
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

74

Manuscript received April 5, 2011
Manuscript revised April 20, 2011

Genetic Algorithms

Sayad Alizadeh Maryam Shamsadini,

Meyandouab Isamic Azad University

Summary
Genetic algorithms are a part of evolutionary computing, which
is a rapidly growing area of artificial intelligence.
Genetic algorithms are inspired by Darwin’s theory about
evolution simply said; solution to a problem solved by genetic
algorithms is involved.

 Key words:
 GA, Fitness, Crossover, Mutation

Introduction

Genetic algorithms are so far generally the best and most
robust kind of evolutionary algorithms. For most problems
you don't have any formula for solving the problem
because it is too complex, or if you do, it just takes too
long to calculate the solution exactly.
Genetic algorithms are different from other heuristic
methods in several ways. The most important difference is
that a GA works on a population of possible solutions,
while other heuristic methods use a single solution in their
iterations. Another difference is that GA s are probabilistic
(stochastic), not deterministic.
An implementation of a genetic algorithm begins with a
population of (typically random) chromosomes. All living
organisms consist of cells. In each cell there is the same
set of chromosomes. Chromosomes are strings of DNA
and serves as a model for the whole organism.
A chromosome consists of genes, blocks of DNA. Each
gene encodes a particular portion. Basically can be said,
that each gene encodes a trait, for example color of eyes
has it is own position in the chromosomes. This position is
called locus.
One individual might have these genes:”1100101011”,
another has these: “0101110001” (just examples).
The values (0 or 1) and their position is a point in a search
space and a possible solution. The individuals in the
population are then made to go through a process of
evolution.

Search space

If we are solving some problem, we are usually looking for
some solution, which will be the best among others.
The space of all feasible solution (it means objects among
those the desired solution is) is called search space (also
state space). Each feasible solution can be marked by it is
value of fitness for the problem. We are looking for our
solution, which is one point (or more) among feasible
solutions that are one point in the search space.
The search space can be whole known by the time of
solving a problem but usually we know only a few points
from it and we are generating other points as the process of
finding solution continues.

General structure of genetic algorithm

[Start] Generate random population of n chromosomes
(suitable solutions for the problem)
[Fitness] Evaluate the fitness of each chromosome in the
population
[New population] Create a new population by repeating
following steps until the new population is complete
[Selection] Select two parent chromosomes from a
population according to their fitness (the better fitness, the
bigger chance to be selected)
[Crossover] With a crossover probability cross over the
parents to form a new offspring (children). If no crossover
was performed, offspring is an exact copy of parents.
[Mutation] With a mutation probability mutate new
offspring at each locus (position in chromosome).
[Accepting] Place new offspring in a new population
[Replace] Use new generated population for a further run
of algorithm
[Test] If the end condition is satisfied, stop, and return the
best solution in current population
[Loop] Go to step 2
Algorithm is started with a set of solutions (represented by
chromosomes) called population. Solution from one
population are taken and used to form a new population.
This is motive by a hope, that the new population will be
better than the old one.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

75

Fitness

Associated with each individual is a fitness value. This
value is a numerical quantification of how good of a
solution to the optimization problem the individual is.
Individuals with chromosomal strings representing better
solutions have higher fitness values, while lower fitness
values are attributed to those whose bit strings represent
inferior solutions.
Solutions which are selected to form new solutions
(offspring) are selected according to their fitness the more
suitable they are the more chances they have to reproduce.
This is repeated until some condition (for example number
of populations or improvement of the best solution) is
satisfied.

Selection

The selection phase plays an important role in search
towards better individuals. During each successive
generation, a proportion of the existing population is
selected to breed a new generation. The selection process
is the step that guides the genetic algorithm towards ever-
better solutions.

Reproduction

Main articles: crossover (genetic algorithm) and mutation
(genetic algorithm)
The next step is to generate a second generation population
of solutions from those selected through genetic operators:
crossover (also called recombination), and/or mutation.
For each new solution to be produced, a pair of parent
solutions is selected for breeding from the pool selected
previously. By producing a child solution using the above
methods of crossover and mutation, a new solution is
created which typically shares many of the characteristics
of its parents. New parents are selected for each child, and
the process continues until a new population of solutions
of appropriate size is generated.

Crossover

After we have decided what encoding we will use, we can
make a step to crossover. Crossover selects genes from
parent chromosomes and creates a new offspring (One
crossover thus create two new individuals, called
offspring).
Crossover can then look like this:

 Chromosome 1 11011 | 00100110110
 Chromosome 2 11011 | 11000011110
 Offspring 1 11011 | 11000011110
 Offspring 2 11011 | 00100110110

The simplest way how to do this is to choose randomly
some crossover point and everything before this point
copy from a first parent and then everything after a
crossover point copy from the second parent.
These processes ultimately result in the next generation
population of chromosomes that is different from the
initial generation. Generally the average fitness will have
increased by this procedure for the population, since only
the best organisms from the first generation are selected
for breeding, along with a small proportion of less fit
solutions, for reasons already mentioned above.
Holland explains that, "the purpose of crossing strings in
the genetic algorithm is to test new parts of target regions
rather than testing the same string over and over again in
successive generation". [1]
There are other ways how to make crossover, for example
we can choose more crossover points. Crossover can be
rather complicated and very depends on encoding of the
encoding of chromosome. Specific crossover made for a
specific problem can improve performance of the genetic
algorithm.

Mutation

After a crossover is performed and before evaluating the
new population, one final genetic operator is applied (takes
place): mutation. This is to prevent falling all solutions in
population into a local optimum of solved problem.
Mutation changes randomly the new offspring. For binary
encoding we can switch a few randomly chosen bits from
1 to 0 or from 0 to 1. Mutation can then be following:

 Original offspring 1 1101111000011110
 Original offspring 2 1101100100110110
 Mutated offspring 1 1100111000011110
 Mutated offspring 2 1101101100110110

The mutation depends on the encoding as well as the
crossover. For example when we are encoding
permutations, mutation could be exchanging two genes.
Note that the methods mentioned are just one way of
making the GA work. There are many different methods of
selection (how many parents to select? Kill the parents
after cross-over? How to measure the fitness? etc.), many
methods of cross-over (number of cross-over points, how
to reassemble cross-over parts), and many methods of
mutation (random noise, swapping values, no mutation,
who to mutate, etc.).
The choice of methods will depend on the nature of the
problem and your personal preferences.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

76

Parameters Probability

Crossover probability says how often will be crossover
performed. If there is no crossover, offspring is exact copy
of parents. If there is a crossover, offspring is made from
parts of parents' chromosome. If crossover probability is
100%, then all offspring is made by crossover. If it is 0%,
whole new generation is made from exact copies of
chromosomes from old population (but this does not mean
that the new generation is the same!).
Crossover is made in hope that new chromosomes will
have good parts of old chromosomes and maybe the new
chromosomes will be better. However it is good to leave
some part of population survive to next generation.
 Mutation probability says how often will be parts of
chromosome mutated. If there is no mutation, offspring is
taken after crossover (or copy) without any change. If
mutation is performed, part of chromosome is changed. If
mutation probability is 100%, whole chromosome is
changed, if it is 0%, nothing is changed.
Mutation is made to prevent falling GA into local extreme,
but it should not occur very often, because then GA will in
fact change to random search.
Population size says how many chromosomes are in
population (in one generation). If there are too few
chromosomes, GA has a few possibilities to perform
crossover and only a small part of search space is explored.
On the other hand, if there are too many chromosomes,
GA slows down. Research shows that after some limit
(which depends mainly on encoding and the problem) it is
not useful to increase population size, because it does not
make solving the problem faster.

Advantages or Disadvantages

A GA has a number of advantages. It can quickly scan a
vast solution set. Bad proposals do not affect the end
solution negatively as they are simply discarded. The
inductive nature of the GA means that it doesn't have to
know any rules of the problem - it works by its own
internal rules. This is very useful for complex or loosely
defined problems. The disadvantage of it is that as you
already know from the chapter about search space,
problem solving can be often expressed as looking for
extreme of a function. This is exactly what the problem
shown here is.
Some function is given and GA tries to find minimum of
the function. For other problems we just have to define
search space and the fitness function which means to
define the function, which we want to find extreme for.

Conclusion

If the conception of a computer algorithms being based on
the evolutionary of organism is surprising, the
extensiveness with this algorithms is applied in so many
areas is no less than astonishing. These applications,
commercial, educational and scientific, are increasingly
dependent Genetic Algorithms. Its usefulness and
gracefulness of solving problems has made it the more
favorite choice among the traditional methods, namely
gradient search, random search and others. GA s is very
helpful when the developer does not have precise domain
expertise, because GA s possesses the ability to explore
and learn from their domain.

References

[1] Holland, John H. 2002. Genetic Algorithms. Scientific

American, July, pp.
[2] Acquaintance with genetic algorithm by Mahmud Amin

Tossi
[3] Http://www.lcc.uma.es/~ccottap/semEC/cap03/cap_3.html
[4] EvoNews 8 Posted: 14 August 2008
[5] Http://en.wikipedia.org/wiki/Genetic_algorithm
[6] Genetic Algorithms'' by David Goldberg, Addison Wesley,
[7] Genetic Algorithms in Engineering and Computer Science ,

edited by G.Winter, J.Periaux & M.Galan, published by
JOHN WILEY & SON Ltd.

[8] Jean-Philippe Rennard. Ph.D. May
2010http://www.rennard.org/alife alife@rennard.org

[9] Evolving solutions: an introduction to genetic algorithms by
Greg Badros

[10] Genetic Algorithms Applications Edited by Lance
Chambers pg102

[11] Artificial Intelligent Book by Dr Mehrdad Fahimi
[12] Computational Intelligence by John Wiley & Sons Ltd,2010

pg178

