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Summary 
We derive a robust algorithm for estimating motion parameters 
of rigid features resulted from a segmentation of dynamic scenes 
into several differently moving objects. Thus each objects is 
characterized by a transform h (x, T) with a parameter vector T 
which implicitly describes the surface shape and the three-
dimensional motion of the objects in the scene. In this paper, a 
split and merge technique for the segmentation is used. 
Moreover, in order to estimates the vector parameter T we 
propose to use a genetic algorithm.  
Keywords:  
Moving object, Segmentation, Estimation, Genetic Algorithms. 
 

1. Introduction 

Motion estimation and motion-based segmentation are 
among the important tasks in the field of computer vision 
[15] [8] [10] [11], since the image components thereby 
extracted generally correspond to meaningful entities. 
Provided, they can be obtained for a whole image 
sequence, such partitions can serve as data input for 
region based coding schemes, tracking procedures or 
interpretation stages of the dynamic content of the 
observed scene.  
The most algorithms for motion estimation use the 
displacement field [7] [11], which is based on the well 
known optical flow constraint (OFC) equation [2]. This 
differential equation, issued from a linearization of the 
brightness constancy assumption, links the spatio- 
temporal gradients of the luminance to the unknown 
velocity vector. Due to the differential nature of the OFC, 
this standard modeling does not hold for large 
displacements. This boils down to two requirements: 
 
(i) The optical field should vary smoothly, so each flow 

vector should be closed to the average of its 
neighbors. 

(ii) The edge motion should be compatible with the 
spatial and temporal gray- level gradient. 
 

In this paper, we present a new algorithm for estimating 
motion parameters of a sequence of images In(x) and 
In+1(x). Thus, the corresponding features of images In(x) 
and In+1(x) are extracted from the background, then they 

are modeled and their motion is estimated by the use of 
genetic algorithm [5].  
The region detector used is a region-growing algorithm, 
which is based on the Split- and- Merge algorithm [17]. 
The first step of the algorithm splits the image until 
obtaining a partition S such as all the regions satisfy a 
homogeneity criterion [12]. The second step merges 
adjacent regions by considering new homogeneity criteria. 
Then, the very small regions are grouped with the nearest 
adjacent large ones. 
This paper is organized as follows: section 2 gives the 
model of motion and surface of a moving object. In 
section 3, the problem statement is discussed. In section 4, 
we will give the principle of Split- and- Merge technique 
for the segmentation. Section 5, focuses on the 
implementation of genetic algorithm in the motion 
estimation and finally in section 6, we give experimental 
results. 

2. Basic model and equations 

The connection between two images I (x) and I (x’), and 
the connection between the coordinate system {x} and 
{x’} in the image plane is given by a transform x’= h(x,T) 
with the vector T. The elements of the vector T are called 
mapping parameters because they describe the connection 
between the two images if the structure of the transform 
h(x, T) is known. This later must be unique and revertible 
in the image region under consideration. Furthermore, we 
should have x’= h (x, T=0) = x. 
The transform h(x, T) depends on three factors: 
The three-dimensional motion of the object which is 
described by a rotation matrix R and a translation d: 
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X=(X,Y,Z)T et X’=(X’,Y’,Z’)T  are the three-dimensional 
coordinates. 
The mathematical model, which describes the projection   
from   three-dimensional  space  onto  the camera plane: 
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describes the connection of the coordinates {x=(x, y)T} 
and {x’=(x’, y’)T} in the camera plane if central 
projection is utilized.  
The approximation of the moving object surface, for 
instance planar surface: 
 (Z =a X +b Y +c) (4) 
The vector parameters is T=(a1, a2, a3, a4, a5, a6, a7, a8) T 
implicitly contain motion parameters (R, d) and the 
surface information (a, b, c). 
The situation is illustrated in figure 1: 

Fig. 1  Basic geometry for three-dimensional motion estimation. 

In this paper, we restrict our study to the 2D rigid motion, 
with rotation angle θ and translation vector Tr, it maps a 
point (x, y) onto a point  (x’, y’), as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
++

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

654

321

cossin
sincos

'
'

ayaxa
ayaxa

Tr
Tr

y
x

y
x

y

x

θθ
θθ

 (5) 

The vector parameters this time is T=(a1, a2, a3, a4, a5, a6) T  
implicitly contains motion parameters (θ, Tr). 
Furthermore, the description is not capable of handling 
occlusion effects. It is only valid for those parts objects, 
which can be actually seen in the two images In (x) and 
In+1(x). Parts which are uncovered cannot be described 
without information. 

3. Problem Statement 

To obtain an appropriate estimate $T  of the parameter 
vector T of the transformation h (x, T), model adaptive 
parameter estimation techniques are used. For this 
purpose, the image In+1(x) which results from In (x) 
through the transform h (x, T) with the unknown motion 
vector T is almost rebuilt with a model image Im(x, $T ). 
This model image results from the segmented image 
Sn(x) through the same transform h(x, T) as In+1(x) using 
a model vector $T . The difference e( $T ) between the 
predicted feature Sm(x, $T ) and Sn+1(x) is described by an 
error function J{e( $T )} which can be minimized by 
modified Newton algorithm  combined with quasi-
Newton method [11]. In additional to the computational 
requirement, the practical use of this algorithm faces 
serious problems: 
 The motion estimation may not work well if the 

motion is too heavy, i.e. if the starting value of $T  is 
too far away from the true value T. Thus, the 
algorithm might converge to a wrong minimum of the 
error function, namely to a local one instead of the 
global one. 

 When the Hessian has no inverse, not all parameters 
can be estimated because the error function doses not 
have a unique minimum.  

To overcome this disadvantage we propose a 
minimization by a genetic algorithm to obtain the optimal 
$T =T*. 
With this minimization the object Sm(x, $T ) is moved 
towards Sn+1(x) according to the transform h(x, $T ). Thus 
Sm(x, $T ) is becoming closer to Sn+1(x). At the optimum of 
the error function when the estimated vector $T =T* equal 
the true vector T, Im(x, $T ) and In+1(x) will be similar. As 
Sm(x, $T ) moved toward Sn+1(x), it is possible to say that 
Im(x, $T ) is the predicted image when trying to predict 
In+1(x) from In(x). Thus, it is possible to predict In+1(x) 
exactly from In(x) if the correct transform h(x,T) is chosen 
and $T  is estimated correctly. 

4. Segmentation 

4.1 Formal Definition of Region 

Homogeneity is an important property of regions and is 
used as the main segmentation criterion in region growing. 
The criteria for homogeneity can be based on grey level, 
texture, model using semantic information, etc. 
Let a region G be defined as a maximal homogeneous and 
connected subset of the image I. It is also necessary to 
define function that can evaluate the homogeneity of a 
region. [6] Defines the region segmentation of an image I 

Y 
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as a partition S=(G1, G2,.. Gn) with the following 
properties: 
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P is a predicate function defining the region homogeneity. 
Each region is subset of pixels with closed boundary. 
However, generally, the boundaries are wrongly localized 
due to homogeneity criterion and therefore are not very 
reliable. 

4.2 Region Growing Algorithm 

Our algorithm takes into account the edges that are 
supposed to be detected more precisely and more reliably 
than the region boundaries. 
The first process is a median filter in order to eliminate 
the noise on the image. Then, after having computed the 
gradient image with adequate operator, an edge extractor 
provides the edge segmentation.  
The first part of the region-growing algorithm has two 
steps and is based on the Split- and- Merge algorithm [18]. 
The first step splits the image until obtaining a partition S 
such as all the region satisfy a homogeneity criterion; the 
second step merges adjacent regions by considering the 
edge segmentation and a new homogeneity criterion. 
 
Image Splitting: A homogeneity criterion Pampl is used to 
determinate if an area Gi must be splinted into four 
different sub- areas with the same size. 
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The homogeneity criterion PAmpl is defined as follows: 
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This process is repeated recursively on every new area 
and ends when all the areas satisfy the homogeneity 
criterion  
 

Image Merging: After the previous step, the image is 
divided in homogenous areas according to the criterion 
PAmpl. The Merging process selects two adjacent regions 
belonging to different areas. If the region resulting from 
the merging of these two regions does not meet 
homogeneity criterion Pmin-max , or, if one or several 
edges are detected on the common boundaries, then the 
two regions are not merged. Otherwise, the two regions 
are merged. 
For each pair (Gi, Gj) of adjacent regions which the border 
B(Gi , Gj) is defined  as : 
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We compute: 
The length of the border: 
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The homogeneity criterion Pmin-max  is defined as 
follows: 
 

( ) ( ) 3ξ≤∪−∪ jiji GGMinGGMax  

5. Estimating Motion Parameters 

5.1 Method of differentials (optical flow) 

 
Many Methods have been proposed for the computation 
of optical flow during the last decades. Generally, these 
methods can be classified into four categories, i.e. 

if
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matching-based methods, gradient-based methods, 
energy-based methods and phase-based methods. 
Among numerous optical flow methods, gradient-based 
methods, which compute optical flow from spatial-
temporal derivatives of image intensity, are the most used 
[3]. Because gradient-based methods try to attach a 
motion vector to each point in the image plane, they are 
able to provide dense optical flow field, which is 
necessary in cases of the interpretation of three-
dimensional motion parameters and shape of objects.   
Most gradient-based methods start from gradient 
constraint equation, which relates image intensity's 
gradients to the two components of velocity vector:  
 

0=++ tyx fvfuf  (6) 
 
where fx , fy and ft  are first-order spatial and temporal 
gradients of intensity f(x, y, t); u and v are image velocity 
vector's two components along x and y axes.   
A great advantage of the approach is that it is easy to 
measure spatial and temporal gradients, by combining 
smoothing and differencing operations, thus it will be 
relative easy to build it in real-time systems. However, it 
requires tow assumption: 
 

(i) The flow field should vary smoothly, so each flow 
vector should be close to the average of its 
neighbors. 

(ii) The edge motion should be compatible with the 
spatial and temporal grey-level gradients. 

 
Horn & Schunck [2] proposed an iterative algorithm, 
which yields flow fields that satisfy these conditions. 
Although the algorithm was derived using a sophisticated 
analysis, it amounts in effect to adjusting an estimated 
flow field to satisfy each of the conditions in turn more 
closely. In each iteration, the algorithm: 
 

(i) Replaces each flow vector with an average of itself 
and its neighbors; (This is just like smoothing an 
image using local averaging, except that there are 
two components and we have to smooth both of 
them). 

(ii) Changes the component of each flow vector along 
the local grey level gradient to make it closer to the 
temporal to spatial grey-level gradients. 

5.2 The genetic approach 

Genetic Algorithms (GAs)[5][19], are pseudo- stochastic 
search methods whose derive their fundamental ideas and 
terminology from the Darwinian ‘’Natural selection’’ 
theory, according to which individuals that are better fit to 
a given environment are more likely to survive.  
 

While solving an optimization problem using GAs, each 
solution is usually coded as an alphabet string of finite 
length called chromosome. Each string or chromosome is 
considered as an individual. A collection of M individuals 
is called population. GAs start with a randomly generated 
population of size M, and in each iteration of the 
algorithm, a new population of the same size is generated 
from the current population by applying operators, termed 
selection, crossover and mutation [16], that mimic the 
corresponding processes of natural selection. 
To estimate motion parameters with GAs, we encode the 
vector T=(a1, a2, a3, a4, a5, a6) T in a way that allows 
manipulation by genetic work. Therefore, we consider the 
chromosome representation individuals as a binary string 
of finite length. 
The phenotype of the kth individual is defined by:  
 

a1(k) a2(k) a3(k) a4(k) a5(k) a6(k)
 
The corresponding genotype (chromosome 
representation): 
 

α1α2  ... αN/9 α(N/9)+1  ...α2N/9 . . . α(8N/9)+1 ... αN 
 
αi  is a binary value, i=1 . . . N bits.  
 
Fitting Function:  
Each individual is evaluated by his fitness value. The 
evaluation function specifies the quality of the estimate. 
To this end, knowledge of the signal and noise statistics 
should be incorporated. The most general approach is 
given by a maximum-likelihood estimate. If the noise is 
not too strong, a simpler error is given by: 
 

{ } { }2
1 ))()ˆ,((

2
1)ˆ( xSTxSETeJ nm +−=      (7) 

 
i.e. the variance of the model error is sufficient. The 
expectation value E{.} is obtained by summing over the 
object and dividing by the number of pixel within the 
image region. For stationary signals, J{e( $T )} equals the 
negative cross correlation function of Sm(x, $T ) and Sn+1(x) 
plus an additive constant. 
 
Stopping Criteria:  
There exists no criterion in the literature [5] [19], which 
ensures the convergence of GAs to an optimal solution. 
Usually, two stopping criteria are used in Genetic 
Algorithms. In the first, the process is executed for a fixed 
number of iterations and the best individual obtained is 
taken to be the optimal one. In the second, the algorithm 
is terminated if no improvement in the fitness value of the 
best individual for a fixed number of iterations, and the 
best chromosome is taken to be the optimal one. 
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6. Experimental Results 

The default parameters values, that are used in all our 
experiment, i.e. the population size is NI=10, the 
crossover rate is pc=0.8, the mutation rate is pm=0.045. 
In this paper, there are two differently moving objects in 
front of a uniform background. In this experiment, a 
synthetic images is used Fig.2. The computer transformed 
a part of each object with the affine transform to produce 
the image In+1(x).  Figure 2(a1) and 2(a2) shown the two 
images In(x) and In+1(x) , 2(b1) and 2(b2) shown the 
segmented images Sn(x) and Sn+1(x) and figure 2(c1) an 
2(c2) shown the difference images. Using the proposed 
genetic algorithm discussed before, we tried to estimate 
the vector parameters T utilizing just these two images 
features Sn(x) and Sn+1(x). For this purpose the objects in  

Sn(x)  moved  towards  the  objects  in  Sn+1(x)  until  the 
error Function calculated from the predicted object 
Sm(x, $T ) and Sn+1(x) was minimum. After many 
generations, this minimum was reached and the parameter 
vector T is obtained. Therefore, the predicted image is 
very similar to the original one and the original parameter 
vector T is estimated very accurately.  
Fig. 3: shows the behavior of cost function through the 
generations. Indeed the process was terminated when no 
improvement in the fitness value was obtained; the best 
chromosome is taken to be the optimal one. 
Fig. 4: indicates the estimate optical velocity if the Horne 
and Schunck Method is used.  
Table 1: shows the efficiency of our approach, especially 
when the assumption of small motion is not respected. 
 

 

Fig.  2(a1) Image In(x) 

 

Fig.  2(a2) Image In+1(x) 

 

 

Fig.  2(b1) Segmented image Sn(x) 

 

Fig.  2(b2) Segmented image Sn+1(x) 
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Fig.  2(c1) Absolute value of the difference between 

Sn(x) and Sn+1(x) for the first object 

 
Fig.  2(c2) Absolute value of the difference between 

Sn(x) and Sn+1(x) for the second object 

 

 
Fig.  2(d1) Difference between Sn+1(x) and Sm(x, $T ) 

 after 70 iterations of GA (first object) 

 
Fig.  2(d2) Difference between Sn+1(x) and Sm(x, $T ) 

 after 70 iterations of GA (second object) 

 
 

 
Fig.  2(e1) Difference between Sn+1(x) and Sm(x, $T ) 

after 400 iterations of  GA 
 

 
 

 
Fig.  2(e2) Difference between Sn+1(x) and Sm(x, $T ) 

after 400 iterations of  GA 
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Fig.  3(a)  Decreasing cost function through 

the generations (first object) 
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Fig.  3(b)  Decreasing cost function through  

the generations (second object) 
 

 

 
Fig.  4(a)  Motion field obtained by the 

Horne and Schunck Method (first object) 
 

 

 
Fig.  4(b) Motion field obtained by the 

Horne and Schunck Method (second object) 

 

Table 1:  Motion estimation using both methods differential method, 
genetic approach 

7. Conclusion 

To obtain a good description of a scene, it must be 
segmented into different regions, each of these objects  is 
characterized by its surface,  and motion information. 

In this contribution, we have presented a new algorithm 
for estimating the motion parameters. The procedure is 
based on minimizing an error function through the 
generations, thus the segmented image can be described 
and tracked within the scene; so that an accurate 
movement compensated prediction can be reached by 
using a genetic algorithm. Nevertheless this algorithm it is 
not restricted to special assumptions about object motion 
or shape but can deal with quite general geometrical 
connections between two successive image regions. 
However, the algorithm has relatively a high time 
consuming, to overcome this inconvenient will use the 
point of interest in the future work. 

 
 

Motion 
Parameters 

Real 
Parameters 

by Horne 
Method by GA

Object:1 

Trx1 6 0.57 6.41 
Try1 -10 -1.39 -10.32
ο1 -8 -3.86 -8.01

Object:2 

Trx2 12 4.66 12.13
Try2 7 0.17 6.98
ο2 10 1.94 10.20
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