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Summary 
Internet address lookup is a challenging problem because of 
increasing routing table sizes, increased traffic, higher speed 
links, and the migration to 128 bit IPv6 addresses. IP routing 
lookup requires computing the best matching prefix, for which 
standard solutions like hashing were believed to be inapplicable. 
The best existing solution we know of, BSD radix tries, scales 
badly as IP moves to 128 bit addresses. This paper presents a 
novel algorithm “Distributed memory organization” for lookup 
of 128 bit IPv6 addresses and “Mutating binary search” on hash 
tables organized by prefix lengths. Our scheme scales very well 
as address and routing table sizes increase: independent of the 
table size, it requires a worst case time of log2 (address bits) hash 
lookups. Thus only 5 hash lookups are needed for IPv4 and 7 for 
IPv6.We have also introduced Marker Storage algorithm for 
optimized storage. Using the proposed techniques a router can 
achieve a much higher packet forwarding rate and throughput. 
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1. Introduction 

The internet is becoming ubiquitous and has been 
exponentially and continuously growing in size. The 
number of users, networks and domains connected to the 
internet seem to be exploding. The 32-bit addresses of the 
IPv4 format are not sufficient to address the rapidly 
increasing users and domains, and will soon be exhausted. 
Hence the 128-bit IPv6 address format that has a much 
larger addressing capacity will soon replace the existing 
IPv4 address format. With exponential growth of the 
number of users and new applications (e.g. the web, video 
conferencing, remote imaging and multimedia), it is not 
surprised that the network traffic is doubling every few 
months. This increasing traffic demand requires three key 
factors to keep pace if the internet is to continue to provide 
good service: link speeds, router data throughput, and 
packet forwarding rates [1]. Readily available solutions 
exist for the first two factors: for example, fiber-optic 
cables can provide faster links, and switching technology 
can be used to move packets from the input interface of a 
router to the corresponding output interface at gigabit 
speeds. The packet forwarding process in a router involves 
finding the prefix in the routing table that provides the 
best  

 
match to the destination address of the packet to be routed. 
When a router receives a packet P from an input link 
interface, it must compute which of the prefix in its 
routing table has the longest match when compared to the 
destination address in the packet P. The result of the 
lookup provides an output link interface, to which packet 
P is forwarded. There is some additional bookkeeping, 
such as updating packet headers. But the major bottleneck 
of packet forward is IP lookup in the router table. 
At present many lookup algorithms are available that 
produce high-speed lookups for the IPv4 addresses. But 
their performance degrades when they are scaled to 
provide lookup for the 128-bit IPv6 addresses. This 
performance degradation is due to increased number of 
memory access and memory consumption as a result of the 
growth of the routing table size and address length in 
IPV6 [2] [3]. 
In the present paper, we describe a novel lookup algorithm, 
Distributed Memory Organization, for lookup of 128-bit 
IPv6 addresses. The algorithm is capable of providing 
lookups for a maximum of 16 IPv6 addresses at a time. 
This is achieved by classifying the addresses stored in the 
routing table by analyzing the data of prefixes. Highly 
efficient lookup algorithms using mutating binary 
searching technique have been proposed. The storage 
mechanisms for these methods have also been optimized 
to significantly reduce the memory requirement and the 
average number of memory accesses. The rest of the paper 
is organized as follows. Section 2 describes the drawbacks 
to the existing approaches to IP lookup. In section 3, we 
propose IP lookups for IPv6, including memory 
organization mechanism, mutating binary search algorithm 
and marker storage algorithm. Section 4 draws the 
conclusion and future works. 

2. Existing approaches to IP Lookup 

In this section, we study some existing approaches to IP 
lookups and their problems. We discuss approaches based 
on trie-based schemes, range search method and hardware 
solutions, that can provide lookup for IPv6 addresses. 
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A. Trie Based Schemes 

The most commonly available IP lookup implementation 
is found in the BSD kernel, and is a radix trie 
implementation [4]. If W is the length of an address, the 
worst-case time in the basic implementation can be shown 
to be O (W2). Current implementations have made a 
number of improvements on Sklower’s original 
implementation. The worst case was improved to O (W) 
by requiring that the prefix be contiguous. Despite this, the 
implementation requires up to 32 or 128 costly memory 
accesses (for IPv4 or IPv6, respectively). Tries also can 
have large storage requirements [4]. Also, multibit tries 
improve lookup speed (for IPv4 addresses) with respect to 
binary tries, but only by a constant factor in the length 
dimension [5]. Hence, multibit tries scale badly to the 
longer IPv6 addresses. 

B. Range Search Approach 

The range search approach gets rid of the length 
dimension of prefixes and performs a search based on the 
endpoints delimiting disjoint basic intervals of addresses 
[5]. The number of basic intervals depends on the 
covering relationship between the prefix ranges, but in the 
worst case it is equal to 2N, where N is the number of 
prefixes in the routing table. Also, the best matching 
prefix (BMP) must be precomputed for each basic interval 
[11], and in the worst case an update needs to recompute 
the BMP of 2N basic intervals. The update complexity is 
O (2N). Since the range search scheme needs to store the 
endpoints, the memory requirement has complexity O 
(2N).  

C. Hardware Solution 

Hardware solutions can potentially use parallelism to gain 
lookup speed. For exact matches, this is done using 
Content Addressable Memories (CAMS) in which every 
memory location, in parallel, compares the input key value 
to the content of that memory location. Some CAMS 
allow a mask of bits that must be matched. 
Although there are expensive so-called ternary CAMS 
available allowing a mask to be specified per word, the 
mask must typically be specified in advance. It has been 
shown that these CAMS can be used to do BMP lookups 
[6] [7], but the solutions are usually expensive. Large 
CAMS are usually lower and much more expensive than 
ordinary memory. Typical CAMS are small, both in the 
number of bits per entry and the number of entries. Thus 
the CAM memory for large address/mask pairs (256 bits 
needed for IPv6) and a huge amount of prefixes appears 
(currently) to be very expensive. Another possibility is to 
use a number of CAMS doing parallel lookups for each 
prefix length. Again, this seems expensive. Probably the 

most fundamental problem with CAMS is that CAM 
designs have not historically kept pace with improvements 
in RAM memory. Thus a CAM based solution (or indeed 
any hardware solution) runs the risk of being made 
obsolete, in a few years, by software technology running 
on faster processors and memory. Recently Sangireddy et. 
al. suggests BDD based hardware address lookup engine, 
which can reduce the complexity of hardware by 
decreasing the actual effective nodes [8]. But it is still not 
scaled well to IPv6. 

3. PROPOSED SCHEMES FOR IPV6 

A. Distributed Memory Organization 

The prefixes stored in a routing table can be classified into 
several flows averagely depending on certain bits of them. 
For instance, we use bits 1, 2, 3 and4 (called ID bits) to 
classify the prefixes in the routing table into 16 categories 
as shown in Table 1. The key point is to store each 
category of the classified addresses in different memory 
modules so that high- speed lookups for a maximum of 16 
IPv6 addresses is performed simultaneously.  

Table 1:  Memory module allocation 
Lookup Unit No. Bits 1, 2, 3 and 4

1 0001 
2 0010 
3 0011 

… … 
16 1111 

For the prefix whose length is less than 4, we can expand 
it to the prefix with length of 4 by controlled prefix 
expansion technique in [9]. For example, the prefix 110* 
can be expanded as follows, 

Table 2: The prefix expansion method 
Before expansion After expansion

110* 1101* 
1100* 

According to our scheme the incoming IP address is 
classified into one of the 16 categories by the four ID bits. 
Then the search for the longest matching prefix for this 
incoming address starts in that memory module which 
contains the addresses of the same category. The algorithm 
for parallel lookup is given below. 
Pseudocode: 
 
Function Lookup (Destination Address) 
Use the ID bits of Destination Addresses to classify them. 
Push the IP Addresses into the FIFO of the corresponding 
Lookup unit. 
For each Lookup unit simultaneously do 
While (FIFO not empty) do 
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Pop an address from the local FIFO. 
Use binary lookup schemes to find BMP. 

Push the Next Hop Address into Output cache. 
End While 

 

Figure 1: Distributed memory organization and parallel lookup mechanism 

End Loop 
End Function 
The complete parallel lookup mechanism and the 
distributed memory organization is shown in Figure.1 [8].  

B. Mutating Binary Search 

We refine the basic binary search tree to change or mutate 
to more specialized binary trees each time we encounter a 
partial match in some hash table. We believe this a far 
more effective optimization than the use of basic binary 
search tree algorithm In the last section, we looked at 
prefix distributions sorted by prefix lengths and plotted a 
histogram in decreasing order of the traffic on each router. 
This resulting histogram led us to propose asymmetrical 
binary search, which can improve average speed.  
Further information about prefix distributions can be 
extracted by dissecting the histogram: For each possible n 
bit prefix, we could draw 2n individual histograms with 
possibly fewer non- empty buckets, thus reducing the 
depth of the search tree. 
When partitioning according to 16 bit prefixe5, and 
counting the number of distinct prefix lengths in the 
partitions, we discover a nice property of the routing data  
 
(Table 3). Though the whole histogram (Figure 2) shows 
23 distinct prefix lengths with many buckets containing a 
significant number of entries, none of the “sliced” 
histograms contain more than 12 distinct prefixes; in fact, 
the vast majority only contains one prefix, which often 
happens to be in the 16 bit prefix length hash table itself. 

This suggests that if we start with 16 bits in the binary 
search and get a match, we need only do binary search on 
a set of lengths that is much smaller than the 16possible 

lengths we would have to search in naive binary search. 
In general, every match in the binary search with some. 

Figure: 2 Histogram of the Prefix length distribution 
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marker X means that we need only search among the set of 
prefixes for which X is a prefix.  

Table 3: Number of Distinct prefix Lengths in the 16 bit Partitions 
(Histogram) 

Distinct Lengths Frequency 
1 4977 
2 608 
3 365 
4 249 
5 165 
6 118 
7 78 
8 46 
9 35 
10 15 
11 9 
12 3 

This is illustrated in Figure 3. On a match we need only 
search in the subtrie rooted at X (rather than search the 
entire lower half of the trie, which is what naive binary 
search would do.) Thus the whole idea in mutating binary 
search is as follows: whenever we get a match and move 
to a new subtrie, we only need to do binary search on the 
levels of new subtrie. In other words, the binary search 
mutates or changes the levels on which it searches 
dynamically (in a way that always reduces the levels to be 
searched), as it gets more and more match information. 

 
Figure 3: Showing how mutating binary search for prefix P dynamically 

changes the trie on which it will do binary search of hash tables. 

Thus each entry E in the search table could contain a 
description of a search tree specialized for all prefixes that 
start with E. This simple optimization cuts the average 
search time to below two steps (Table 4), assuming 
probability proportional to the covered address space. 
Also with other probability distributions, (i.e., according 
to actual measurements), we expect the average number of 
lookups to be around two. 

As an example, consider binary search to be operating on 
a tree of levels starting with a root level, say 16. If we get 
a match which is a marker, we go “down” to the level 
pointed to by the down child of the current node; if we get 
a match which is a prefix and not a marker, we are done; 
finally, if we get no match, we go “up”. In the basic 
scheme without mutation, we start with root level 16; if we 
get a marker match we go down to level 24, and go up to 
Level 8 if we get no match. 

Table 4: Address (A) and Entry (E) Coverage for Mutating Binary Search 

Steps Usage Balance
A E A% E% 

1 43.9% 14.2% 43.9% 14.2% 
2 98.4% 65.5% 97.4% 73.5% 
3 99.5% 84.9% 99.1% 93.5% 
4 998% 93.6% 99.9% 99.5% 
5 99.9% 97.8% 100.0% 100.0% 

Average 
Worst case

1.6 2.4 1.6 2.2 
6 6 5 5 

 

 
Doing basic binary search for an IPv4 address whose BMP 
has length 21 requires checking the prefix lengths 16 (hit), 
24 (miss), 20 hit), 22 (miss), and finally 21. On each hit, 
we go down, and on misses up. Using Mutating Binary 
Search, looking for an address see figure 4) is different. 
First, we explain some new conventions for reading Figure 
4. we have multiple binary trees drawn on the left of the 
figure, labeled as Tree 1, Tree 2, etc. This is because the 
search process will move from tree to tree. Each binary 
tree has the root level (i.e., the first length to be searched) 
at the left; the upper child of each binary tree node is the 
length to be searched on failure, and whenever there is a 
match, the search switches to the more specific tree. 
Finally, Figure 4 has a number of prefixes and markers 
that are labeled as E, F, G, H, J for convenience. Every 
such entry in our example has E as a prefix. Thus rather 
than describe all the bits in E, we denote the bits E as…; 
the bits in say F are denoted as …. 111, which denotes the 

4
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concatenation of the bits in E with the suffix 111. Finally, 
each hash table entry consists of the name of the node, 
followed by the bits representing the entry, followed by 
the label of the binary tree to follow if we get a match on 
this entry. The bmp values are not shown for brevity. 
Consider now a search for an address whose BMP is G in 
the database of Figure 4. The search starts with a generic 
tree, Tree 1, so length 16 is checked, finding E. among the 
prefixes starting with E, there are known to be only five 
distinct lengths (say 17, 18, 19, 20, 21, and 22). So E 
contains a description of the new tree, Tree 2, limiting the 
search appropriately. Using Tree 2, we find F, giving a 
new tree with only a single length, leading to G. The 
binary tree has mutated from the original tree of 32 lengths, 
to a secondary tree of 5 lengths, to a tertiary “tree” 
containing just a single length. Looking for J is similar. 
Using Tree 1, we find E. Switching to Tree 2, we find H, 
but after switching to Tree 4, we miss at length 21. Since a 
miss (no entry found) can’t update a tree, we follow our 
current tree upwards to length 20, where we find J. In 
general, whenever we go down in the current tree, we can 
potentially move to a specialized binary tree because each 
match in the binary search is longer than any previous 
matches, and hence may contain more specialized 
information. Mutating binary trees arise naturally in our 
application (unlike classical binary search) because each 
level in the binary search has multiple entries stored in a 
hash table. as opposed to a single entry in classical binary 
search. Each of the multiple entries can point to a more 
specialized binary tree. 
In other words, the search is no longer walking through a 
single binary search tree, but through a whole network of 
interconnected trees. Branching decisions are not only 
based on the current prefix length and whether or not a 
match is found, but also on what the best match so far is 
(which in turn is based on the address we’re looking for.) 
Thus at each branching point, you not only select which 
way to branch, but also change to the most optimal tree. 
This additional information about optimal tree branches is 
derived by pre computation based on the distribution of 
prefixes in the current dataset. This gives us a faster search 
pattern than just searching on either prefix length or 
address alone. 
Two possible disadvantages of mutating binary search 
immediately present themselves. First, precomputing 
optimal trees can increase the time to insert a new prefix. 
Second, the storage required to store an optimal binary 
tree for each prefix appears to be enormous. For now, we 
only observe that while routes to prefixes may frequently 
change in cost, the addition of a new prefix (which is the 
expensive case) should be much rarer. We proceed to deal 
with the space issue by compactly encoding the network 
of trees. 

C. Marker Storage Algorithm 

Our approach to store markers for a prefix is based on the 
Bit pattern of the prefix. It suffices to store markers in 
those levels that would be visited by the binary search and 
whose length is shorter than that of the prefix to be 
inserted. The algorithm for our marker storage is given 
below. 
Function MarkerStore (prefix) 
Initialize count = 0 , Level = 0 
Initialize bin = 0000 
// Scans the prefix to find the length of prefix 
count = Length(prefix) 
// Find the binary of the length ‘count’ 
bin = Binary (prefix) 
// Scan this ‘bin’ for number of 1’s 
count = Scan (bin) 
For I = count step -1 loop till I > 0 do 
Level = Level + (2 ^ I) 
Add a marker entry for the prefix in 
the level indicated by “Level” 
Search for BMP of marker and store 
it in the BMP field of the marker. 
Next I 
End Function 
For instance, if the prefix is P1=11001, then it should be 
inserted in the level 5 (0101 in binary). The number of 1s 
in the binary format of 5 is 2. Based on the above 
algorithm, the Level would become 4, which is the only 
level that would be reached during the search for a prefix 
of length 5 and whose length is smaller than 5. Hence a 
marker is added to level 4 for the prefix whose length is 5. 
This marker storage algorithm is efficient as the number of 
potential parents for storing the markers is optimized in 
comparison to the existing approach stated in [1]. Also, 
since the number of markers stored for the prefix to be 
inserted is reduced, the overhead of marker insertion 
during the prefix insertion process is also reduced. 
Consider the prefixes P1=1, P2=00, P3= 111. Now 
according to the marker storage logic explained above, 
marker for P3 will be stored at the level containing P2. 
Now when a prefix 110 is to be searched, the search starts 
at P2 and proceeds to the lower half of the table since a 
matching marker is available. But the best prefix match is 
available in the upper half of the hash table. Such a marker 
misleads the searching algorithm. A solution for this 
misleading marker problem has been proposed in [1]. A 
new field called BMP is stored for each marker. This field 
contains the best matching prefix of that marker. When we 
use the misleading marker and fail to arrive at the best 
matching prefix, the value in the BMP field of the latest 
marker arrived at is the longest matching prefix for the 
destination address. 
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4. Conclusions and Future Work 

We have designed a new algorithm for best matching 
search. The best matching prefix problem has been around 
for twenty years in theoretical computer science; to the 
best of our knowledge, the best theoretical algorithms are 
based on tries. While inefficient algorithms based on 
hashing [9] were known, we have discovered an extremely 
efficient algorithm that scales with the logarithm of the 
address size and so is very close to the theoretical limit of 
O(log logN) Our algorithm contains both intellectual and 
practical contributions. On the intellectual side, after the 
basic notion of binary searching on hash tables, we found 
that we had to add markers and use precomputation, to 
ensure logarithmic time in the worst-case. 
Algorithms that only use binary search of hash tables are 
unlikely to provide logarithmic time in the worst case. 
Mutating binary trees is an aesthetically pleasing idea that 
leverages off the extra structure inherent in our particular 
form of binary search. 
On the practical side, we have a fast, scalable solution for 
IP lookups that can be implemented in either software or 
hardware. Our software projections for IPv4 are 80 ns and 
we expect 150– 200 ns for IPv6. Our average case speed 
projections are based on the structure of existing routing 
databases that we examined. 
We expect most of the characteristics of this address 
structure to strengthen in the future, especially with the 
transition to IPv6. Even if our predictions, based on the 
little evidence available today, should prove to be wrong, 
the overall performance can easily be restricted to that of 
the basic algorithm which already performs well. With 
algorithms such as ours, we believe that there is no more 
reason for router throughputs to be limited by the speed of 
their lookup engine. We also do not believe that hardware 
lookup engines are required because our algorithm can be 
implemented in software and still perform well. For 
similar reasons, we do not believe that there is a 
compelling need for protocol changes to avoid lookups as 
proposed in Tag and IP Switching. Even if these protocol 
changes were accepted, fast lookup algorithms such as 
ours are likely to be needed at several places in the 
network. Future work on our algorithm includes 
theoretical work on a choice of balancing function, 
hopefully yielding an improvement over our ad-hoc 
heuristic functions. Other avenues of research include the 
choice of a heuristic function based on actual network 
traffic, and work on faster insertion algorithms. We are 
also trying to optimize the building and modification 
processes. Our algorithm belongs to a class of algorithms 
that speed up search at the expense of insertion; we are 
looking for other applications and generalizations of our 
algorithm. 
 

Performance Analysis of the Algorithms 

Table 5: Performance analysis 
Algorithm Time Complexity 

Linear Search O(N) 

Binary Search O(log N) 

Mutating Binary Search O(log(log N)) 

From the above analysis we deduced that Mutating Binary 
Search algorithm with Distributed Parallel lookup 
mechanism is the best algorithm for Routers to lookup for 
IP addresses. It scales very well for both current Ipv4 
version and future Ipv6. 
In spite of potential improvements, we believe our 
algorithm is ready for practical use.  
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