
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

144

Manuscript received April 5, 2011
Manuscript revised April 20, 2011

Advanced Routing Algorithm for IP Lookup (IPv6)

Pankaj Gupta, Mrs. Uma Nagaraj, Nikhil Anthony, Deepak Jain, Pranav Gupta, and Harsh Bhojwani.
Department of Computer Science, Maharashtra Academy of Engineering, University of Pune, Pune, Maharashtra, INDIA.

Summary
Internet address lookup is a challenging problem because of
increasing routing table sizes, increased traffic, higher speed
links, and the migration to 128 bit IPv6 addresses. IP routing
lookup requires computing the best matching prefix, for which
standard solutions like hashing were believed to be inapplicable.
The best existing solution we know of, BSD radix tries, scales
badly as IP moves to 128 bit addresses. This paper presents a
novel algorithm “Distributed memory organization” for lookup
of 128 bit IPv6 addresses and “Mutating binary search” on hash
tables organized by prefix lengths. Our scheme scales very well
as address and routing table sizes increase: independent of the
table size, it requires a worst case time of log2 (address bits) hash
lookups. Thus only 5 hash lookups are needed for IPv4 and 7 for
IPv6.We have also introduced Marker Storage algorithm for
optimized storage. Using the proposed techniques a router can
achieve a much higher packet forwarding rate and throughput.

Key words:
Best Matching Prefix, Longest Prefix Match, IP lookup, IPv6,
Distributed Memory Organization, Mutating Binary search.

1. Introduction

The internet is becoming ubiquitous and has been
exponentially and continuously growing in size. The
number of users, networks and domains connected to the
internet seem to be exploding. The 32-bit addresses of the
IPv4 format are not sufficient to address the rapidly
increasing users and domains, and will soon be exhausted.
Hence the 128-bit IPv6 address format that has a much
larger addressing capacity will soon replace the existing
IPv4 address format. With exponential growth of the
number of users and new applications (e.g. the web, video
conferencing, remote imaging and multimedia), it is not
surprised that the network traffic is doubling every few
months. This increasing traffic demand requires three key
factors to keep pace if the internet is to continue to provide
good service: link speeds, router data throughput, and
packet forwarding rates [1]. Readily available solutions
exist for the first two factors: for example, fiber-optic
cables can provide faster links, and switching technology
can be used to move packets from the input interface of a
router to the corresponding output interface at gigabit
speeds. The packet forwarding process in a router involves
finding the prefix in the routing table that provides the
best

match to the destination address of the packet to be routed.
When a router receives a packet P from an input link
interface, it must compute which of the prefix in its
routing table has the longest match when compared to the
destination address in the packet P. The result of the
lookup provides an output link interface, to which packet
P is forwarded. There is some additional bookkeeping,
such as updating packet headers. But the major bottleneck
of packet forward is IP lookup in the router table.
At present many lookup algorithms are available that
produce high-speed lookups for the IPv4 addresses. But
their performance degrades when they are scaled to
provide lookup for the 128-bit IPv6 addresses. This
performance degradation is due to increased number of
memory access and memory consumption as a result of the
growth of the routing table size and address length in
IPV6 [2] [3].
In the present paper, we describe a novel lookup algorithm,
Distributed Memory Organization, for lookup of 128-bit
IPv6 addresses. The algorithm is capable of providing
lookups for a maximum of 16 IPv6 addresses at a time.
This is achieved by classifying the addresses stored in the
routing table by analyzing the data of prefixes. Highly
efficient lookup algorithms using mutating binary
searching technique have been proposed. The storage
mechanisms for these methods have also been optimized
to significantly reduce the memory requirement and the
average number of memory accesses. The rest of the paper
is organized as follows. Section 2 describes the drawbacks
to the existing approaches to IP lookup. In section 3, we
propose IP lookups for IPv6, including memory
organization mechanism, mutating binary search algorithm
and marker storage algorithm. Section 4 draws the
conclusion and future works.

2. Existing approaches to IP Lookup

In this section, we study some existing approaches to IP
lookups and their problems. We discuss approaches based
on trie-based schemes, range search method and hardware
solutions, that can provide lookup for IPv6 addresses.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

145

A. Trie Based Schemes

The most commonly available IP lookup implementation
is found in the BSD kernel, and is a radix trie
implementation [4]. If W is the length of an address, the
worst-case time in the basic implementation can be shown
to be O (W2). Current implementations have made a
number of improvements on Sklower’s original
implementation. The worst case was improved to O (W)
by requiring that the prefix be contiguous. Despite this, the
implementation requires up to 32 or 128 costly memory
accesses (for IPv4 or IPv6, respectively). Tries also can
have large storage requirements [4]. Also, multibit tries
improve lookup speed (for IPv4 addresses) with respect to
binary tries, but only by a constant factor in the length
dimension [5]. Hence, multibit tries scale badly to the
longer IPv6 addresses.

B. Range Search Approach

The range search approach gets rid of the length
dimension of prefixes and performs a search based on the
endpoints delimiting disjoint basic intervals of addresses
[5]. The number of basic intervals depends on the
covering relationship between the prefix ranges, but in the
worst case it is equal to 2N, where N is the number of
prefixes in the routing table. Also, the best matching
prefix (BMP) must be precomputed for each basic interval
[11], and in the worst case an update needs to recompute
the BMP of 2N basic intervals. The update complexity is
O (2N). Since the range search scheme needs to store the
endpoints, the memory requirement has complexity O
(2N).

C. Hardware Solution

Hardware solutions can potentially use parallelism to gain
lookup speed. For exact matches, this is done using
Content Addressable Memories (CAMS) in which every
memory location, in parallel, compares the input key value
to the content of that memory location. Some CAMS
allow a mask of bits that must be matched.
Although there are expensive so-called ternary CAMS
available allowing a mask to be specified per word, the
mask must typically be specified in advance. It has been
shown that these CAMS can be used to do BMP lookups
[6] [7], but the solutions are usually expensive. Large
CAMS are usually lower and much more expensive than
ordinary memory. Typical CAMS are small, both in the
number of bits per entry and the number of entries. Thus
the CAM memory for large address/mask pairs (256 bits
needed for IPv6) and a huge amount of prefixes appears
(currently) to be very expensive. Another possibility is to
use a number of CAMS doing parallel lookups for each
prefix length. Again, this seems expensive. Probably the

most fundamental problem with CAMS is that CAM
designs have not historically kept pace with improvements
in RAM memory. Thus a CAM based solution (or indeed
any hardware solution) runs the risk of being made
obsolete, in a few years, by software technology running
on faster processors and memory. Recently Sangireddy et.
al. suggests BDD based hardware address lookup engine,
which can reduce the complexity of hardware by
decreasing the actual effective nodes [8]. But it is still not
scaled well to IPv6.

3. PROPOSED SCHEMES FOR IPV6

A. Distributed Memory Organization

The prefixes stored in a routing table can be classified into
several flows averagely depending on certain bits of them.
For instance, we use bits 1, 2, 3 and4 (called ID bits) to
classify the prefixes in the routing table into 16 categories
as shown in Table 1. The key point is to store each
category of the classified addresses in different memory
modules so that high- speed lookups for a maximum of 16
IPv6 addresses is performed simultaneously.

Table 1: Memory module allocation
Lookup Unit No. Bits 1, 2, 3 and 4

1 0001
2 0010
3 0011

… …
16 1111

For the prefix whose length is less than 4, we can expand
it to the prefix with length of 4 by controlled prefix
expansion technique in [9]. For example, the prefix 110*
can be expanded as follows,

Table 2: The prefix expansion method
Before expansion After expansion

110* 1101*
1100*

According to our scheme the incoming IP address is
classified into one of the 16 categories by the four ID bits.
Then the search for the longest matching prefix for this
incoming address starts in that memory module which
contains the addresses of the same category. The algorithm
for parallel lookup is given below.
Pseudocode:

Function Lookup (Destination Address)
Use the ID bits of Destination Addresses to classify them.
Push the IP Addresses into the FIFO of the corresponding
Lookup unit.
For each Lookup unit simultaneously do
While (FIFO not empty) do

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

146

Pop an address from the local FIFO.
Use binary lookup schemes to find BMP.

Push the Next Hop Address into Output cache.
End While

Figure 1: Distributed memory organization and parallel lookup mechanism

End Loop
End Function
The complete parallel lookup mechanism and the
distributed memory organization is shown in Figure.1 [8].

B. Mutating Binary Search

We refine the basic binary search tree to change or mutate
to more specialized binary trees each time we encounter a
partial match in some hash table. We believe this a far
more effective optimization than the use of basic binary
search tree algorithm In the last section, we looked at
prefix distributions sorted by prefix lengths and plotted a
histogram in decreasing order of the traffic on each router.
This resulting histogram led us to propose asymmetrical
binary search, which can improve average speed.
Further information about prefix distributions can be
extracted by dissecting the histogram: For each possible n
bit prefix, we could draw 2n individual histograms with
possibly fewer non- empty buckets, thus reducing the
depth of the search tree.
When partitioning according to 16 bit prefixe5, and
counting the number of distinct prefix lengths in the
partitions, we discover a nice property of the routing data

(Table 3). Though the whole histogram (Figure 2) shows
23 distinct prefix lengths with many buckets containing a
significant number of entries, none of the “sliced”
histograms contain more than 12 distinct prefixes; in fact,
the vast majority only contains one prefix, which often
happens to be in the 16 bit prefix length hash table itself.

This suggests that if we start with 16 bits in the binary
search and get a match, we need only do binary search on
a set of lengths that is much smaller than the 16possible

lengths we would have to search in naive binary search.
In general, every match in the binary search with some.

Figure: 2 Histogram of the Prefix length distribution

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

147

marker X means that we need only search among the set of
prefixes for which X is a prefix.

Table 3: Number of Distinct prefix Lengths in the 16 bit Partitions
(Histogram)

Distinct Lengths Frequency
1 4977
2 608
3 365
4 249
5 165
6 118
7 78
8 46
9 35
10 15
11 9
12 3

This is illustrated in Figure 3. On a match we need only
search in the subtrie rooted at X (rather than search the
entire lower half of the trie, which is what naive binary
search would do.) Thus the whole idea in mutating binary
search is as follows: whenever we get a match and move
to a new subtrie, we only need to do binary search on the
levels of new subtrie. In other words, the binary search
mutates or changes the levels on which it searches
dynamically (in a way that always reduces the levels to be
searched), as it gets more and more match information.

Figure 3: Showing how mutating binary search for prefix P dynamically

changes the trie on which it will do binary search of hash tables.

Thus each entry E in the search table could contain a
description of a search tree specialized for all prefixes that
start with E. This simple optimization cuts the average
search time to below two steps (Table 4), assuming
probability proportional to the covered address space.
Also with other probability distributions, (i.e., according
to actual measurements), we expect the average number of
lookups to be around two.

As an example, consider binary search to be operating on
a tree of levels starting with a root level, say 16. If we get
a match which is a marker, we go “down” to the level
pointed to by the down child of the current node; if we get
a match which is a prefix and not a marker, we are done;
finally, if we get no match, we go “up”. In the basic
scheme without mutation, we start with root level 16; if we
get a marker match we go down to level 24, and go up to
Level 8 if we get no match.

Table 4: Address (A) and Entry (E) Coverage for Mutating Binary Search

Steps Usage Balance
A E A% E%

1 43.9% 14.2% 43.9% 14.2%
2 98.4% 65.5% 97.4% 73.5%
3 99.5% 84.9% 99.1% 93.5%
4 998% 93.6% 99.9% 99.5%
5 99.9% 97.8% 100.0% 100.0%

Average
Worst case

1.6 2.4 1.6 2.2
6 6 5 5

Doing basic binary search for an IPv4 address whose BMP
has length 21 requires checking the prefix lengths 16 (hit),
24 (miss), 20 hit), 22 (miss), and finally 21. On each hit,
we go down, and on misses up. Using Mutating Binary
Search, looking for an address see figure 4) is different.
First, we explain some new conventions for reading Figure
4. we have multiple binary trees drawn on the left of the
figure, labeled as Tree 1, Tree 2, etc. This is because the
search process will move from tree to tree. Each binary
tree has the root level (i.e., the first length to be searched)
at the left; the upper child of each binary tree node is the
length to be searched on failure, and whenever there is a
match, the search switches to the more specific tree.
Finally, Figure 4 has a number of prefixes and markers
that are labeled as E, F, G, H, J for convenience. Every
such entry in our example has E as a prefix. Thus rather
than describe all the bits in E, we denote the bits E as…;
the bits in say F are denoted as …. 111, which denotes the

4

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

148

concatenation of the bits in E with the suffix 111. Finally,
each hash table entry consists of the name of the node,
followed by the bits representing the entry, followed by
the label of the binary tree to follow if we get a match on
this entry. The bmp values are not shown for brevity.
Consider now a search for an address whose BMP is G in
the database of Figure 4. The search starts with a generic
tree, Tree 1, so length 16 is checked, finding E. among the
prefixes starting with E, there are known to be only five
distinct lengths (say 17, 18, 19, 20, 21, and 22). So E
contains a description of the new tree, Tree 2, limiting the
search appropriately. Using Tree 2, we find F, giving a
new tree with only a single length, leading to G. The
binary tree has mutated from the original tree of 32 lengths,
to a secondary tree of 5 lengths, to a tertiary “tree”
containing just a single length. Looking for J is similar.
Using Tree 1, we find E. Switching to Tree 2, we find H,
but after switching to Tree 4, we miss at length 21. Since a
miss (no entry found) can’t update a tree, we follow our
current tree upwards to length 20, where we find J. In
general, whenever we go down in the current tree, we can
potentially move to a specialized binary tree because each
match in the binary search is longer than any previous
matches, and hence may contain more specialized
information. Mutating binary trees arise naturally in our
application (unlike classical binary search) because each
level in the binary search has multiple entries stored in a
hash table. as opposed to a single entry in classical binary
search. Each of the multiple entries can point to a more
specialized binary tree.
In other words, the search is no longer walking through a
single binary search tree, but through a whole network of
interconnected trees. Branching decisions are not only
based on the current prefix length and whether or not a
match is found, but also on what the best match so far is
(which in turn is based on the address we’re looking for.)
Thus at each branching point, you not only select which
way to branch, but also change to the most optimal tree.
This additional information about optimal tree branches is
derived by pre computation based on the distribution of
prefixes in the current dataset. This gives us a faster search
pattern than just searching on either prefix length or
address alone.
Two possible disadvantages of mutating binary search
immediately present themselves. First, precomputing
optimal trees can increase the time to insert a new prefix.
Second, the storage required to store an optimal binary
tree for each prefix appears to be enormous. For now, we
only observe that while routes to prefixes may frequently
change in cost, the addition of a new prefix (which is the
expensive case) should be much rarer. We proceed to deal
with the space issue by compactly encoding the network
of trees.

C. Marker Storage Algorithm

Our approach to store markers for a prefix is based on the
Bit pattern of the prefix. It suffices to store markers in
those levels that would be visited by the binary search and
whose length is shorter than that of the prefix to be
inserted. The algorithm for our marker storage is given
below.
Function MarkerStore (prefix)
Initialize count = 0 , Level = 0
Initialize bin = 0000
// Scans the prefix to find the length of prefix
count = Length(prefix)
// Find the binary of the length ‘count’
bin = Binary (prefix)
// Scan this ‘bin’ for number of 1’s
count = Scan (bin)
For I = count step -1 loop till I > 0 do
Level = Level + (2 ^ I)
Add a marker entry for the prefix in
the level indicated by “Level”
Search for BMP of marker and store
it in the BMP field of the marker.
Next I
End Function
For instance, if the prefix is P1=11001, then it should be
inserted in the level 5 (0101 in binary). The number of 1s
in the binary format of 5 is 2. Based on the above
algorithm, the Level would become 4, which is the only
level that would be reached during the search for a prefix
of length 5 and whose length is smaller than 5. Hence a
marker is added to level 4 for the prefix whose length is 5.
This marker storage algorithm is efficient as the number of
potential parents for storing the markers is optimized in
comparison to the existing approach stated in [1]. Also,
since the number of markers stored for the prefix to be
inserted is reduced, the overhead of marker insertion
during the prefix insertion process is also reduced.
Consider the prefixes P1=1, P2=00, P3= 111. Now
according to the marker storage logic explained above,
marker for P3 will be stored at the level containing P2.
Now when a prefix 110 is to be searched, the search starts
at P2 and proceeds to the lower half of the table since a
matching marker is available. But the best prefix match is
available in the upper half of the hash table. Such a marker
misleads the searching algorithm. A solution for this
misleading marker problem has been proposed in [1]. A
new field called BMP is stored for each marker. This field
contains the best matching prefix of that marker. When we
use the misleading marker and fail to arrive at the best
matching prefix, the value in the BMP field of the latest
marker arrived at is the longest matching prefix for the
destination address.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

149

4. Conclusions and Future Work

We have designed a new algorithm for best matching
search. The best matching prefix problem has been around
for twenty years in theoretical computer science; to the
best of our knowledge, the best theoretical algorithms are
based on tries. While inefficient algorithms based on
hashing [9] were known, we have discovered an extremely
efficient algorithm that scales with the logarithm of the
address size and so is very close to the theoretical limit of
O(log logN) Our algorithm contains both intellectual and
practical contributions. On the intellectual side, after the
basic notion of binary searching on hash tables, we found
that we had to add markers and use precomputation, to
ensure logarithmic time in the worst-case.
Algorithms that only use binary search of hash tables are
unlikely to provide logarithmic time in the worst case.
Mutating binary trees is an aesthetically pleasing idea that
leverages off the extra structure inherent in our particular
form of binary search.
On the practical side, we have a fast, scalable solution for
IP lookups that can be implemented in either software or
hardware. Our software projections for IPv4 are 80 ns and
we expect 150– 200 ns for IPv6. Our average case speed
projections are based on the structure of existing routing
databases that we examined.
We expect most of the characteristics of this address
structure to strengthen in the future, especially with the
transition to IPv6. Even if our predictions, based on the
little evidence available today, should prove to be wrong,
the overall performance can easily be restricted to that of
the basic algorithm which already performs well. With
algorithms such as ours, we believe that there is no more
reason for router throughputs to be limited by the speed of
their lookup engine. We also do not believe that hardware
lookup engines are required because our algorithm can be
implemented in software and still perform well. For
similar reasons, we do not believe that there is a
compelling need for protocol changes to avoid lookups as
proposed in Tag and IP Switching. Even if these protocol
changes were accepted, fast lookup algorithms such as
ours are likely to be needed at several places in the
network. Future work on our algorithm includes
theoretical work on a choice of balancing function,
hopefully yielding an improvement over our ad-hoc
heuristic functions. Other avenues of research include the
choice of a heuristic function based on actual network
traffic, and work on faster insertion algorithms. We are
also trying to optimize the building and modification
processes. Our algorithm belongs to a class of algorithms
that speed up search at the expense of insertion; we are
looking for other applications and generalizations of our
algorithm.

Performance Analysis of the Algorithms

Table 5: Performance analysis
Algorithm Time Complexity

Linear Search O(N)

Binary Search O(log N)

Mutating Binary Search O(log(log N))

From the above analysis we deduced that Mutating Binary
Search algorithm with Distributed Parallel lookup
mechanism is the best algorithm for Routers to lookup for
IP addresses. It scales very well for both current Ipv4
version and future Ipv6.
In spite of potential improvements, we believe our
algorithm is ready for practical use.

REFERENCES
[1] M. Waldvogel, G. Varghese, J. Turner, and B.

Plattner,“Scalable high speed IP routing lookups”, in
Proc.SIGCOMM’97, Cannes, France.

[2] S. Deering and R. Hinden. (1995), “Internet
Protocol,Version 6 (IPv6)”, Specification RFC 1883,
IETF. [Online].

[3] C. Huitema, “IPv6: The New Internet Protocol”,
Englewood Cliffs, NJ: Prentice-Hall, 1996.

[4] H. J. Chao, “Next Generation Routers”, Proceedings
of the IEEE, Vol.90, No.9, September 2002.

[5] M. A. Ruiz-Sanchez, E. W. Biersack, W. Dabbous,
“Survey and Taxanomy of IP Address Lookup
Algorithms”, IEEE Network, Vol.15, Issue 2, pp.8-23,
March-April 2001.

[6] A. McAuley and P. Francis, “Fast routing table
lookup US- ing CAMS”, In Proceedings of
INFOCOM, pages 1382-1391, March-April 1993.

[7] A. J. McAuley, P. F. Tsuchiya, and D. V. Wilson,
“Fast multilevel hierarchical routing table using
content addressable memory”, U.S. Patent serial
number 034444, Assignee Bell Communications
research Inc Livingston NJ, January 1995.

[8] K. Venkatesh, S. Aravind, R. Ganapath and T.
Srinivasan,“A High Performance Parallel IP Lookup
Technique Using Distributed Memory Organization”,
In Proc.ITCC’04.

[9] Keith Sklower. A tree-based routing table for
Berkeley Unix. Technical report, University of
California, Berkeley, 1993.

Pankaj Gupta is currently pursuing his
B.E in computer science from University
of Pune, India. This paper presents his
research on “ROUTING ALGORITHMS
FOR IPLOOKUP for IPv6”. He has been
into research in the same domain from
past 2 years.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.4, April 2011

150

Pranav Gupta is currently pursuing
his B.E in computer science from
University of Pune. This paper
presents his research on “ROUTING
ALGORITHMS FOR IPLOOKUP for
IPv6”. He has been into research in the
same domain from past 2 years.

Nikhil Anthony is currently pursuing
his B.E in computer science from
University of Pune. This paper
presents his research on “ROUTING
ALGORITHMS FOR IPLOOKUP for
IPv6”. He has been into research in the
same domain from past 2 years.

Deepak Jain is currently pursuing his
B.E in computer science from
University of Pune. This paper
presents his research on “ROUTING
ALGORITHMS FOR IPLOOKUP for
IPv6”. He has been into research in the
same domain from past 2 years.

Harsh Bhojawani is currently
pursuing his B.E in computer science
from University of Pune. This paper
presents research project on
“ROUTING ALGORITHMS FOR
IPLOOKUP for IPv6”. He has been
into research in the same domain from
past 2 years.

Prof. Mrs. Uma Nagaraj is working as
Head of the Department,Computer
Engineering, Maharashtra Academy of
Engineering, since 11 years and has
also registered for Phd. She has
received her B.E in computer
Engineering in 1992, and M.E in
computer Engineering in 2000. Her
research interests include vehicular ad-
hoc networks and image processing.

