be classified as IO bound job or CPU bound job. The
ratio of the amount of map input data (MID) and the map
output data (MOD) depends on the type of workload. A
variable ρ defined in the equation (1)

 MOD= ρ ∗ MID (1)

The quantity q is calculated using equation (2) when a new
job is submitted.

()

MTCT
MIDρ+1

 (2)

where MTCT is the Map Task Completed Time. If the
quantity is less than the Disk IO rate, then the task is CPU
bound else IO bound.

4.2 Task Classifier

 Tasks of good jobs do not overload resources at the
TaskTracker during their execution. Jobs labeled bad are
not considered for task assignment. If the classifier labels
all the jobs as bad, no task is assigned to the TaskTracker.
 If after classification, there are multiple jobs
belonging to the good class, then the task of a job is
chosen that maximizes the following quantity:

E.U.(J) = U(J)P(J = good|F1, F2, ., Fn) (3)

where, E.U.(J) is the expected utility, and U(J) is the value
of utility function associated with the MapReduce job J. J
denotes a task of job J, and P(J = good | F1, F2, . . . , Fn)
denotes the probability that the task J is good. The
probability is conditional upon the feature variables F1,
F2, . . . , Fn. Feature variables are described in more detail
later in this section.

 The cluster is assumed to be dedicated for MapReduce
processing, and that the JobTracker is aware and
responsible for every task execution in the cluster. The
proposed scheduling algorithm is local as it considers the
state of only the concerned TaskTracker while making an
assignment decision. The decision does not depend on
state of resources of other TaskTrackers.

 The assignment decisions are tracked. Once a task is
assigned, effect of the task is observed from information
contained in subsequent heartbeat from the same
TaskTracker. If based on this information, the TaskTracker
is overloaded; it is concluded that last task assignment was

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

72

incorrect. The pattern classifier is then updated (trained) to
avoid such assignments in the future. If however, the
TaskTracker is not overloaded, then the task assignment
decision is considered to be successful.

 Users configure overload rules based on their
requirements. For example, if most of the jobs submitted
are known to be CPU intensive, then CPU utilization or
load average could be used in deciding node overload. For
jobs with heavy network activity, network usage can also
be included in the overload rule. In a cloud computing
environment, only those resources whose usage is billed
could be considered in the overload rule. For example,
where conserving bandwidth is important, an overload rule
could declare a task allocation as incorrect if it results in
more network usage than the limit set by the user. The
overload rules supervise the classifiers. But, as this process
is automated, the learning in our algorithm is automatically
supervised. The only requirement for an overload rule is
that it can correctly identify given state of a node as being
overloaded or under loaded. It is important that the
overload rule remains the same during the execution of the
system. Also, the rule should be consistent for the
classifiers to converge.

4.2.1 Feature Variables

 During classification, the pattern classifier takes into
account a number of features variables, which might affect
the classification decision. The features considered are
described below:

Job Features

 These features describe the resource usage patterns of
a job. These features could be calculated by analyzing past
execution traces of the job. It is assumed that there exists a
system which can provide this information. In absence of
such a system, the users can utilize these features to
submit ’hints’ about job performance to the classifier. Once
enough data about job performance is available, user hints
could be mapped to resource usage information. The job
features considered are: job mean CPU usage, job mean
network usage, mean disk I/O rate, and mean memory
usage. The users estimate the usages on the scale of 10. A
value of 1 for a resource means minimum usage, whereas
10 correspond to maximum usage. For a given MapReduce
job, the resource usage variables of the Map part and the
Reduce part are considered different.

Node Features

 Node Static Features change very rarely, or remain
constant throughout the execution of the system. These
include number of processors, processor speed, total

physical memory, total swap memory, number of disks,
name and version of the Operating System at the
TaskTracker, etc. Node Dynamic Features include
properties that vary frequently with time. Examples of
such properties are CPU load averages, % CPU usage, I/O
read/write rate, Network transmit/receive rates, number of
processes running at the TaskTracker, amount of free
memory, amount of free swap memory, disk space left etc.
Processor speed could be a dynamic feature on nodes
where CPUs support dynamic frequency and voltage
scaling.

4.2.2 Naive Bayes Classifier

 A Bayes classifier [1] is a simple probabilistic
classifier based on applying Bayes' theorem (from
Bayesian statistics) with strong (naive) independence
assumptions. A more descriptive term for the underlying
probability model would be "independent feature model".
 In spite of their naive design and apparently
over-simplified assumptions, naive Bayes classifiers have
worked quite well in many complex real-world situations.
In 2004, analysis of the Bayesian classification problem
has shown that there are some theoretical reasons for the
apparently unreasonable efficiency of naive Bayes
classifiers. Still, a comprehensive comparison with other
classification methods in 2006 showed that Bayes
classification is outperformed by more current approaches,
such as boosted trees or random forests.
The Bayes theorem can be applied to the task classification
problem using the below formula.

()
)...3,2,1(
)|....3,2,1()(

FnFFFP
goodjPgoodjFnFFFPJU ==

∗
ττ

 (4)

 The denominator in the equation (4) can be treated as
a constant as its value is independent of the jobs, and thus
its calculation can be skipped during comparison.
 Both P (J = good|F1, F2, . . . , Fn) and P(J = bad|F1,
F2, . . . , Fn) is calculated. Job is labeled as good or bad
depending on which of the two probabilities is higher.
Under the assumption of Naive Bayes conditional
independence,

∏
=

===
n

i

goodjFiPgoodjFnFFFP
1

)|()|....3,2,1(ττ (5)

 Once the effects of task assignments are observed, the
probabilities are updated accordingly so that future
decisions could benefit from the lessons learnt from the
effects of current decisions.
 Here, it is assumed that the probabilities of all feature
variables are conditionally independent of each other. This
may not always be true. However, it is observed that this
assumption can yield a much simpler implementation.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

73

4.3 Utility Functions

 Utility functions are used for prioritizing jobs and
policy enforcement. An important role of the utility
functions is to make sure that the scheduler does not
always pick up ‘easy’ tasks. If the utility of all the jobs is
same, the scheduler will always pick up tasks that are more
likely to be labeled good, which are usually the tasks that
demand lesser resources. Thus, by appropriately adjusting
job utility it could be made sure that every job gets a
chance to be selected. It is possible that a certain job is
always classified as bad regardless of the values of feature
vectors. This could happen if the resource requirements of
the job are exceptionally high. However, this also indicates
that the available resources are clearly inadequate to
complete such a job without overloading. Utility functions
could also be used in enforcing different scheduling
policies. Examples of some such policies are given below.
One or more utility functions could be combined in order
to enforce hybrid scheduling policies.

Map before Reduce
 In MapReduce, it is necessary that all Map tasks of a
job are finished before Reduce operation begins. This can
be implemented by keeping the utility of Reduce tasks
zero until a sufficient number of Map tasks have
completed.

First Come, First Serve
 FCFS policy can be implemented by keeping the
utility of the job proportional to the age of the job. Age of
a job is zero at submission time.

Budget Constrained
 In this policy, tasks of a job are allocated until the user
of a job has sufficient balance in his/her account. As soon
as the balance reaches zero, the utility of jobs of the said
user becomes zero, thus no further tasks of jobs from the
said user will be assigned to worker nodes.

Dedicated Capacity
 In this policy a job is allowed a guaranteed access to a
fraction of the total resources in the cluster.

Revenue oriented utility
 In this policy, utility of a job is directly proportional to
the amount the job’s submitter is willing to pay for
successful completion of the job. This makes sure that the
algorithm always picks tasks of users who are offering
more money for the service.

5 Results and Conclusion

 The proposed scheduler for MapReduce will not
overload any TaskTracker at point of time. Thus the
burden of re-launching the tasks at different TaskTrackers
is not necessary. This scheduler classifies the job into IO
bound and CPU bound jobs. So, there will be a balance
between the number of IO bound tasks and the number of
CPU bound tasks running at every TaskTracker. This
increases the hardware resource utilization.

References

[1] Jaideep Dhok; Vasudeva Varma (2010), “Using Pattern
Classification for Task Assignment in MapReduce”.

[2] Matei Zaharia; Andy Konwinski; Anthony D. Joseph; Randy
Katz; Ion Stoica (2008), “Improving MapReduce
Performance in Heterogeneous Environments.” Proceedings
of the 8th USENIX conference on Operating systems design
and implementation.

[3] Thomas Kunz (1991); “The Influence of Different Workload
Descriptions on a Heuristic Load Balancing Scheme,” IEEE
transactions on software engineering, vol. 17, no. 7,.

[4] Saeed Iqbal; Rinku Gupta; Yung chin Fang (2005). “Job
Scheduling in HPC clusters” DELL Power Solutions.

[5] “Hadoop Fair Scheduler Design Document” from jira
Hadoop documentation.

[6] Chao Tian; Haojie Zhou; Yongqiang He; Li Zha (2009).”A
DynamicMapReduce scheduler for Heterogeneous
Workloads” Proceedings of the 8th IEEE International
Conference on Grid and Cooperative Computing.

 Dr. P. Visalakshi is currently
working as an Assistant Professor in the
Department of Computer Science and
Engineering, PSG College of
Technology, Coimbatore. She has 14
years of experience in teaching and 4
years of experience in research. She has
published 9 International Journal papers
and 4 National Journal papers. She has
presented 2 paper in International
conferences and 7 papers in National

conferences. Her area of research interest is the implementation
of evolutionary algorithms for solving real time problems.

Karthik T U received the B.Tech.
degree from Vellore Institute of
Technology Univ., India in 2009. He is
currently pursuing M.E degree at PSG
College of Technology, Coimbatore. He
has published 2 International journal
papers. His areas of interests are mobile
application development and web
mining

