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Summary 
Genetic algorithms are a part of evolutionary computing, which 
is a rapidly growing area of artificial intelligence. 
Genetic algorithms are inspired by Darwin’s theory about 
evolution simply said; solution to a problem solved by genetic 
algorithms is involved. 
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Introduction 
 
Genetic algorithms are so far generally the best and most 
robust kind of evolutionary algorithms. For most problems 
you don't have any formula for solving the problem 
because it is too complex, or if you do, it just takes too 
long to calculate the solution exactly. 
Genetic algorithms are different from other heuristic 
methods in several ways. The most important difference is 
that a GA works on a population of possible solutions, 
while other heuristic methods use a single solution in their 
iterations. Another difference is that GA s are probabilistic 
(stochastic), not deterministic. 
An implementation of a genetic algorithm begins with a 
population of (typically random) chromosomes. All living 
organisms consist of cells. In each cell there is the same 
set of chromosomes. Chromosomes are strings of DNA 
and serves as a model for the whole organism.  
A chromosome consists of genes, blocks of DNA. Each 
gene encodes a particular portion. Basically can be said, 
that each gene encodes a trait, for example color of eyes 
has it is own position in the chromosomes. This position is 
called locus. 
One individual might have these genes:”1100101011”, 
another has these: “0101110001” (just examples). 
The values (0 or 1) and their position is a point in a search 
space and a possible solution. The individuals in the 
population are then made to go through a process of 
evolution. 
 
 
 
 

Search space  
 
If we are solving some problem, we are usually looking for 
some solution, which will be the best among others. 
The space of all feasible solution (it means objects among 
those the desired solution is) is called search space (also 
state space). Each feasible solution can be marked by it is 
value of fitness for the problem. We are looking for our 
solution, which is one point (or more) among feasible 
solutions that are one point in the search space. 
The search space can be whole known by the time of 
solving a problem but usually we know only a few points 
from it and we are generating other points as the process of 
finding solution continues. 
 
General structure of genetic algorithm  
 
[Start] Generate random population of n chromosomes 
(suitable solutions for the problem)  
[Fitness] Evaluate the fitness of each chromosome in the 
population  
[New population] Create a new population by repeating 
following steps until the new population is complete  
[Selection] Select two parent chromosomes from a 
population according to their fitness (the better fitness, the 
bigger chance to be selected)  
[Crossover] With a crossover probability cross over the 
parents to form a new offspring (children). If no crossover 
was performed, offspring is an exact copy of parents.  
[Mutation] With a mutation probability mutate new 
offspring at each locus (position in chromosome).  
[Accepting] Place new offspring in a new population  
[Replace] Use new generated population for a further run 
of algorithm  
[Test] If the end condition is satisfied, stop, and return the 
best solution in current population  
[Loop] Go to step 2  
Algorithm is started with a set of solutions (represented by 
chromosomes) called population. Solution from one 
population are taken and used to form a new population. 
This is motive by a hope, that the new population will be 
better than the old one.  
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Fitness 
 
Associated with each individual is a fitness value. This 
value is a numerical quantification of how good of a 
solution to the optimization problem the individual is. 
Individuals with chromosomal strings representing better 
solutions have higher fitness values, while lower fitness 
values are attributed to those whose bit strings represent 
inferior solutions. 
Solutions which are selected to form new solutions 
(offspring) are selected according to their fitness the more 
suitable they are the more chances they have to reproduce. 
This is repeated until some condition (for example number 
of populations or improvement of the best solution) is 
satisfied. 
 
Selection  
 
The selection phase plays an important role in search 
towards better individuals. During each successive 
generation, a proportion of the existing population is 
selected to breed a new generation. The selection process 
is the step that guides the genetic algorithm towards ever-
better solutions. 
 
Reproduction 
 
Main articles: crossover (genetic algorithm) and mutation 
(genetic algorithm) 
The next step is to generate a second generation population 
of solutions from those selected through genetic operators: 
crossover (also called recombination), and/or mutation. 
For each new solution to be produced, a pair of parent 
solutions is selected for breeding from the pool selected 
previously. By producing a child solution using the above 
methods of crossover and mutation, a new solution is 
created which typically shares many of the characteristics 
of its parents. New parents are selected for each child, and 
the process continues until a new population of solutions 
of appropriate size is generated. 

Crossover 

After we have decided what encoding we will use, we can 
make a step to crossover. Crossover selects genes from 
parent chromosomes and creates a new offspring (One 
crossover thus create two new individuals, called 
offspring). 
Crossover can then look like this:  
 
     Chromosome 1       11011 | 00100110110 
     Chromosome 2       11011 | 11000011110 
     Offspring 1             11011 | 11000011110 
     Offspring 2             11011 | 00100110110 

 
The simplest way how to do this is to choose randomly 
some crossover point and everything before this point 
copy from a first parent and then everything after a 
crossover point copy from the second parent.  
These processes ultimately result in the next generation 
population of chromosomes that is different from the 
initial generation. Generally the average fitness will have 
increased by this procedure for the population, since only 
the best organisms from the first generation are selected 
for breeding, along with a small proportion of less fit 
solutions, for reasons already mentioned above. 
Holland explains that, "the purpose of crossing strings in 
the genetic algorithm is to test new parts of target regions 
rather than testing the same string over and over again in 
successive generation". [1]    
There are other ways how to make crossover, for example 
we can choose more crossover points. Crossover can be 
rather complicated and very depends on encoding of the 
encoding of chromosome. Specific crossover made for a 
specific problem can improve performance of the genetic 
algorithm. 
 
Mutation 
 
After a crossover is performed and before evaluating the 
new population, one final genetic operator is applied (takes 
place): mutation. This is to prevent falling all solutions in 
population into a local optimum of solved problem. 
Mutation changes randomly the new offspring. For binary 
encoding we can switch a few randomly chosen bits from 
1 to 0 or from 0 to 1. Mutation can then be following: 
 
     Original offspring 1        1101111000011110         
     Original offspring 2        1101100100110110 
     Mutated offspring 1        1100111000011110 
     Mutated offspring 2        1101101100110110 
 
The mutation depends on the encoding as well as the 
crossover. For example when we are encoding 
permutations, mutation could be exchanging two genes.  
Note that the methods mentioned are just one way of 
making the GA work. There are many different methods of 
selection (how many parents to select? Kill the parents 
after cross-over? How to measure the fitness? etc.), many 
methods of cross-over (number of cross-over points, how 
to reassemble cross-over parts), and many methods of 
mutation (random noise, swapping values, no mutation, 
who to mutate, etc.). 
The choice of methods will depend on the nature of the 
problem and your personal preferences. 
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Parameters Probability  

Crossover probability says how often will be crossover 
performed. If there is no crossover, offspring is exact copy 
of parents. If there is a crossover, offspring is made from 
parts of parents' chromosome. If crossover probability is 
100%, then all offspring is made by crossover. If it is 0%, 
whole new generation is made from exact copies of 
chromosomes from old population (but this does not mean 
that the new generation is the same!). 
Crossover is made in hope that new chromosomes will 
have good parts of old chromosomes and maybe the new 
chromosomes will be better. However it is good to leave 
some part of population survive to next generation. 
 Mutation probability says how often will be parts of 
chromosome mutated. If there is no mutation, offspring is 
taken after crossover (or copy) without any change. If 
mutation is performed, part of chromosome is changed. If 
mutation probability is 100%, whole chromosome is 
changed, if it is 0%, nothing is changed. 
Mutation is made to prevent falling GA into local extreme, 
but it should not occur very often, because then GA will in 
fact change to random search.  
Population size says how many chromosomes are in 
population (in one generation). If there are too few 
chromosomes, GA has a few possibilities to perform 
crossover and only a small part of search space is explored. 
On the other hand, if there are too many chromosomes, 
GA slows down. Research shows that after some limit 
(which depends mainly on encoding and the problem) it is 
not useful to increase population size, because it does not 
make solving the problem faster.  

Advantages or Disadvantages 

A GA has a number of advantages. It can quickly scan a 
vast solution set. Bad proposals do not affect the end 
solution negatively as they are simply discarded. The 
inductive nature of the GA means that it doesn't have to 
know any rules of the problem - it works by its own 
internal rules. This is very useful for complex or loosely 
defined problems. The disadvantage of it is that as you 
already know from the chapter about search space, 
problem solving can be often expressed as looking for 
extreme of a function. This is exactly what the problem 
shown here is.  
Some function is given and GA tries to find minimum of 
the function. For other problems we just have to define 
search space and the fitness function which means to 
define the function, which we want to find extreme for.  

Conclusion 

If the conception of a computer algorithms being based on 
the evolutionary of organism is surprising, the 
extensiveness with this algorithms is applied in so many 
areas is no less than astonishing. These applications, 
commercial, educational and scientific, are increasingly 
dependent Genetic Algorithms. Its usefulness and 
gracefulness of solving problems has made it the more 
favorite choice among the traditional methods, namely 
gradient search, random search and others. GA s is very 
helpful when the developer does not have precise domain 
expertise, because GA s possesses the ability to explore 
and learn from their domain.  
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