
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

100

Manuscript received April 5, 2011
Manuscript revised April 20, 2011

Software Quality Estimation through Object Oriented
Design Metrics

Deepak Arora†, Pooja Khanna† and Alpika Tripathi†, Shipra Sharma† and Sanchika Shukla††

†Faculty of Engineering, Department of Computer Science, Amity University, Lucknow, India
†† Department of Computer Science, Amity University, Lucknow, India

Summary
Software metrics are required to measure quality in terms of
software performance and reliability related characteristics like
dependencies, coupling and cohesion etc. It provides a way to
measure the progress of code during development and having
direct relationship with cost and time incurred in the software
design and development at their later stages. These major issues
must be checked and informed early in the development stage, so
that reliability of any software product could be ensured for any
large and complex software project. Object oriented software
metrics directly focuses on the issues like complexity, reliability
and robustness of the software developed using object oriented
design methodologies. It reflects the time, cost and effort that
would be incurred in development at later stage. While the
software in its development stage, it is desirable that the
complexity levels at every stage should be minimized to make
the end product more reliable and manageable. Object oriented
metrics provides all parameters through which one can estimate
the complexities and quality related issues of any software at
their early stages of development. In this paper, authors have
studied three object oriented metrics namely MOOD Metrics, CK
Metrics, and QMOOD Metrics and given a case study to show,
how these metrics are useful in determining the quality of any
software designed by using object oriented paradigm.

Key words:
Software Quality, JAVA RMI, MOOD Metrics, CK Metrics,
QMOOD Metrics

1. Introduction

Software Metrics can be defined by measuring property or
characteristic or quality of a software objects related to any
large and complex software project. In a broader term, it is
a degree up to which a system object can hold a particular
attribute or characteristics. Object oriented approach is
capable of classifying the problem in terms of objects and
provide many paybacks like reliability, reusability,
decomposition of problem into easily understood object
and aiding of future modifications [19].

Object-Oriented Metrics are useless if they are not mapped
to software quality parameters. Many number of quality
models are proposed to map parameters of the Object

Oriented software like Extensibility, Reusability, efforts,
manageability and cost [1, 2, 3]. To know more about the
internal structure of the product one should know more
about the interdependencies of parameters of metrics and
Software quality parameters. Figure 1 shows the
interdependencies of the metrics parameters and software
quality parameters by measuring Object Oriented Metrics
[15].

Fig. 1 Relationship between metrics and quality parameters

L.H. Rosenberg proposed various attributes related to
object oriented metrics. They have proposed nine metrics
for object oriented suite, which are depicted in table I.
These metrics include three traditional metrics and six
object-oriented metrics [4]. A metric should have a one to
one relationship with structures that is being measured or
analyzed by that metric.

Metrics proposed by Rosenberg, uses traditional metrics
and it is structure based, prescribed for object oriented
systems. Here one can see that first three metrics are the
examples of traditional metrics and applied onto the

Object Oriented Metrics

Coupling Cohession
Size

Inheritance

Encapsulation

Extensibility

Reusability

Performance

Manageability

Metrics Parameters

Software Quality Parameters

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

101

method level. Remaining six metrics are defined
specifically for object oriented systems.

Table I: Metrics proposed by Rosenberg [4] for Object Oriented Systems

Source Metric OO Construct

T
ra

di
tio

na
l

Cyclomatic
Complexity (CC)

Method Lines of Code (LOC)

Comment Percentage (CP)

N
ew

 O
bj

ec
t O

ri
en

te
d

Weighted Method Per
Class (WMC) Class/Method

Response for Class (RFC) Class/Message

Lack of Cohesion of
Methods (LCOM) Class/Cohesion

Coupling between Objects
(CBO) Coupling

Depth of Inheritance Tree
(DIT) Inheritance

 Number of Children
(NOC)

2. Background

In the available literature, lots of researchers have defined
different metrics suits for object-oriented software systems.
Chidamber has developed a small metrics suite for
object-oriented designs. They defined six metrics, which
are depicted in table II [5].

Table II: CK Metrics Suite

OO
Construct

Metric Output

In

he
ri

ta
nc

e

Depth
Inheritance
Tree
(DIT)

In the inheritance tree ,
find the depth of tree

Number of
children

(NOC)

In the class, find number
of decedents of the class

C
ou

pl
in

g

Message
Passing
Coupling
(MPC)

In a defined class,
number of send
statements

Data
Abstraction
Coupling
(DAC)

In a defined class, find
number of abstract data
type

C
la

ss

Response for a
class
(RFC)

To an object of the class,
Set all methods that can
be invoked in a response
to a message

Weighted
Method Per
class
(WMC)

In a methods of a class,
find total sum of
Complexities

The metrics set defined by MOOD, includes basic
structural related metrics attributes like encapsulation
(MHF and AHF), inheritance (MIF and AIF),
polymorphism (PF), message passing (CF) in reference of
object oriented paradigm [6]. MOOD metrics can be
summarized as,

 Method Hiding Factor (MHF): It is used to
measure the information hiding attribute and can
be represented as a ratio of the sum of the
invisibilities of all methods defined in all classes
to the total number of methods defined in the
system.

 Attribute Hiding Factor (AHF): AHF can be

defined as a ratio of the sum of the invisibilities
of all the attributes defined in all classes to the
total number of attributes defined in the system. It
is also helpful to determine the information
hiding complexity in any object oriented system.

 Method Inheritance Factor (MIF): It is a ratio

of the sum of the inherited methods in all classes
to the total number of available methods. MIF has
a strong capability to measure the complexity
related to message passing dependencies among
various methods of different classes.

 Attribute Inheritance Factor (AIF): AIF can be

represented as the ratio of the sum of inherited
attributes in all classes of the system to the total
number of available attributes for all classes. This
explores the possibilities of attribute accessibility
of different attributed from different classes.

 Polymorphism Factor (PF): PF is a ratio of the

actual number of possible different polymorphic
situation for a class to the maximum number of
possible distinct polymorphic situations for the
same class. This factor is helpful to measure the
level of polymorphism exhibit by a particular
class.

 Coupling Factor (CF): It denotes the ratio of the

maximum possible number of couplings in the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

102

system to the actual number of couplings not
imputable to inheritance.

Hudly and Hoskins [7] proposed two kinds of metrics: first
is based on classes and second one is to measure the class
design configuration of the program. These metrics are
helpful to evaluate the main features of object oriented like
Polymorphism, Encapsulations, Data abstraction,
Inheritance and classes. Metrics proposed by Briand et al.,
Lorenz and Kidd and Bansiya are some of the important
metric suites. They applied object oriented metrics to the
concepts of classes, coupling, and inheritance. They also
have given different approaches to define the object
oriented metrics and their structures [8, 9, 10]. Bansiya
and Davis defined Quality Model for Object Oriented
Design (QMOOD) metrics. Based on this total quality
index (TQI) can be computed for a given system. The
QMOOD class metrics are analyzed in Fig 2 [10].

Liu, K.Zhou and S.Yang [11] have given perception that
quality of software also plays an important role in terms of
safety aspects and financial aspects. They bridged the gap
between quality measurement and design of these metrics,
with the help of measuring the excellence of Object
Oriented Designs during development and re-development
process of the software. On the other side Subramanyam
and Krishnan [12] used CK Metrics suits and concluded
that for the developers, designs metrics are very important
to know the design aspects of the software and to enhance
the quality of software. Rachel Harrison [13] discussed
about the six properties of MOOD Metrics and measured
the object-oriented features like Inheritance, coupling,
encapsulation, and polymorphism. In the result they
showed that the metrics could be used to provide an
overall assessment of the system. Eder et al. introduces
taxonomy related the coupling and cohesion in any object
oriented system. They also have given their approaches to
further improve these parameters in terms of
maintainability, extendibility and reusability [16].

Booch has defined visual modeling framework to perform
real world modeling of any software and non software
systems [17, 18].

3. Quality Assessment through OO Metrics

In this paper, authors have analyzed three important
metrics namely CK, MOOD and QMOOD metrics. As a
case study JAVA RMI classes and subclasses has been
chosen to determine the impact of different metrics
attributes. In the analysis authors have used these classes
to measure object-oriented metrics by using SDMetrics
Tool ver. 2.11 demo [14]. This is a quality measurement
tool for UML designs. The JAVA RMI classes have been
used for evaluation and output has been shown in table III.
It represents the value of JAVA RMI classes and subclasses
metrics. In this analysis authors have analyzed three type
of metrics suite i.e. CK, MOOD and QMOOD.

Table III: Metrics value for Object Oriented Metrics

Metrics Average

MOOD METRICS
MHF 0.89
AHF 0.95
MIF 1.8
AIF 0.6
PF 0.1

CK METRICS
DIT 3
NOC 16
MPC 0

QMOOD METRICS
NOA 9
NOM 15
ANA 3

4. Result and Discussion

In MOOD Metrics, first attribute is MHF which is having
value 0.89 means little functionality i.e. RMI classes
provide interface rather than functionality. AHF 0.95
shows proper designing of attributes or data hiding i.e.
data can be accesses by the corresponding class methods.
MIF/AIF are measure of inheritance this shows
generalization and specialization relations. Increase of
MIF/AIF will create low understandability and testability
of the system. In our case MIF is 1.8, means the system is
less specialized as methods are inherited or functionalities
are reuse. AIF value 0.6 and MIF value 1.8 shows that
reuse of functionality is higher than reuse of information

Number of attributes defined in a class Number of attrubtes
per class

Number of methods defined in a class Number of Methods
 per class

Class

Reuse

Reuse Ratio(U)

Specialization Ration(S)

Inheritance

Coupling Number of public methods in a class Class Interface Size

Information
Hiding

Number of attribute defined in a class
in terms of ratio of private and protected

attributes
Data Access Metric

It shows number of classes in terms of ratio of
super classes

It shows total number of super classes in terms
of ratio of sub classes

It calculates the average of depth of inheritance
for all classes in the system

Avg. Num. Ancestors

OO Construct Metrics

Fig 2 QMOOD Metrics

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

103

or data. A PF value 0.1 indicates that system uses less
polymorphism with this value and it is verified that RMI
classes provide reuse of code but it doesn’t support to
multiple functionalities for an operation call.

DIT metric value indicates maximum path from root to
leaf and in our case the value is 3 which indicate average 3
levels of inheritance hence optimum reuse of code and
clear understandability of system (RMI classes). NOC 16
indicates large amount of responsibility associated with a
class (average 16 children per class).

MPC, message passing coupling 0 indicates there is no
dependency among the classes in RMI. NOA, number of
attributes per class 9 and NOM (number of method per
class) 15 indicates complex class design. The value 3 of
ANA indicates an acceptable design complexity in JAVA
RMI classes.

5. Concluding Remarks

The authors have applied set of metrics defined by metric
suit given by CK, MOOD and QMOOD. As a test data
JAVA RMI classes have been chosen. Metrics are
important to judge the complexities and reliability issues
of any object oriented system. In this paper, authors have
found that the design of JAVA RMI classes has passed
various quality parameters and exhibit good design
characteristics. Authors have chosen limited set of metrics,
which are more important in reference of JAVA RMI
classes. It shows good adoption of new changes and
provides higher degree of expandability with a heavy
grade of efficient message passing communication
capabilities.

Available metrics confined to limited boundary, besides
that there should be more emphasis on different domain
related to quality parameters and some new metrics are
still required to measure the hidden complexities aspects
for a large and complex object oriented system. These will
certainly helpful in reducing the cost and effort incurred in
the design of any object oriented system and one can
determine the level of its reliability and robustness, before
its implementation begins.

Acknowledgment

The authors are very thankful to their respected Mr. Aseem
Chauhan, Additional President, Amity University,
Lucknow, Maj. Gen. K.K. Ohri, AVSM (Retd.), Director
General, Amity University, Lucknow, India, for providing
excellent computation facilities in the University campus.
Authors also pay their regards to Prof. S.T.H. Abidi,
Director and Brig. U.K. Chopra, Deputy Director, Amity

School of Engineering, Amity University, Lucknow for
giving their moral support and help to carry out this
research work.

References

[1] L.C.Briand, J.Wuest, J.Daly and Porter V., “Exploring the

Relationships Between Design Measures and Software Quality In
Object Oriented Systems”, Journal of Systems and Software, 51,
2000.

[2] L.C. Briand, W.L. Melo and J.Wust, “ Assessing the Applicability
of Fault Proneness Models Across Object Oriented Software
Projects”, IEEE transactions on Software Engineering. Vol. 28,
No. 7, 2002.

[3] P.Coad and E.Yourdon, “Object Oriented Analysis”, Yourdon
Press, 1990.

[4] L.H. Rosenberg and L.Hyatt, “Applying and interpreting object
oriented metrics”, Proceedings of software technology conference,
utah, April 1998.

[5] S.R. Chidamber, C.F.Kemerer, “A metrics suite for Object
Oriented Design,”IEEE Transactions on Software Engineering,
Vol. 20, No. 6, June 1994, pp. 476-493.

[6] F.B.Abreu, “The MOOD Metrics Set”, Proc.ECOOP’95
Workshop on Metrics, 1995.

[7] A.V. Hudli and R.V. Hoskins: “Software metrics for OOD”, IEEE
International conference, 2002.

[8] L.C. Briand, W.L. Melo and J.Wuest, “A Unified Framework for
Coupling Measurement in Object Oriented Systems”, IEEE
Transactions on Software Engineering, 25(1), 1999.

[9] M.Lorenz and J.Kidd,”Object Oriented Software Metrics”,
Prentice- Hall, 1994.

[10] J.Bansiya and C.G Davis, “ A Hierarchical Model for Object
Oriented Design Quality Assessment”, IEEE Transactions on
Software Engineering, 2002.

[11] H.Lilu, K.Zhou and S.Yang: “Quality metrics of OOD for
Software development and Re-development”, First Asia-Pacific
Conference on Quality Software, August 2002.

[12] M.Subramanyam and R.Krishnan: “Emphirical Analysis of CK
metrics for OOD complexity: Implication for software defect”,
IEEE transaction on software engineering, 2003.

[13] R.Harrison, Steve J.Counsell and R.V.Nithi: “An evaluation of the
MOOD set of OOSM”, IEEE Transaction on Software
Engineering, vol.24 no.6, pp.491-496, June 1998.

[14] JürgenWüst, “ SD METRICS TOOL”, in der Lache 17, 67308
Zellertal-Harxheim, Germany, www.sdmetrics.com, version 2.11,
2009.

[15] V.Basili, L.Briand and W.Melo, “A Validation of Object Oriented
Design Metrics as Quality Indicators” , IEEE Transactions on
Software Engineering, vol.22, pp.751-761, 1996.

[16] J.Eder, G.Kappel and M.Schreft, “ Coupling and Cohesion in
Object Oriented Systems”, Technical Report University of
Klagenfurt, 1994.

[17] Grady Booch, “Object Oriented Development,” IEEE Trans.
Software Eng., vol 2 no. 2, Feb.1986.

[18] Booch, G., Rumbaugh, J., Jacobson, I., 1999, The Unified
Modeling Language User Guide, Addison Wesley, Reading, MA
1999.

[19] B.Henderson-sellers, “Object-Oriented Metrics: Measures of
Complexity” Prentice Hall, 1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

104

Deepak Arora received his Ph.D. in
Computer Science from Babasaheb
Bhimrao Ambedkar University (A
Central University), Lucknow, India in
2009. Currently he is working as an
Assistant Professor in Department of
Computer Science & Engineering,
Amity University, Lucknow, India. His
research interests include Distributed &

Parallel Systems, Object Oriented Software Engineering and
Data Mining. He has produced several outstanding
publications on Distributed Computing Systems. He is a
member of International Association of Engineers, Hong
Kong and Computer Society of India, Mumbai, India.

Pooja Khanna received M.Tech. in
Infromation Technology with
Specialization in Software Engineering
from IIIT, Allahabad India in 2008.
She is currently working as Lecturer in
the Department of Computer science
and Engineering, Amity University,
Lucknow. She has several international

publications to her credit. Her research interests include
Software reuse, Software performance, Software testing and
cloud computing

Alpika Tripathi received M.Tech. in
Computer Science from Amity
University Lucknow in 2010. She is
currently working as a Lecturer in
Department of Computer Science
Engineering, Amity University,
Lucknow. Her research interests include
Software Engineering and Data Mining.

Shipra Sharma M.Tech. in Computer
Science Engineering from Amity
University Lucknow in 2010. She is a
Lecturer in Department of Computer
Science Engineering, Amity University,
Lucknow. Her research interests include
Software Engineering and Artificial
Intelligence.

Sanchika Shukla completed her
B.Tech degree in IT from Chaudhary
Charan Singh University 2009. She is
pursuing M.Tech. in Computer Science
from Amity University, Lucknow. Her
research interest includes software
testing and database management
system.

