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Summary 
Because of today's increased traffic volume and sophisticated 
attacks, implementing a network intrusion detection/prevention 
system (NIDS/NIPS) with a single workstation has been chal-
lenging.  In this paper, we propose Brownie, a system for im-
proving performance by coordinating configurations of already-
existing, independently-managed NIDSs in an organization. 
Instead of installing one expensive hardware or parallel NIDSs at 
a network entry point, Brownie achieves performance improve-
ment by 1) offloading overloaded NIDS, and 2) eliminating 
redundant rules.  First, Brownie exchanges NIDSs' load status 
and transfers some rules from overloaded to light-loaded NIDSs, 
which prevents the overloaded NIDSs from bottlenecking the 
network. Second, if some NIDSs on a network path enable the 
same rules, Brownie eliminates the redundant rules, which re-
duces the aggregate overhead of the NIDSs. The experimental 
results with a web server benchmark suggest that Brownie in-
creases the benchmark throughput by more than 10%.  In addi-
tion, Brownie running with a university full-packet trace success-
fully offloads overloaded NIDS and eliminates redundant rules. 
Key words: 
Network Security, Network Intrusion Detection/Prevention 
System, Performance 

1. Introduction 

Network intrusion detection/prevention systems 
(NIDSs/NIPSs) are widely used for detecting malicious 
attacks by monitoring the incoming and outgoing traffic 
for suspicious payloads. Most NIDSs are signature-based, 
which relies on a set of rules (or signatures) that are 
scanned over network packets. Although signature match-
ing is a highly computationally intensive process, many 
NIDSs, both open-source and commercial, are based on 
inexpensive commodity hardware. Consequently, imple-
menting a NIDS/NIPS with a single workstation is becom-
ing more challenging. This is because 1) network traffic 
volumes and rates are rising exceedingly compared to 
computer processor speeds, and 2) attacks are becoming 
more sophisticated and thus require more complex and in-
depth analysis to detect. Furthermore, a NIPS has more 

performance impact than a NIDS. This is because it sus-
pends a packet until it finishes checking it [1]. 

Faced with this performance gap, we have two op-
tions to take. One is turning to expensive, custom hard-
ware such as ASICs or FPGAs. Although it gains effective 
performance improvement, hardware implementation is 
expensive and lacks flexibility. Another research efforts 
have explored the use of parallel processing among mul-
tiple commodity computers, such as NIDS Cluster [2] and 
Active Splitter [3]. With these approaches, a frontend 
divides the traffic stream among the analysis nodes, each 
of which receives a share of the total network traffic to 
analyze in depth. Although these approaches are quite 
effective, introducing these is not trivial. The primary 
reason is the cost of introducing many machines. Not only 
the cost for the machines, but also the configuration and 
maintenance cost might be expensive. In addition, the 
administrator has to find a large space and provide enough 
electric power supply for these machines. 

In this paper, we propose another approach to im-
prove performance. We show that coordinating already-
existing, independently-managed NIDSs in an organiza-
tion network is worthwhile way to achieve total perfor-
mance improvement of NIDSs in the network. Our key 
observation is that most organizations, such as universities 
or companies, have several NIDSs managed by different 
administrators inside their internal networks, not only at 
the network entry point. For example at a university, some 
departments or laboratories introduce and manage their 
own NIDSs even if the university has a NIDS at the top 
level of the network. Since these NIDSs are configured by 
each administrator independently, they are not optimized 
with each other. For example, several NIDSs enable the 
same rules, and thus traffic must be checked against them 
many times. In addition, an overloaded NIDS becomes 
bottleneck in the entire network while other NIDSs are 
light-loaded. 

We show that exploiting tree-like structure of the 
NIDSs inside the same network improves the performance 
of NIDSs in the whole network.  By communicating with 
other NIDSs on a network path, NIDSs exchange their 
own load status and configuration, and then reconfigure 
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themselves to offload overloaded machines or eliminate 
redundant rules. By doing so, we can achieve total per-
formance improvement in networks.  If we move some 
rules that are originally on overloaded NIDSs to others, 
we can offload the overloaded NIDSs. If we eliminate 
redundant rules among some NIDSs, one packet will be 
checked only once somewhere in the network path and 
thus latency can be reduced. Existing approaches seek to 
improve the performance of one NIDS at the network 
entry point by using several machines or adopting new 
efficient algorithms. On the other hand, our approach aims 
to improve the entire performance of many NIDSs, not 
just one. 

Note that our approach does not sacrifice the original 
security strength for performance. Our approach ensures 
that all traffic is checked against the same rule set as be-
fore. We transfer or disable rules so that all the traffic 
which passes the NIDS that disables the rules is surely 
checked by another NIDS that enables the rules. In other 
words, our approach only changes where packets are 
checked, but does not change what rules a packet is 
checked against on the way to its destination. 

We developed Brownie to show the efficiency of our 
approach.  The experimental results with a benchmark 
workload suggest that Brownie offloads the overloaded 
NIDSs and eliminates redundant rules, and the benchmark 
throughput increases by more than 10%. We also ran it 
with a full-packet trace captured at the network entry point 
of Toyohashi University of Technology with /16 network. 
Even with the real traffic trace, Brownie successfully 
offloads the overloaded NIDS and eliminates redundant 
rules. 

We structure the remainder of this paper as follows. 
In Section 2, we briefly discuss related work. We give our 
approach of collaborating NIDS in Section 3, and describe 
the detailed design and implementation developed in 
Brownie in Section 4. In Section5, we discuss our bench-
mark-based and trace-based experiments to show the 
efficiency of Brownie. Section 6 suggests that Brownie 
can be applied to other issues, and we conclude in Section 
7. 

2. Related Work 

There has been constant research for improving the 
performance of NIDS. This research is roughly divided 
into two categories: parallelizing analysis using many 
machines and improving the performance of one NIDS. 

Parallelizing analysis approach is further divided into 
two categories depending on what is distributed: traffic or 
signature. Parallelizing analysis by distributing traffic 
include NIDS Cluster [2], Active Splitter [3], and a system 
developed by Kruegel et al. [4]. With this approach, a 
frontend divides the traffic stream among analysis nodes, 

or often called sensors, each of which receives a share of 
the total network traffic to analyze in depth. By dividing 
the analyzing process among sensors, we can achieve 
better performance than a NIDS that consists of a single 
computer. Kruegel et al. propose a three-stage architecture 
for dividing traffic into sensors to support in-depth, state-
ful NIDS on high-speed links [4].  To keep up with the 
high-speed traffic, the traffic is first captured by a traffic 
scatter, which equally distributes packets to a set of traffic 
slicers, in a round-robin fashion. Then to preserve detec-
tion semantics, the slicers examine the packets for deter-
mining a suitable set of sensors for analysis. Active Split-
ter [3] presents three performance-enhancing techniques 
implemented in a frontend: (1) early filtering/forwarding, 
where a fraction of the packets is processed on the fron-
tend instead of the sensors, (2) locality buffering, where 
the frontend reorders packets to improve memory access 
locality on the sensors, and (3) cumulative acknowledg-
ments, which optimizes the coordination between the 
frontend and the sensors. NIDS Cluster [2] explores 
schemes and implementation for better communication 
between sensors. Rather than just aggregating alerts, sen-
sors in NIDS Cluster collaboratively analyze a traffic 
stream by exchanging low-level analysis state. Although 
these approaches are quite effective, the cost of introduc-
ing one of these systems is not trivial. The administrator 
needs to buy, set up, and maintain many machines. In 
some situations, finding a space or supplying enough 
electric power may be difficult. Our approach utilizes 
already-existing NIDSs in an organization and improves 
performance by enabling coordination between them. 

Parallelizing analysis by distributing signature is less 
explored [5],[6]. Salour and Su propose a two-layer NIDS 
to improve performance [5]. Their system targets passive 
NIDSs which monitor the same segment. It divides one 
signature database into two (or can be more) NIDSs and 
improves performance of each NIDS. Our approach is 
more general; it targets tree-like structure of NIDSs, which 
is typical in an organization network, and coordinates 
signature configurations among NIDSs in different sub-
networks for performance. In addition, our approach can 
apply to in-line NIDSs or NIPSs. The patent [6] claims a 
system and method for dynamic signature distribution 
among network devices with intrusion detection functio-
nality (including NIDSs). Its purpose is signature distribu-
tion and sharing, not performance improvement of NIDSs; 
it distributes a signature upon detecting the corresponding 
attack so that the attack can be detected by other devices, 
and does not consider the loads of NIDSs. 

Improving a single NIDS performance has been re-
searched more over the years from many perspectives. The 
most common perspective is pattern-matching algorithms, 
such as Aho-Corasick [7], Wu-Manber [8], Commentz-
Walter [9], and others [10]-[12] because this is the most 
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critical operation that affects the performance of NIDS.  
Other approaches explore hardware-based implementation 
of NIDS on network processors [13]-[15] and FPGAs 
[16]-[19]. The most recent approach exploits the latest 
architectural support including multi-core processors [20] 
and graphic processors [21]-[23]. These techniques are 
complementary to ours, which seeks performance im-
provement by enabling collaboration between already-
existing NIDSs. 

3. Coordinating Independently-managed 
NIDSs 

In this paper, we propose an approach to improve 
NIDS performance by coordinating already-existing, 
independently-managed NIDSs in a network. In our ap-
proach, NIDSs in the same organization network commu-
nicate with each other to exchange their load status and 
configuration, and then reconfigure automatically to of-
fload overloaded machines or eliminate redundant rules. 
Instead of replacing a top-level network entry-point NIDS 
with a new high-performance but expensive NIDS, or with 
a parallel NIDS consisting of many machines, our ap-
proach leverages already-existing NIDSs, and our goal is 
to improve the total NIDS performance within an organi-
zation's network. 

Our key observation is as follows: many organiza-
tions, such as universities or companies, have several 
NIDSs managed by different administrators inside their 
networks, not only a NIDS at the network entry point of 
the organization. As shown in Figure 1, in addition to 
NIDS A set at the network entry point, there are other 
NIDSs downstream, which may be set by smaller depart-
ments or divisions in the organization. For example at a 
university, NIDS B1 and B2 may be set by departments, 
and NIDS C by a laboratory. With our approach, a NIDS 
communicates with its parent and child NIDSs, which are 
the closest up- and down-stream NIDSs, respectively. For 
example, NIDS A communicates with NIDS B1 and B2, 
and NIDS B2 with NIDS A and C. 

We propose two approaches to improve performance: 
1) offloading overloaded NIDS by transferring rules, and 
2) eliminating redundant rules among NIDSs. 

3.1 Offloading Overloaded NIDSs 

A NIDS becomes overloaded because of large traffic 
volume or rate, many enabled rules, or poor NIDS compu-
tational power.  However, when we look at NIDSs on a 
network path, all the NIDSs on the path rarely become 
overloaded.  When a NIDS becomes overloaded, we try to 
offload the overloaded NIDS by distributing the load 
among the light-loaded NIDSs on the network paths. This 
alleviates or even prevents the overloaded NIDS from 

bottlenecking the network, and thus improves the 
throughput and reduces network latency of the network 
path. To offload the overloaded NIDS, we transfer a cer-
tain number of rules from the overloaded to lighter-loaded 
parent or child NIDSs. Transferring rules means disabling 
rules in the overloaded NIDSs and enabling them in the 
light-loaded NIDSs. We transfer rules and change the 
number of enabled rules to offload because other choices 
for offloading, such as changing the traffic volume or rate, 
or the computational power of the NIDS, are more diffi-
cult to change immediately. 

In Figure 1, suppose that NIDS A becomes over-
loaded because it has many rules. On the other hand, the 
downstream NIDS B1 and B2 do not have many rules and 
are not overloaded. In this situation, NIDS A can transfer 
some rules, say rules 70-100, to NIDS B1 and B2. In other 
words, rules 70-100 become disabled in NIDS A and 
enabled in NIDS B1 and B2 instead. If this offloads NIDS 
A, the network throughput increases and the latency de-
creases. 

Note that the original security level is preserved even 
after transferring a certain number of rules.  This is be-
cause our approach ensures that all traffic is checked 
against the transferred rules somewhere on the network 
path before arriving at its destination.  For example if 
some rules are transferred from NIDS A to NIDS B1 and 
B2 as described above, all the packets that pass the NIDS 
A always pass either NIDS B1 or B2.  This ensures that all 
the packets are checked against the transferred rules at 
either NIDS B1 or B2. We discuss this security issue in 
more detail in Section 4.1.3. 

3.2 Eliminating Redundant Rules 

Some NIDSs on a network path usually enable a set 
of identical rules. This is because the NIDSs are managed 
independently by the administrators of each department. If 
some rules are enabled on several NIDSs on a network 
path, a packet passing along the path is checked several 
times against those rules. Eliminating these redundant 
rules will decrease network latency because packets are 

Fig. 1  Example Setting of NIDS 
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checked only once. Redundant rules can be eliminated by 
disabling them in all except one NIDS on the network path. 

In Figure 1, rule 1 is enabled in three NIDSs A, B2, 
and C. Packets destined to subnet C have to be checked 
against rule 1 three times. If only NIDS A enables rule 1 
and NIDS B2 and C disable it, network latency will de-
crease. 

Again, eliminating redundant rules causes no security 
degradation because NIDS disables the rules only if they 
are redundantly enabled on the network path. Other NIDSs 
on the path check the traffic against them. In the above 
example, even if NIDS B2 and C disable rule 1, the traffic 
from the Internet is checked by NIDS A against rule 1. For 
internal traffic between subnet B2 and subnet C, which 
cannot be checked by NIDS A, NIDS B2 still checks only 
the internal traffic against rule 1. We revisit this issue in 
Section 4.2. 

4. Design and Implementation of Brownie 

To demonstrate the feasibility of our approach, we 
design and implement Brownie 1 , a NIDS coordination 
system.  Each instance of Brownie is attached to and man-
ages each NIDS, and communicates with other instances 
of Brownie. We achieve collaboration between NIDSs by 
means of collaboration between Brownies and managing 
each NIDS by each Brownie. A NIDS which a Brownie is 
attached to is called the managing NIDS of the Brownie. 
We will use the term Brownie to refer to both the entire 
system and each instance of the system. 

To use a NIDS with Brownie, an administrator confi-
gures the information (such as IP address) of the parent 
NIDS. At the time of booting the NIDS, the corresponding 
Brownie establishes a connection with a Brownie attached 
to the configured parent NIDS for exchanging load and 
rule status. At the first communication, the Brownies 
exchange enabled/disabled rules. 

For NIDSs, we used Snort, a widely used open-
source NIDS. Although we used only Snort for all the 
NIDSs in the current implementation, we plan to extend 
our system to heterogeneous NIDS environments. Another 
NIDS candidate is Bro [24], another open-source NIDS. 
Since Bro provides mechanisms for dynamic rule rewrit-
ing and coordinating between sensors, it may be more 
suitable for our system.  In the future, we will seek ways 
to address commercial and heterogeneous NIDSs envi-
ronments to make our approach more effective. 

                                                           
1 A Brownie is a legendary good-natured elf that performs 
helpful services. 

4.1 Procedure for Offloading Overloaded NIDSs 

The basic idea for offloading NIDSs is that a Brow-
nie compares the loads of the managing NIDS and that of 
the child NIDSs, and transfers rules from higher-loaded 
one(s) to lower-loaded one(s). In other words, if the load 
of the managing NIDS is higher than that of all the child 
NIDSs, the Brownie transfers a certain number of rules 
from the managing NIDS to all the child NIDSs, and if the 
load of the managing NIDS is lower than that of all the 
child NIDSs, the Brownie transfers rules from all the child 
NIDSs to the managing NIDS. The Brownie repeats trans-
ferring rules until the load of the managing NIDS and that 
of the child NIDSs are balanced.  Now we describe de-
tailed procedure to determine 1) when offloading is done, 
and 2) which rules are transferred. 

4.1.1 Determining When Offloading is Done 

To determine whether offloading is necessary, a 
Brownie first measures the load of the managing NIDS. 
The load of a NIDS is characterized well by its resource 
consumption, especially by its CPU usage since most 
NIDS operation is CPU-intensive pattern matching.  Even 
if all the NIDSs do not have the same machine configura-
tion, the CPU usage represents the load of each NIDS. 

Then the Brownie decides whether offloading should 
be done based on the measured CPU usage. Since our 
primary goal is to offload overloaded NIDS, the naive 
approach is that Brownie starts offloading if a NIDS be-
comes overloaded (its CPU usage reaches near 100%), and 
stops offloading if its CPU usage goes under a configured 
value. However, this approach arises some problems. First, 
it is difficult to decide the CPU usage for stopping the 
NIDS offloading. It should be low enough to effectively 
offload, but if it is too low, other NIDSs become over-
loaded by transferring too many rules. Second, if all the 
NIDSs are overloaded, they transfer rules to each other but 
offloading cannot be achieved. Finally, it is preferable that 
Brownie starts offloading before the NIDS becomes com-
pletely overloaded if other NIDSs are light-loaded. 

Therefore, we adopt a load-balancing approach. A 
Brownie tries to equalize the CPU usage of the managing 
NIDS and that of the child NIDSs. The Brownie transfers 
rules if there is a considerable difference between the CPU 
usage of the managing NIDS and that of the child NIDSs, 
and stops transferring rules when the CPU usages are 
balanced.  Unlike the naive approach, even if all the 
NIDSs are overloaded, no rule transfer occurs. In addition, 
Brownie can transfer rules to lighter-loaded NIDS before 
the managing NIDS gets overloaded. To use Brownie, we 
set a configurable parameter Diff for the acceptable CPU 
difference between NIDSs. By default, Diff is 5. 

More precisely, a Brownie collects the CPU usage of 
the managing and the child NIDSs every T seconds. Let 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011 
 

 

5

cmy be the CPU usage of the managing NIDS, and ci (0 ≤ i 
< n, where n is the number of the child NIDSs) be that of 
the child NIDSs.  If cmy - max(ci) > Diff (and because Diff 
is positive, this means cmy > max(ci), then the Brownie 
transfers rules from the managing NIDS to all the child 
NIDSs. If min(ci) – cmy > Diff (similarly, this means 
min(ci ) > cmy), then the Brownie transfers rules from the 
all the child to the managing NIDSs. Otherwise, i.e., if 
min(ci) - Diff ≤ cmy ≤ max(ci) + Diff, the CPU usages are 
balanced and the Brownie does not transfer any rules. The 
configurable parameter T affects the sensitivity to the load 
change, and we set T to 30 by default. 

4.1.2 Determining Which Rules are Transferred 

If we select an appropriate set of rules, Brownie can 
balance the load soon. Otherwise, the Brownie has to 
repeat the transfer many times, and thus it takes a longer 
time to balance the load. Because Brownie repeats of-
floading until the loads are balanced, it is acceptable not to 
select rules for offloading just once. Nevertheless, it is 
preferable to balance the load in a shorter time. 

The simplest way to select rules is randomly selecting 
a constant number of rules. However, it is difficult to 
decide the constant number of transferring rules. If it is too 
small (e.g., one) it takes an extremely long time to offload. 
On the other hand, if the number of transferring rules is 
too large, the lighter-loaded NIDS may become over-
loaded and then has to transfer the same rules back to the 
originally higher-loaded NIDS. 

Therefore, Brownie decides the number of transferred 
rules depending on the difference of the CPU usages of 
the managing and the child NIDSs; the larger the differ-
ence, the more rules are transferred. And then Brownie 
randomly selects the decided number of rules. Although 
each rule does not have the same load, we can assume that 
more rules may bring more load. In our setting, the num-
ber of transferred rules is Factor times the difference in 
CPU usage. Factor is a configurable parameter to decide 
how much the difference in CPU usage reflects the num-
ber of rules. More precisely, the number of transferred 
rules is Factor × (cmy - max(ci)) or Factor × (min(ci) – cmy) 
depending on whether rules are transferred from or to the 
managing NIDS, respectively. We use 10 as Factor by 
default. 

4.1.3 Keeping Security 

As briefly described in Section 3.1, Brownie does not 
degrade the original security by transferring rules. In this 
section, we discuss this issue in more detail. To ensure the 
security level after the rule transfer, we consider four cases 
along two axes (Table 1): 1) whether some of downstream 
machines which are directly connected to the upstream 

NIDS, are not NIDS or all are NIDSs, and 2) whether the 
rules are transferred from or to downstream NIDS. 

In the first case, all the machines under upstream 
NIDS are NIDSs, and rules are transferred from upstream 
to downstream NIDSs. For example in Figure 1, only 
NIDSs (NIDS B1 and B2) exist under NIDS A and sup-
pose rules are transferred from NIDS A to B1 and B2. In 

this case, all the packets that pass the upstream NIDS 
(NIDS A) always pass one of the downstream NIDSs 
(either NIDS B1 or B2).  This ensures that all the packets 
are checked against the transferred rules at the down-
stream NIDS. 

In the second case, all the machines under upstream 
NIDS are NIDSs as in the first case. But unlike the first 
case, rules are transferred from downstream to upstream 
NIDSs. For example, rules are transferred from NIDS B2 
to A. In this case, traffic from the Internet to the down-
stream NIDS (NIDS B2) always passes and is checked by 
the upstream NIDS (NIDS A).  However, care must be 
taken with internal traffic within the subnet under the 
downstream NIDS. For example, if rule 3 is transferred 
from NIDS B2 to A, the traffic between subnet B2 and 
subnet C cannot be checked by NIDS A. To check this 
traffic, the downstream NIDS B2 keeps the transferred 
rules 3 and checks only the traffic between a host in sub-
net B2 and a host in subnet C against rule 3, based on 
source and destination IP addresses of the packets. Be-
cause the traffic from the Internet is usually much larger 
than the internal traffic, we can offload NIDS B2 even if 
rule 3 is still enabled. 

In the third case, normal hosts and downstream 
NIDSs are co-located under a NIDS.  In Figure 1, hosts in 
subnet B2 and NIDS C are co-located under NIDS B2. In 
this case, rules are transferred from upstream to down-
stream NIDSs, for example from NIDS B2 to C. In this 
case, if rule 3 is transferred from NIDS B2 to C, disabling 
the rule in the upstream NIDS B2 results in the traffic 
destined for normal hosts in subnet B2 not being checked. 
To avoid this, the upstream NIDS B2 keeps enabling rule 
3 for the traffic for the subnet B2. Because NIDS B2 does 
not check the traffic destined for subnet C, we expect 
NIDS B2 can be offloaded even if rule 3 is still enabled. 

In the forth case, normal hosts and downstream 
NIDSs are co-located under a NIDS as in the third case. 
But in this case, rules are transferred from downstream to 

 
Rule transfer direction 

from up- to 
downstream 

from down- 
to upstream

Downstream 
machines

all are NIDS 1st case 2nd case 

some are 
not NIDS 3rd case 4th case 

Table 1   Four Cases for Considering Security 
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upstream NIDSs. For example, rules are transferred from 
NIDS C to B2. This case can be dealt with the same man-
ner as the second case; NIDS C keeps the rules for the 
traffic between hosts below the downstream NIDS (hosts 
in subnet C) and other traffic is checked by NIDS B2. 

4.2 Procedure for Eliminating Redundant Rules 

The procedure for eliminating redundant rules is 
straightforward. If a Brownie finds both a downstream and 
the managing NIDSs enable the same rules, it disables the 
rules in the downstream NIDS. As a result, all the redun-
dant rules are enabled only in the managing NIDS. Be-
cause upstream and downstream Brownies exchange their 
enabled/disabled rules at the time of booting, they can 
easily find redundant rules. 

Disabling redundant rules in downstream NIDS caus-
es no security degradation for traffic from the Internet 
since the traffic passes the rule-enabled upstream NIDS 
before the rule-disabled downstream NIDS. In Figure 1, as 
explained in Section 3.2, even if rule 1 is disabled in NIDS 
B2 and C, the traffic from the Internet is checked by NIDS 
A against rule 1. For internal traffic between subnet B2 
and subnet C, which cannot be checked by NIDS A, NIDS 
B2 still checks it against rule 1 in the same way as de-
scribed in Section 4.1.3. 

It is possible to eliminate redundant rules by enabling 
them in downstream instead of upstream NIDS. However, 
this requires a more complex procedure to ensure the 
security level. This is because no NIDS checks the traffic 
from the Internet to a subnet not below the downstream 
NIDS. For example in Figure 1, suppose NIDS B2 enables 
rule 1 and NIDS A and C disable it.  Before eliminating 
the redundant rule 1, traffic destined for both subnet B1 
and B2 is checked against rule 1 at NIDS A. After elimi-
nating the rules, however, traffic destined for subnet B1 is 
not checked anywhere. To ensure the traffic is checked, 
we have to enable the rule 1 in NIDS B1. In contrast, 
enabling rules only in upstream NIDS does not need for 
any other NIDS to enable the rules (except for the down-
stream NIDS for internal traffic). 

It is unlikely for the upstream NIDS to become sud-
denly overloaded even if all the redundant rules are 
enabled. This is because the rules are already enabled, 
rather than become enabled, in the upstream NIDS. Never-
theless, if the upstream NIDS becomes overloaded, the 
Brownie offloads it by transferring a certain number of 
rules to the downstream NIDSs. Because the downstream 
NIDSs disable the redundant rules, their loads may be 
lighter than before, and thus have room to accept more 
rules from the overloaded upstream NIDS. 

4.3 Collecting Alert Logs 

Because Brownie enables and disables rules automat-
ically, some alerts are raised on a NIDS different from the 
one that originally enabled the rule.  To notify the admin-
istrator of the NIDS that originally enabled it, Brownie 
keeps track of which rules are transferred to or from which 
NIDS.  When a NIDS alerts an attack, the Brownie at-
tached to the NIDS forwards the alert to a Brownie at-
tached to the NIDS which originally enabled the rule. The 
Brownie that received it raises the alert on behalf of the 
managing NIDS.  For example, it writes the received alert 
to the NIDS's alert log.  The administrators of the NIDS 
can notice the alert even if the rule for the alert is not 
actually enabled in the NIDS. 

5. Experiments 

5.1 Synthetic Workload 

5.1.1 Experimental Setup 

To show that Brownie improves network perfor-
mance, we first conducted experiments with synthetic 
workload, produced by a web server benchmark. We used 
seven machines: three NIDSs, two clients, and two servers, 
connected as shown in Figure 2. All the machines were 
connected via 1Gbps Ethernet. The upstream NIDS ma-
chine was equipped with two Intel Dual-Core Xeon 
2.33GHz CPUs (only one core was enabled), 2GB memo-
ry, and a 250GB 7200rpm HDD, and all other machines 
were equipped with a Pentium 4 2.8GHz CPU, 512MB 
memory, and a 36GB 7200rpm HDD. In this setting, the 
upstream NIDS has higher performance than the down-
stream NIDSs. We used Fedora 8 (Linux 2.6.24) as the 
operating systems for all machines, Apache 2.2.8 as the 
web server, and Snort 2.8.0.1 [25] as NIDS with the rule 
set published on January 28th, 2008. We executed Web-
Stone 2.5 [26], a standard benchmark for web servers, on 
each client with concurrency 10. The default configura-
tions were used for Apache, WebStone, and Snort. 

We measured the number of rules enabled in each 
NIDS, CPU usage of each NIDS, and the benchmark 
throughput every 10 seconds.  For 30 minutes from the 

Fig. 2  Experimental Network Setting 
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start of each experiment, all the Brownies do not transfer 
or eliminate rules to see the performance with the initial 
rule setting. 

5.1.2 Results of Offloading Overloaded NIDS 

To show the effectiveness of offloading, we confi-
gured the initial Snort rule setting as DOWN; downstream 
NIDSs with the default rule set (# of rules is 8676) and 
upstream NIDS with no rules (# of rules is 0). Since the 
default rule set is overwork for the downstream NIDS, the 
downstream NIDSs get overloaded and become bottle-
necks with this setting. 

Figure 3 shows the experimental results. Two vertical 
lines show the times when the Brownies begin and stop 
offloading (or rule transfer). Figure 3 (a) shows the num-
ber of rules enabled in each NIDS. At 30 minutes after 
starting, the Brownie begins to offload and starts transfer-
ring rules. The number of rules in the upstream NIDS 
increases while that in the downstream NIDS decreases. 
Figures 3 (c) and (d) show the CPU usages of the up-
stream and  downstream NIDSs, respectively. Because the 
CPU usages of the two downstream NIDSs do not show 
any noticeable difference, we only show one of them. 
With the initial setting, the CPU usages of the downstream 
NIDSs are constantly at 100%, whereas that of the up-
stream NIDS is less than 80%. After about an hour, the 
CPU usage of all the NIDSs become nearly the same and 
thus Brownie stops rule transfer. After this, the CPU usage 
of all the NIDSs reaches a little less than 100%, and thus 
they are equally loaded. 

Figure 3 (b) shows the benchmark throughput. After 
the offloading finishes, the throughput increases from 154 
Mbit/sec with the initial setting to 174 Mbit/sec, resulting 
in a 13% increase. Since the NIDSs need to be restarted 
for reconfiguration to take effect in the current implemen-
tation, the throughput drops temporarily during the trans-
ferring of rules.  This can be mitigated if we use Elephant 
[27], which modifies the reloading sequence of Snort to 
reduce 20% of the time required for the rule reloading. 

The numbers of rules after the rule transfer are 6600 
at the upstream NIDS and 2076 at the downstream NIDS.  
Because the downstream NIDSs have lower performance 
than the upstream NIDS, the upstream NIDS enables 
much more rules than the downstream NIDS. 

5.1.3 Results of Eliminating Redundant Rules 

To measure the effectiveness of eliminating redun-
dant rules by Brownie, we configured initial Snort rule 
setting as BOTH; all (up- and down-stream) NIDSs with 
the default rule set. Because all the NIDS have the same 
rule set, traffic must always be checked against the same 
rules twice. Figure 4 shows the experimental results. 

Figure 4 (a) shows the number of rules. At 30 mi-
nutes after starting, the Brownie first eliminates all the 
redundant rules. Because the default rules are enabled in 
all the NIDSs, the rules in the downstream NIDSs are 
totally disabled and all the rules are enabled in the up-
stream NIDS. After that, a certain number of rules are 
transferred to the downstream NIDSs, and the offloading 
finishes in about 5 minutes. As shown in Figure 4 (b), the 
throughput increases from 155 Mbit/sec with the initial 
setting to 173 Mbit/sec, resulting in a 12% increase. This 

(a) # of rules 
 

(b) Throughput 
 

(c) CPU usage of  
upstream NIDS 

(d) CPU usage of down-
stream NIDS 

Fig. 4  Results of Eliminating Redundant Rules  
(Synthetic Workload: BOTH) 

(a) # of rules 
 

(b) Throughput 
 

(c) CPU usage of  
upstream NIDS 

(d) CPU usage of down-
stream NIDS 

Fig. 4   Results of Offloading Overloaded NIDS  
(Synthetic Workload: DOWN) 
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improvement is because multiple checks against the same 
rules become unnecessary. 

Figures 4 (c) and (d) show the CPU usages of the up-
stream and downstream NIDSs, respectively. Since all the 
rules are enabled, the downstream NIDSs are overloaded 
in the initial setting and its CPU usage is near 100% for 
the first 30 minutes. After Brownie eliminates the redun-
dant rules, the CPU usage of the downstream NIDS reduc-
es and all the NIDSs show almost identical CPU usage. 

5.2 Real Workload 

5.2.1 Experimental Setup 

To assess Brownie with real network traffic, we op-
erated Brownie on a captured packet trace. We captured a 
4-day full-packet trace at the network entry point of Toyo-
hashi University of Technology with /16 network starting 
from March 23rd, 2008, comprising 673GB, and 
220,919,190 inbound and 168,454,019 outbound packets.  

We used four machines: three NIDSs and a sink ma-
chine that replays and receives the captured packets. The 
NIDSs were connected in the same way as shown in Fig-
ure 2, except that the sink machine was connected to all 
the NIDSs. All the machines were connected via 1Gbps 
Ethernet. The upstream NIDS was configured with an 
Intel Quad-Core Xeon 2.33GHz CPU and 4GB memory, 
the downstream NIDSs with an Intel Pentium Dual-Core 

2GHz CPU and 1GB memory, and the sink machine with 
an Intel Core2 Duo 2.4GHz CPU and 2GB memory. The 
software configurations were the same as those described 
in Section 5.1.1. To make the NIDSs well-loaded, we 
replayed the captured packets at top speed. 

We measured the number of rules and the CPU usage. 
We could not measure throughput or latency because the 
workload was a captured packet trace. For comparison, we 
also ran the experiments and measured CPU usage without 

Brownie. Without Brownie, the initial rule setting does not 
change in all the NIDSs throughout the experiment. 

5.2.2 Results of Offloading Overloaded NIDS 

To show the effectiveness of offloading, we confi-
gure the initial Snort rule setting as UP; downstream 
NIDSs with no rules (# of rules is 0) and upstream NIDS 
with the default rule set (# of rules is 8676). Since the 
machine configuration is different from the one with syn-
thetic workload, the initial Snort rule setting is different 
from the one in Section 5.1.2 to get either of NIDSs over-
loaded with the initial setting. 

Figure 5 shows the experimental results. Figure 5 (a) 
shows the numbers of enabled rules in each NIDS with 
Brownie. At 30 minutes after staring, the Brownie begins 
to offload and starts transferring rules. The number of 
rules in the downstream NIDSs increases, while that in the 

 
(a) # of rule with Brownie (b) CPU usage of  

upstream NIDS 
(c) CPU usage of  

downstream NIDS 
Fig. 6  Results of Eliminating Redundant Rules (Real Workload: BOTH) 

 
(a) # of rule with Brownie (b) CPU usage of  

upstream NIDS 
(c) CPU usage of  

downstream NIDS 
Fig. 6  Results of Offloading Overloaded NIDS (Real Workload: UP) 
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upstream NIDS decreases. After about 1.9 hours, rule 
transfer stops. 

Figure 5 (b) shows the mean CPU usage of the up-
stream NIDS every 5 minutes. Figure 5 (c) shows that of 
the downstream NIDS. Without Brownie (in this case all 
the rules are in upstream NIDS), the CPU usage of the 
upstream NIDS sometimes reaches near 100%. With 
Brownie, the CPU usage of the upstream NIDS decreases 
and that of the downstream increases soon after the Brow-
nie starts offloading. After finishing rule transfer, the CPU 
usages of all the three NIDS are well-balanced. 

5.2.3 Results of Eliminating Redundant Rules 

To measure the effectiveness of eliminating redun-
dant rules, we configured initial Snort rule setting as 
BOTH; all (up- and down-stream) NIDSs with the default 
rule set. Because all the NIDS have the same rule set, 
traffic must always be checked against the same rules 
twice. 

Figure 6 shows the experimental results. As shown in 
Figure 6 (a), all the rules in the downstream NIDSs are 
first disabled. After that, rules are transferred from the 
upstream to downstream NIDSs, similar to the initial 
setting UP, because the setting after eliminating the re-
dundant rules is as the same as the initial setting UP. Fig-
ures 6 (b) and (c) show the CPU usage of the CPU usage 
of the upstream and downstream NIDS. Without the 
Brownie, the CPU usage of the upstream NIDS sometimes 
reaches near 100%. With the Brownie, the CPU usage of 
the upstream NIDS decreases as the rules are transferred 
while those of the downstream NIDSs do not increase 
compared to those without Brownie. 

6. Applying Brownies to Other Issues 

We proposed Brownie, mainly targeting on perfor-
mance improvement, but we believe Brownie can provide 
other functionalities. 

Fault-Tolerant NIDS: A Brownie can detect and 
cover failures of other NIDSs controlled by the collaborat-
ing Brownies. Since a Brownie periodically exchanges 
messages with the up/down-stream Brownies, it can detect 
the failure of the NIDSs. In addition, because it knows 
what rules are enabled in the failed NIDS, it can cover that 
failure; it enables the rules enabled by the failed NIDS. 
Even if a NIDS fails, another NIDS takes it over and con-
tinues to check network traffic and detect attacks. 

Signature Synchronization: When a NIDS updates 
its signature database by downloading or automatically 
generating signatures [28]-[31], Brownie can distribute the 
update to other NIDSs. Then all the NIDSs in an organiza-
tion are updated if only one of the NIDSs is up-to-date; the 

maintenance cost of signature database dramatically de-
creases. 

7. Conclusion 

Because of today's increased traffic volume and so-
phisticated attacks, it becomes difficult to implement a 
high performance network intrusion detection/prevention 
system (NIDS/NIPS). We proposed an approach for im-
proving network performance by coordinating NIDSs 
independently-placed on the path of an organizational 
network. Our approach is less expensive to introduce; it 
does not need expensive hardware or many machines. 
With our approach, a NIDS exchanges its load status and 
configuration with other NIDSs to reconfigure the NIDSs 
for better performance. By offloading a certain number of 
rules from overloaded NIDS and eliminating redundant 
rules, we can balance loads and obtain better performance. 

For the future, we plan to develop more efficient 
schemes for load-balancing. For example, by analyzing 
characteristics of traffic, we can estimate which rules 
produce heavier loads and transfer them before others. If 
we generate a resource consumption model like described 
by Dreger et al. [32], we can immediately estimate the best 
rule distribution. In addition, we will seek other applica-
tions for collaborating NIDSs as described in Section 6. 
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