
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

1

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Performance Improvement by Coordinating Configurations of
Independently-managed NIDS

Miyuki Hanaoka† , Kenji Kono†, ††, Toshio Hirotsu†††, and Hirotake Abe††††,

†Keio University, Yokohama, Japan
††CREST, Japan Science and Technology Agency, Saitama, Japan

†††Hosei University, Tokyo, Japan ††††Osaka University, Osaka, Japan

Summary
Because of today's increased traffic volume and sophisticated
attacks, implementing a network intrusion detection/prevention
system (NIDS/NIPS) with a single workstation has been chal-
lenging. In this paper, we propose Brownie, a system for im-
proving performance by coordinating configurations of already-
existing, independently-managed NIDSs in an organization.
Instead of installing one expensive hardware or parallel NIDSs at
a network entry point, Brownie achieves performance improve-
ment by 1) offloading overloaded NIDS, and 2) eliminating
redundant rules. First, Brownie exchanges NIDSs' load status
and transfers some rules from overloaded to light-loaded NIDSs,
which prevents the overloaded NIDSs from bottlenecking the
network. Second, if some NIDSs on a network path enable the
same rules, Brownie eliminates the redundant rules, which re-
duces the aggregate overhead of the NIDSs. The experimental
results with a web server benchmark suggest that Brownie in-
creases the benchmark throughput by more than 10%. In addi-
tion, Brownie running with a university full-packet trace success-
fully offloads overloaded NIDS and eliminates redundant rules.
Key words:
Network Security, Network Intrusion Detection/Prevention
System, Performance

1. Introduction

Network intrusion detection/prevention systems
(NIDSs/NIPSs) are widely used for detecting malicious
attacks by monitoring the incoming and outgoing traffic
for suspicious payloads. Most NIDSs are signature-based,
which relies on a set of rules (or signatures) that are
scanned over network packets. Although signature match-
ing is a highly computationally intensive process, many
NIDSs, both open-source and commercial, are based on
inexpensive commodity hardware. Consequently, imple-
menting a NIDS/NIPS with a single workstation is becom-
ing more challenging. This is because 1) network traffic
volumes and rates are rising exceedingly compared to
computer processor speeds, and 2) attacks are becoming
more sophisticated and thus require more complex and in-
depth analysis to detect. Furthermore, a NIPS has more

performance impact than a NIDS. This is because it sus-
pends a packet until it finishes checking it [1].

Faced with this performance gap, we have two op-
tions to take. One is turning to expensive, custom hard-
ware such as ASICs or FPGAs. Although it gains effective
performance improvement, hardware implementation is
expensive and lacks flexibility. Another research efforts
have explored the use of parallel processing among mul-
tiple commodity computers, such as NIDS Cluster [2] and
Active Splitter [3]. With these approaches, a frontend
divides the traffic stream among the analysis nodes, each
of which receives a share of the total network traffic to
analyze in depth. Although these approaches are quite
effective, introducing these is not trivial. The primary
reason is the cost of introducing many machines. Not only
the cost for the machines, but also the configuration and
maintenance cost might be expensive. In addition, the
administrator has to find a large space and provide enough
electric power supply for these machines.

In this paper, we propose another approach to im-
prove performance. We show that coordinating already-
existing, independently-managed NIDSs in an organiza-
tion network is worthwhile way to achieve total perfor-
mance improvement of NIDSs in the network. Our key
observation is that most organizations, such as universities
or companies, have several NIDSs managed by different
administrators inside their internal networks, not only at
the network entry point. For example at a university, some
departments or laboratories introduce and manage their
own NIDSs even if the university has a NIDS at the top
level of the network. Since these NIDSs are configured by
each administrator independently, they are not optimized
with each other. For example, several NIDSs enable the
same rules, and thus traffic must be checked against them
many times. In addition, an overloaded NIDS becomes
bottleneck in the entire network while other NIDSs are
light-loaded.

We show that exploiting tree-like structure of the
NIDSs inside the same network improves the performance
of NIDSs in the whole network. By communicating with
other NIDSs on a network path, NIDSs exchange their
own load status and configuration, and then reconfigure

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

2

themselves to offload overloaded machines or eliminate
redundant rules. By doing so, we can achieve total per-
formance improvement in networks. If we move some
rules that are originally on overloaded NIDSs to others,
we can offload the overloaded NIDSs. If we eliminate
redundant rules among some NIDSs, one packet will be
checked only once somewhere in the network path and
thus latency can be reduced. Existing approaches seek to
improve the performance of one NIDS at the network
entry point by using several machines or adopting new
efficient algorithms. On the other hand, our approach aims
to improve the entire performance of many NIDSs, not
just one.

Note that our approach does not sacrifice the original
security strength for performance. Our approach ensures
that all traffic is checked against the same rule set as be-
fore. We transfer or disable rules so that all the traffic
which passes the NIDS that disables the rules is surely
checked by another NIDS that enables the rules. In other
words, our approach only changes where packets are
checked, but does not change what rules a packet is
checked against on the way to its destination.

We developed Brownie to show the efficiency of our
approach. The experimental results with a benchmark
workload suggest that Brownie offloads the overloaded
NIDSs and eliminates redundant rules, and the benchmark
throughput increases by more than 10%. We also ran it
with a full-packet trace captured at the network entry point
of Toyohashi University of Technology with /16 network.
Even with the real traffic trace, Brownie successfully
offloads the overloaded NIDS and eliminates redundant
rules.

We structure the remainder of this paper as follows.
In Section 2, we briefly discuss related work. We give our
approach of collaborating NIDS in Section 3, and describe
the detailed design and implementation developed in
Brownie in Section 4. In Section5, we discuss our bench-
mark-based and trace-based experiments to show the
efficiency of Brownie. Section 6 suggests that Brownie
can be applied to other issues, and we conclude in Section
7.

2. Related Work

There has been constant research for improving the
performance of NIDS. This research is roughly divided
into two categories: parallelizing analysis using many
machines and improving the performance of one NIDS.

Parallelizing analysis approach is further divided into
two categories depending on what is distributed: traffic or
signature. Parallelizing analysis by distributing traffic
include NIDS Cluster [2], Active Splitter [3], and a system
developed by Kruegel et al. [4]. With this approach, a
frontend divides the traffic stream among analysis nodes,

or often called sensors, each of which receives a share of
the total network traffic to analyze in depth. By dividing
the analyzing process among sensors, we can achieve
better performance than a NIDS that consists of a single
computer. Kruegel et al. propose a three-stage architecture
for dividing traffic into sensors to support in-depth, state-
ful NIDS on high-speed links [4]. To keep up with the
high-speed traffic, the traffic is first captured by a traffic
scatter, which equally distributes packets to a set of traffic
slicers, in a round-robin fashion. Then to preserve detec-
tion semantics, the slicers examine the packets for deter-
mining a suitable set of sensors for analysis. Active Split-
ter [3] presents three performance-enhancing techniques
implemented in a frontend: (1) early filtering/forwarding,
where a fraction of the packets is processed on the fron-
tend instead of the sensors, (2) locality buffering, where
the frontend reorders packets to improve memory access
locality on the sensors, and (3) cumulative acknowledg-
ments, which optimizes the coordination between the
frontend and the sensors. NIDS Cluster [2] explores
schemes and implementation for better communication
between sensors. Rather than just aggregating alerts, sen-
sors in NIDS Cluster collaboratively analyze a traffic
stream by exchanging low-level analysis state. Although
these approaches are quite effective, the cost of introduc-
ing one of these systems is not trivial. The administrator
needs to buy, set up, and maintain many machines. In
some situations, finding a space or supplying enough
electric power may be difficult. Our approach utilizes
already-existing NIDSs in an organization and improves
performance by enabling coordination between them.

Parallelizing analysis by distributing signature is less
explored [5],[6]. Salour and Su propose a two-layer NIDS
to improve performance [5]. Their system targets passive
NIDSs which monitor the same segment. It divides one
signature database into two (or can be more) NIDSs and
improves performance of each NIDS. Our approach is
more general; it targets tree-like structure of NIDSs, which
is typical in an organization network, and coordinates
signature configurations among NIDSs in different sub-
networks for performance. In addition, our approach can
apply to in-line NIDSs or NIPSs. The patent [6] claims a
system and method for dynamic signature distribution
among network devices with intrusion detection functio-
nality (including NIDSs). Its purpose is signature distribu-
tion and sharing, not performance improvement of NIDSs;
it distributes a signature upon detecting the corresponding
attack so that the attack can be detected by other devices,
and does not consider the loads of NIDSs.

Improving a single NIDS performance has been re-
searched more over the years from many perspectives. The
most common perspective is pattern-matching algorithms,
such as Aho-Corasick [7], Wu-Manber [8], Commentz-
Walter [9], and others [10]-[12] because this is the most

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

3

critical operation that affects the performance of NIDS.
Other approaches explore hardware-based implementation
of NIDS on network processors [13]-[15] and FPGAs
[16]-[19]. The most recent approach exploits the latest
architectural support including multi-core processors [20]
and graphic processors [21]-[23]. These techniques are
complementary to ours, which seeks performance im-
provement by enabling collaboration between already-
existing NIDSs.

3. Coordinating Independently-managed
NIDSs

In this paper, we propose an approach to improve
NIDS performance by coordinating already-existing,
independently-managed NIDSs in a network. In our ap-
proach, NIDSs in the same organization network commu-
nicate with each other to exchange their load status and
configuration, and then reconfigure automatically to of-
fload overloaded machines or eliminate redundant rules.
Instead of replacing a top-level network entry-point NIDS
with a new high-performance but expensive NIDS, or with
a parallel NIDS consisting of many machines, our ap-
proach leverages already-existing NIDSs, and our goal is
to improve the total NIDS performance within an organi-
zation's network.

Our key observation is as follows: many organiza-
tions, such as universities or companies, have several
NIDSs managed by different administrators inside their
networks, not only a NIDS at the network entry point of
the organization. As shown in Figure 1, in addition to
NIDS A set at the network entry point, there are other
NIDSs downstream, which may be set by smaller depart-
ments or divisions in the organization. For example at a
university, NIDS B1 and B2 may be set by departments,
and NIDS C by a laboratory. With our approach, a NIDS
communicates with its parent and child NIDSs, which are
the closest up- and down-stream NIDSs, respectively. For
example, NIDS A communicates with NIDS B1 and B2,
and NIDS B2 with NIDS A and C.

We propose two approaches to improve performance:
1) offloading overloaded NIDS by transferring rules, and
2) eliminating redundant rules among NIDSs.

3.1 Offloading Overloaded NIDSs

A NIDS becomes overloaded because of large traffic
volume or rate, many enabled rules, or poor NIDS compu-
tational power. However, when we look at NIDSs on a
network path, all the NIDSs on the path rarely become
overloaded. When a NIDS becomes overloaded, we try to
offload the overloaded NIDS by distributing the load
among the light-loaded NIDSs on the network paths. This
alleviates or even prevents the overloaded NIDS from

bottlenecking the network, and thus improves the
throughput and reduces network latency of the network
path. To offload the overloaded NIDS, we transfer a cer-
tain number of rules from the overloaded to lighter-loaded
parent or child NIDSs. Transferring rules means disabling
rules in the overloaded NIDSs and enabling them in the
light-loaded NIDSs. We transfer rules and change the
number of enabled rules to offload because other choices
for offloading, such as changing the traffic volume or rate,
or the computational power of the NIDS, are more diffi-
cult to change immediately.

In Figure 1, suppose that NIDS A becomes over-
loaded because it has many rules. On the other hand, the
downstream NIDS B1 and B2 do not have many rules and
are not overloaded. In this situation, NIDS A can transfer
some rules, say rules 70-100, to NIDS B1 and B2. In other
words, rules 70-100 become disabled in NIDS A and
enabled in NIDS B1 and B2 instead. If this offloads NIDS
A, the network throughput increases and the latency de-
creases.

Note that the original security level is preserved even
after transferring a certain number of rules. This is be-
cause our approach ensures that all traffic is checked
against the transferred rules somewhere on the network
path before arriving at its destination. For example if
some rules are transferred from NIDS A to NIDS B1 and
B2 as described above, all the packets that pass the NIDS
A always pass either NIDS B1 or B2. This ensures that all
the packets are checked against the transferred rules at
either NIDS B1 or B2. We discuss this security issue in
more detail in Section 4.1.3.

3.2 Eliminating Redundant Rules

Some NIDSs on a network path usually enable a set
of identical rules. This is because the NIDSs are managed
independently by the administrators of each department. If
some rules are enabled on several NIDSs on a network
path, a packet passing along the path is checked several
times against those rules. Eliminating these redundant
rules will decrease network latency because packets are

Fig. 1 Example Setting of NIDS

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

4

checked only once. Redundant rules can be eliminated by
disabling them in all except one NIDS on the network path.

In Figure 1, rule 1 is enabled in three NIDSs A, B2,
and C. Packets destined to subnet C have to be checked
against rule 1 three times. If only NIDS A enables rule 1
and NIDS B2 and C disable it, network latency will de-
crease.

Again, eliminating redundant rules causes no security
degradation because NIDS disables the rules only if they
are redundantly enabled on the network path. Other NIDSs
on the path check the traffic against them. In the above
example, even if NIDS B2 and C disable rule 1, the traffic
from the Internet is checked by NIDS A against rule 1. For
internal traffic between subnet B2 and subnet C, which
cannot be checked by NIDS A, NIDS B2 still checks only
the internal traffic against rule 1. We revisit this issue in
Section 4.2.

4. Design and Implementation of Brownie

To demonstrate the feasibility of our approach, we
design and implement Brownie 1 , a NIDS coordination
system. Each instance of Brownie is attached to and man-
ages each NIDS, and communicates with other instances
of Brownie. We achieve collaboration between NIDSs by
means of collaboration between Brownies and managing
each NIDS by each Brownie. A NIDS which a Brownie is
attached to is called the managing NIDS of the Brownie.
We will use the term Brownie to refer to both the entire
system and each instance of the system.

To use a NIDS with Brownie, an administrator confi-
gures the information (such as IP address) of the parent
NIDS. At the time of booting the NIDS, the corresponding
Brownie establishes a connection with a Brownie attached
to the configured parent NIDS for exchanging load and
rule status. At the first communication, the Brownies
exchange enabled/disabled rules.

For NIDSs, we used Snort, a widely used open-
source NIDS. Although we used only Snort for all the
NIDSs in the current implementation, we plan to extend
our system to heterogeneous NIDS environments. Another
NIDS candidate is Bro [24], another open-source NIDS.
Since Bro provides mechanisms for dynamic rule rewrit-
ing and coordinating between sensors, it may be more
suitable for our system. In the future, we will seek ways
to address commercial and heterogeneous NIDSs envi-
ronments to make our approach more effective.

1 A Brownie is a legendary good-natured elf that performs
helpful services.

4.1 Procedure for Offloading Overloaded NIDSs

The basic idea for offloading NIDSs is that a Brow-
nie compares the loads of the managing NIDS and that of
the child NIDSs, and transfers rules from higher-loaded
one(s) to lower-loaded one(s). In other words, if the load
of the managing NIDS is higher than that of all the child
NIDSs, the Brownie transfers a certain number of rules
from the managing NIDS to all the child NIDSs, and if the
load of the managing NIDS is lower than that of all the
child NIDSs, the Brownie transfers rules from all the child
NIDSs to the managing NIDS. The Brownie repeats trans-
ferring rules until the load of the managing NIDS and that
of the child NIDSs are balanced. Now we describe de-
tailed procedure to determine 1) when offloading is done,
and 2) which rules are transferred.

4.1.1 Determining When Offloading is Done

To determine whether offloading is necessary, a
Brownie first measures the load of the managing NIDS.
The load of a NIDS is characterized well by its resource
consumption, especially by its CPU usage since most
NIDS operation is CPU-intensive pattern matching. Even
if all the NIDSs do not have the same machine configura-
tion, the CPU usage represents the load of each NIDS.

Then the Brownie decides whether offloading should
be done based on the measured CPU usage. Since our
primary goal is to offload overloaded NIDS, the naive
approach is that Brownie starts offloading if a NIDS be-
comes overloaded (its CPU usage reaches near 100%), and
stops offloading if its CPU usage goes under a configured
value. However, this approach arises some problems. First,
it is difficult to decide the CPU usage for stopping the
NIDS offloading. It should be low enough to effectively
offload, but if it is too low, other NIDSs become over-
loaded by transferring too many rules. Second, if all the
NIDSs are overloaded, they transfer rules to each other but
offloading cannot be achieved. Finally, it is preferable that
Brownie starts offloading before the NIDS becomes com-
pletely overloaded if other NIDSs are light-loaded.

Therefore, we adopt a load-balancing approach. A
Brownie tries to equalize the CPU usage of the managing
NIDS and that of the child NIDSs. The Brownie transfers
rules if there is a considerable difference between the CPU
usage of the managing NIDS and that of the child NIDSs,
and stops transferring rules when the CPU usages are
balanced. Unlike the naive approach, even if all the
NIDSs are overloaded, no rule transfer occurs. In addition,
Brownie can transfer rules to lighter-loaded NIDS before
the managing NIDS gets overloaded. To use Brownie, we
set a configurable parameter Diff for the acceptable CPU
difference between NIDSs. By default, Diff is 5.

More precisely, a Brownie collects the CPU usage of
the managing and the child NIDSs every T seconds. Let

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

5

cmy be the CPU usage of the managing NIDS, and ci (0 ≤ i
< n, where n is the number of the child NIDSs) be that of
the child NIDSs. If cmy - max(ci) > Diff (and because Diff
is positive, this means cmy > max(ci), then the Brownie
transfers rules from the managing NIDS to all the child
NIDSs. If min(ci) – cmy > Diff (similarly, this means
min(ci) > cmy), then the Brownie transfers rules from the
all the child to the managing NIDSs. Otherwise, i.e., if
min(ci) - Diff ≤ cmy ≤ max(ci) + Diff, the CPU usages are
balanced and the Brownie does not transfer any rules. The
configurable parameter T affects the sensitivity to the load
change, and we set T to 30 by default.

4.1.2 Determining Which Rules are Transferred

If we select an appropriate set of rules, Brownie can
balance the load soon. Otherwise, the Brownie has to
repeat the transfer many times, and thus it takes a longer
time to balance the load. Because Brownie repeats of-
floading until the loads are balanced, it is acceptable not to
select rules for offloading just once. Nevertheless, it is
preferable to balance the load in a shorter time.

The simplest way to select rules is randomly selecting
a constant number of rules. However, it is difficult to
decide the constant number of transferring rules. If it is too
small (e.g., one) it takes an extremely long time to offload.
On the other hand, if the number of transferring rules is
too large, the lighter-loaded NIDS may become over-
loaded and then has to transfer the same rules back to the
originally higher-loaded NIDS.

Therefore, Brownie decides the number of transferred
rules depending on the difference of the CPU usages of
the managing and the child NIDSs; the larger the differ-
ence, the more rules are transferred. And then Brownie
randomly selects the decided number of rules. Although
each rule does not have the same load, we can assume that
more rules may bring more load. In our setting, the num-
ber of transferred rules is Factor times the difference in
CPU usage. Factor is a configurable parameter to decide
how much the difference in CPU usage reflects the num-
ber of rules. More precisely, the number of transferred
rules is Factor × (cmy - max(ci)) or Factor × (min(ci) – cmy)
depending on whether rules are transferred from or to the
managing NIDS, respectively. We use 10 as Factor by
default.

4.1.3 Keeping Security

As briefly described in Section 3.1, Brownie does not
degrade the original security by transferring rules. In this
section, we discuss this issue in more detail. To ensure the
security level after the rule transfer, we consider four cases
along two axes (Table 1): 1) whether some of downstream
machines which are directly connected to the upstream

NIDS, are not NIDS or all are NIDSs, and 2) whether the
rules are transferred from or to downstream NIDS.

In the first case, all the machines under upstream
NIDS are NIDSs, and rules are transferred from upstream
to downstream NIDSs. For example in Figure 1, only
NIDSs (NIDS B1 and B2) exist under NIDS A and sup-
pose rules are transferred from NIDS A to B1 and B2. In

this case, all the packets that pass the upstream NIDS
(NIDS A) always pass one of the downstream NIDSs
(either NIDS B1 or B2). This ensures that all the packets
are checked against the transferred rules at the down-
stream NIDS.

In the second case, all the machines under upstream
NIDS are NIDSs as in the first case. But unlike the first
case, rules are transferred from downstream to upstream
NIDSs. For example, rules are transferred from NIDS B2
to A. In this case, traffic from the Internet to the down-
stream NIDS (NIDS B2) always passes and is checked by
the upstream NIDS (NIDS A). However, care must be
taken with internal traffic within the subnet under the
downstream NIDS. For example, if rule 3 is transferred
from NIDS B2 to A, the traffic between subnet B2 and
subnet C cannot be checked by NIDS A. To check this
traffic, the downstream NIDS B2 keeps the transferred
rules 3 and checks only the traffic between a host in sub-
net B2 and a host in subnet C against rule 3, based on
source and destination IP addresses of the packets. Be-
cause the traffic from the Internet is usually much larger
than the internal traffic, we can offload NIDS B2 even if
rule 3 is still enabled.

In the third case, normal hosts and downstream
NIDSs are co-located under a NIDS. In Figure 1, hosts in
subnet B2 and NIDS C are co-located under NIDS B2. In
this case, rules are transferred from upstream to down-
stream NIDSs, for example from NIDS B2 to C. In this
case, if rule 3 is transferred from NIDS B2 to C, disabling
the rule in the upstream NIDS B2 results in the traffic
destined for normal hosts in subnet B2 not being checked.
To avoid this, the upstream NIDS B2 keeps enabling rule
3 for the traffic for the subnet B2. Because NIDS B2 does
not check the traffic destined for subnet C, we expect
NIDS B2 can be offloaded even if rule 3 is still enabled.

In the forth case, normal hosts and downstream
NIDSs are co-located under a NIDS as in the third case.
But in this case, rules are transferred from downstream to

Rule transfer direction

from up- to
downstream

from down-
to upstream

Downstream
machines

all are NIDS 1st case 2nd case

some are
not NIDS 3rd case 4th case

Table 1 Four Cases for Considering Security

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

6

upstream NIDSs. For example, rules are transferred from
NIDS C to B2. This case can be dealt with the same man-
ner as the second case; NIDS C keeps the rules for the
traffic between hosts below the downstream NIDS (hosts
in subnet C) and other traffic is checked by NIDS B2.

4.2 Procedure for Eliminating Redundant Rules

The procedure for eliminating redundant rules is
straightforward. If a Brownie finds both a downstream and
the managing NIDSs enable the same rules, it disables the
rules in the downstream NIDS. As a result, all the redun-
dant rules are enabled only in the managing NIDS. Be-
cause upstream and downstream Brownies exchange their
enabled/disabled rules at the time of booting, they can
easily find redundant rules.

Disabling redundant rules in downstream NIDS caus-
es no security degradation for traffic from the Internet
since the traffic passes the rule-enabled upstream NIDS
before the rule-disabled downstream NIDS. In Figure 1, as
explained in Section 3.2, even if rule 1 is disabled in NIDS
B2 and C, the traffic from the Internet is checked by NIDS
A against rule 1. For internal traffic between subnet B2
and subnet C, which cannot be checked by NIDS A, NIDS
B2 still checks it against rule 1 in the same way as de-
scribed in Section 4.1.3.

It is possible to eliminate redundant rules by enabling
them in downstream instead of upstream NIDS. However,
this requires a more complex procedure to ensure the
security level. This is because no NIDS checks the traffic
from the Internet to a subnet not below the downstream
NIDS. For example in Figure 1, suppose NIDS B2 enables
rule 1 and NIDS A and C disable it. Before eliminating
the redundant rule 1, traffic destined for both subnet B1
and B2 is checked against rule 1 at NIDS A. After elimi-
nating the rules, however, traffic destined for subnet B1 is
not checked anywhere. To ensure the traffic is checked,
we have to enable the rule 1 in NIDS B1. In contrast,
enabling rules only in upstream NIDS does not need for
any other NIDS to enable the rules (except for the down-
stream NIDS for internal traffic).

It is unlikely for the upstream NIDS to become sud-
denly overloaded even if all the redundant rules are
enabled. This is because the rules are already enabled,
rather than become enabled, in the upstream NIDS. Never-
theless, if the upstream NIDS becomes overloaded, the
Brownie offloads it by transferring a certain number of
rules to the downstream NIDSs. Because the downstream
NIDSs disable the redundant rules, their loads may be
lighter than before, and thus have room to accept more
rules from the overloaded upstream NIDS.

4.3 Collecting Alert Logs

Because Brownie enables and disables rules automat-
ically, some alerts are raised on a NIDS different from the
one that originally enabled the rule. To notify the admin-
istrator of the NIDS that originally enabled it, Brownie
keeps track of which rules are transferred to or from which
NIDS. When a NIDS alerts an attack, the Brownie at-
tached to the NIDS forwards the alert to a Brownie at-
tached to the NIDS which originally enabled the rule. The
Brownie that received it raises the alert on behalf of the
managing NIDS. For example, it writes the received alert
to the NIDS's alert log. The administrators of the NIDS
can notice the alert even if the rule for the alert is not
actually enabled in the NIDS.

5. Experiments

5.1 Synthetic Workload

5.1.1 Experimental Setup

To show that Brownie improves network perfor-
mance, we first conducted experiments with synthetic
workload, produced by a web server benchmark. We used
seven machines: three NIDSs, two clients, and two servers,
connected as shown in Figure 2. All the machines were
connected via 1Gbps Ethernet. The upstream NIDS ma-
chine was equipped with two Intel Dual-Core Xeon
2.33GHz CPUs (only one core was enabled), 2GB memo-
ry, and a 250GB 7200rpm HDD, and all other machines
were equipped with a Pentium 4 2.8GHz CPU, 512MB
memory, and a 36GB 7200rpm HDD. In this setting, the
upstream NIDS has higher performance than the down-
stream NIDSs. We used Fedora 8 (Linux 2.6.24) as the
operating systems for all machines, Apache 2.2.8 as the
web server, and Snort 2.8.0.1 [25] as NIDS with the rule
set published on January 28th, 2008. We executed Web-
Stone 2.5 [26], a standard benchmark for web servers, on
each client with concurrency 10. The default configura-
tions were used for Apache, WebStone, and Snort.

We measured the number of rules enabled in each
NIDS, CPU usage of each NIDS, and the benchmark
throughput every 10 seconds. For 30 minutes from the

Fig. 2 Experimental Network Setting

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

7

start of each experiment, all the Brownies do not transfer
or eliminate rules to see the performance with the initial
rule setting.

5.1.2 Results of Offloading Overloaded NIDS

To show the effectiveness of offloading, we confi-
gured the initial Snort rule setting as DOWN; downstream
NIDSs with the default rule set (# of rules is 8676) and
upstream NIDS with no rules (# of rules is 0). Since the
default rule set is overwork for the downstream NIDS, the
downstream NIDSs get overloaded and become bottle-
necks with this setting.

Figure 3 shows the experimental results. Two vertical
lines show the times when the Brownies begin and stop
offloading (or rule transfer). Figure 3 (a) shows the num-
ber of rules enabled in each NIDS. At 30 minutes after
starting, the Brownie begins to offload and starts transfer-
ring rules. The number of rules in the upstream NIDS
increases while that in the downstream NIDS decreases.
Figures 3 (c) and (d) show the CPU usages of the up-
stream and downstream NIDSs, respectively. Because the
CPU usages of the two downstream NIDSs do not show
any noticeable difference, we only show one of them.
With the initial setting, the CPU usages of the downstream
NIDSs are constantly at 100%, whereas that of the up-
stream NIDS is less than 80%. After about an hour, the
CPU usage of all the NIDSs become nearly the same and
thus Brownie stops rule transfer. After this, the CPU usage
of all the NIDSs reaches a little less than 100%, and thus
they are equally loaded.

Figure 3 (b) shows the benchmark throughput. After
the offloading finishes, the throughput increases from 154
Mbit/sec with the initial setting to 174 Mbit/sec, resulting
in a 13% increase. Since the NIDSs need to be restarted
for reconfiguration to take effect in the current implemen-
tation, the throughput drops temporarily during the trans-
ferring of rules. This can be mitigated if we use Elephant
[27], which modifies the reloading sequence of Snort to
reduce 20% of the time required for the rule reloading.

The numbers of rules after the rule transfer are 6600
at the upstream NIDS and 2076 at the downstream NIDS.
Because the downstream NIDSs have lower performance
than the upstream NIDS, the upstream NIDS enables
much more rules than the downstream NIDS.

5.1.3 Results of Eliminating Redundant Rules

To measure the effectiveness of eliminating redun-
dant rules by Brownie, we configured initial Snort rule
setting as BOTH; all (up- and down-stream) NIDSs with
the default rule set. Because all the NIDS have the same
rule set, traffic must always be checked against the same
rules twice. Figure 4 shows the experimental results.

Figure 4 (a) shows the number of rules. At 30 mi-
nutes after starting, the Brownie first eliminates all the
redundant rules. Because the default rules are enabled in
all the NIDSs, the rules in the downstream NIDSs are
totally disabled and all the rules are enabled in the up-
stream NIDS. After that, a certain number of rules are
transferred to the downstream NIDSs, and the offloading
finishes in about 5 minutes. As shown in Figure 4 (b), the
throughput increases from 155 Mbit/sec with the initial
setting to 173 Mbit/sec, resulting in a 12% increase. This

(a) # of rules

(b) Throughput

(c) CPU usage of
upstream NIDS

(d) CPU usage of down-
stream NIDS

Fig. 4 Results of Eliminating Redundant Rules
(Synthetic Workload: BOTH)

(a) # of rules

(b) Throughput

(c) CPU usage of
upstream NIDS

(d) CPU usage of down-
stream NIDS

Fig. 4 Results of Offloading Overloaded NIDS
(Synthetic Workload: DOWN)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

8

improvement is because multiple checks against the same
rules become unnecessary.

Figures 4 (c) and (d) show the CPU usages of the up-
stream and downstream NIDSs, respectively. Since all the
rules are enabled, the downstream NIDSs are overloaded
in the initial setting and its CPU usage is near 100% for
the first 30 minutes. After Brownie eliminates the redun-
dant rules, the CPU usage of the downstream NIDS reduc-
es and all the NIDSs show almost identical CPU usage.

5.2 Real Workload

5.2.1 Experimental Setup

To assess Brownie with real network traffic, we op-
erated Brownie on a captured packet trace. We captured a
4-day full-packet trace at the network entry point of Toyo-
hashi University of Technology with /16 network starting
from March 23rd, 2008, comprising 673GB, and
220,919,190 inbound and 168,454,019 outbound packets.

We used four machines: three NIDSs and a sink ma-
chine that replays and receives the captured packets. The
NIDSs were connected in the same way as shown in Fig-
ure 2, except that the sink machine was connected to all
the NIDSs. All the machines were connected via 1Gbps
Ethernet. The upstream NIDS was configured with an
Intel Quad-Core Xeon 2.33GHz CPU and 4GB memory,
the downstream NIDSs with an Intel Pentium Dual-Core

2GHz CPU and 1GB memory, and the sink machine with
an Intel Core2 Duo 2.4GHz CPU and 2GB memory. The
software configurations were the same as those described
in Section 5.1.1. To make the NIDSs well-loaded, we
replayed the captured packets at top speed.

We measured the number of rules and the CPU usage.
We could not measure throughput or latency because the
workload was a captured packet trace. For comparison, we
also ran the experiments and measured CPU usage without

Brownie. Without Brownie, the initial rule setting does not
change in all the NIDSs throughout the experiment.

5.2.2 Results of Offloading Overloaded NIDS

To show the effectiveness of offloading, we confi-
gure the initial Snort rule setting as UP; downstream
NIDSs with no rules (# of rules is 0) and upstream NIDS
with the default rule set (# of rules is 8676). Since the
machine configuration is different from the one with syn-
thetic workload, the initial Snort rule setting is different
from the one in Section 5.1.2 to get either of NIDSs over-
loaded with the initial setting.

Figure 5 shows the experimental results. Figure 5 (a)
shows the numbers of enabled rules in each NIDS with
Brownie. At 30 minutes after staring, the Brownie begins
to offload and starts transferring rules. The number of
rules in the downstream NIDSs increases, while that in the

(a) # of rule with Brownie (b) CPU usage of

upstream NIDS
(c) CPU usage of

downstream NIDS
Fig. 6 Results of Eliminating Redundant Rules (Real Workload: BOTH)

(a) # of rule with Brownie (b) CPU usage of

upstream NIDS
(c) CPU usage of

downstream NIDS
Fig. 6 Results of Offloading Overloaded NIDS (Real Workload: UP)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

9

upstream NIDS decreases. After about 1.9 hours, rule
transfer stops.

Figure 5 (b) shows the mean CPU usage of the up-
stream NIDS every 5 minutes. Figure 5 (c) shows that of
the downstream NIDS. Without Brownie (in this case all
the rules are in upstream NIDS), the CPU usage of the
upstream NIDS sometimes reaches near 100%. With
Brownie, the CPU usage of the upstream NIDS decreases
and that of the downstream increases soon after the Brow-
nie starts offloading. After finishing rule transfer, the CPU
usages of all the three NIDS are well-balanced.

5.2.3 Results of Eliminating Redundant Rules

To measure the effectiveness of eliminating redun-
dant rules, we configured initial Snort rule setting as
BOTH; all (up- and down-stream) NIDSs with the default
rule set. Because all the NIDS have the same rule set,
traffic must always be checked against the same rules
twice.

Figure 6 shows the experimental results. As shown in
Figure 6 (a), all the rules in the downstream NIDSs are
first disabled. After that, rules are transferred from the
upstream to downstream NIDSs, similar to the initial
setting UP, because the setting after eliminating the re-
dundant rules is as the same as the initial setting UP. Fig-
ures 6 (b) and (c) show the CPU usage of the CPU usage
of the upstream and downstream NIDS. Without the
Brownie, the CPU usage of the upstream NIDS sometimes
reaches near 100%. With the Brownie, the CPU usage of
the upstream NIDS decreases as the rules are transferred
while those of the downstream NIDSs do not increase
compared to those without Brownie.

6. Applying Brownies to Other Issues

We proposed Brownie, mainly targeting on perfor-
mance improvement, but we believe Brownie can provide
other functionalities.

Fault-Tolerant NIDS: A Brownie can detect and
cover failures of other NIDSs controlled by the collaborat-
ing Brownies. Since a Brownie periodically exchanges
messages with the up/down-stream Brownies, it can detect
the failure of the NIDSs. In addition, because it knows
what rules are enabled in the failed NIDS, it can cover that
failure; it enables the rules enabled by the failed NIDS.
Even if a NIDS fails, another NIDS takes it over and con-
tinues to check network traffic and detect attacks.

Signature Synchronization: When a NIDS updates
its signature database by downloading or automatically
generating signatures [28]-[31], Brownie can distribute the
update to other NIDSs. Then all the NIDSs in an organiza-
tion are updated if only one of the NIDSs is up-to-date; the

maintenance cost of signature database dramatically de-
creases.

7. Conclusion

Because of today's increased traffic volume and so-
phisticated attacks, it becomes difficult to implement a
high performance network intrusion detection/prevention
system (NIDS/NIPS). We proposed an approach for im-
proving network performance by coordinating NIDSs
independently-placed on the path of an organizational
network. Our approach is less expensive to introduce; it
does not need expensive hardware or many machines.
With our approach, a NIDS exchanges its load status and
configuration with other NIDSs to reconfigure the NIDSs
for better performance. By offloading a certain number of
rules from overloaded NIDS and eliminating redundant
rules, we can balance loads and obtain better performance.

For the future, we plan to develop more efficient
schemes for load-balancing. For example, by analyzing
characteristics of traffic, we can estimate which rules
produce heavier loads and transfer them before others. If
we generate a resource consumption model like described
by Dreger et al. [32], we can immediately estimate the best
rule distribution. In addition, we will seek other applica-
tions for collaborating NIDSs as described in Section 6.

References
[1] V. Paxson, K. Asanovic, S. Dharmapurikar, J. Lockwood, R.

Pang, R. Sommer, and N.Weaver, "Rethinking Hardware
Support for Network Analysis and Intrusion Prevention,"
Proc. of the 1st USENIXWorkshop on Hot Topics in Securi-
ty (HotSec ’06), pp.63--68, 2006.

[2] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and
B. Tierney, "The NIDS Cluster: Scalable, Stateful Network
Intrusion Detection on Commodity Hardware," Proc. of the
10th Int’l Symp. on Recent Advances in Intrusion Detection
(RAID ’07), pp.107--126, 2007.

[3] K. Xinidis, I. Charitakis, S. Antonatos, K.G. Anagnostakis,
and E.P. Markatos, "An Active Splitter Architecture for In-
trusion Detection and Prevention," IEEE Transactions on
Dependable and Secure Computing, vol.3, no.1, pp.31--44,
2006.

[4] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer, "State-
ful Intrusion Detection for High-Speed Networks," Proc. of
the 2002 Symp. on Security and Privacy (S&P ’02), pp.285-
-293, 2002.

[5] M. Salour and X. Su, "Dynamic Two-Layer Signature-
Based IDS with Unequal Databases," Proc. of the 4th Int’l
Conf. on Information Technology (ITNG ’07), pp.77--82,
2007.

[6] J.J. Roese and R.W. Graham, "System and Method for
Dynamic Distribution Of Intrusion Signatures." Patent:WO
2005/036339, 2005.

[7] A.V. Aho and M.J. Corasick, "Efficient String Matching:
An Aid to Bibliographic Search," Communications of the
ACM, vol.18, no.6, pp.333--340, 1975.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

10

[8] S. Wu and U. Manber, "A Fast Algorithm for Multi-pattern
Searching," tech. rep., TR-94-17, 1994.

[9] B. Commentz-Walter, "A String Matching Algorithm Fast
on the Average," Proc. of the 6th Colloquium on Automata,
Languages and Programming, pp.118--132, 1979.

[10] C.J. Coit, S. Staniford, and J. McAlerney, "Towards Faster
String Matching for Intrusion Detection or Exceeding the
Speed of Snort," Proc. of DARPA Information Survivability
Conf. &Exposition II (DISCEX ’01), pp.367--373, 2001.

[11] M. Fisk and G. Varghese, "Applying Fast String Matching
to Intrusion Detection." Technical Report In Preparation,
successor to UCSD TR CS2001-0670, 2002.

[12] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, "De-
terministic Memory-Efficient String Matching Algorithms
for Intrusion Detection," Proc. of the IEEE Infocom Conf.
2004, pp.2628--2639, 2004.

[13] C. Clark,W. Lee, D. Schimmel, D. Contis, M. Kon´e, and A.
Thomas, "A Hardware Platform for Network Intrusion De-
tection and Prevention," Proc. of the 3rd Workshop on Net-
work Processors & Applications (NP3), 2004.

[14] H. Bos and K. Huang, "Towards Software-Based Signature
Detection for Intrusion Prevention on the Network Card,"
Proc. of the 8th Int’l Symp. on Recent Advances in Intru-
sion Detection (RAID ’05), pp.102--123, 2005.

[15] W. de Bruijn, A. Slowinska, K. van Reeuwijk, T. Hruby, L.
Xu, and H. Bos, "SafeCard: A Gigabit IPS on the Network
Card," Proc. of the 9th Int’l Symp. on Recent Advances in
Intrusion Detection (RAID ’06), pp.311--330, 2006.

[16] R. Sidhu and V.K. Prasanna, "Fast Regular Expression
Matching using FPGAs," Proc. of the 9th Symp. on Field-
Programmable Custom Computing Machines (FCCM ’01),
pp.227--238, 2001.

[17] Z.K. Baker and V.K. Prasanna, "Time and Area Efficient
Pattern Matching on FPGAs," Proc. of the 12th Int’l Symp.
on Field Programmable Gate Arrays (FPGA ’04), pp.223--
232, 2004.

[18] H. Song, T. Sproull, M. Attig, and J. Lockwood, "Snort
Offloader: A Reconfigurable Hardware NIDS Filter," Proc.
of the 15th Int’l Conf. on Field Programmable Logic and
Applications (FPL ’05), pp.493--498, 2005.

[19] J.M. Gonzalez, V. Paxson, and N. Weaver, "Shunting: A
Hardware/Software Architecture for Flexible, High-
Performance Network Intrusion Prevention," Proc. of the
14th Conf. on Computer and Communications Security
(CCS ’07), pp.139--149, 2007.

[20] R. Sommer, V. Paxson, and N. Weaver, "An architecture for
exploiting multi-core processors to parallelize network in-
trusion prevention," Conurrency and Computation: Practice
and Experience, vol.21, no.10, pp.1255--1279, 2009.

[21] N. Jacob and C. Brodley, "Offloading IDS computation to
the GPU," Proc. of the 22nd Annual Computer Security Ap-
plications Conf. (ACSAC ’06), pp.371--380, 2006.

[22] G. Vasiliadis, S. Antonatos, M. Polychronakis, E.P. Marka-
tos, and S. Ioannidis, "Gnort: High Performance Network
Intrusion Detection Using Graphics Processors," Proc. of
the 11th Int’l Symp. on Recent Advances in Intrusion De-
tection (RAID ’08), pp.116--134, 2008.

[23] G. Vasiliadis, M. Polychronakis, S. Antonatos, E.P. Marka-
tos, and S. Ioannidis, "Regular Expression Matching on
Graphics Hardware for Intrusion Detection," Proc. of the

12th Int’l Symp. on Recent Advances in Intrusion Detection
(RAID ’09), 2009.

[24] V. Paxson, "Bro: A System for Detecting Network Intruders
in Real-Time," Computer Networks, vol.31, no.23.24,
pp.2435--2463, 1999.

[25] M. Roesch, "Snort - Lightweight Intrusion Detection for
Networks," Proc. of the 13th USENIX Systems Administra-
tion Conf. (LISA ’99), pp.229--238, 1999.

[26] Mindcraft, Inc., "WebStone."
http://www.mindcraft.com/webstone/.

[27] M.G. Merideth and P. Narasimhan, "Elephant: Network
Intrusion Detection Systems that Don’t Forget," Proc. of the
38th Annual Hawaii Int’l Conf. on System Science (HICSS
'05), pp.309c--309c, 2005.

[28] C. Kreibich and J. Crowcroft, "Honeycomb . Creating
Intrusion Detection Signatures Using Honeypots," Proc. of
the 2nd Workshop on Hot Topics in Networks (HotNets-II),
2003.

[29] H.A. Kim and B. Karp, "Autograph: Toward Automated,
Distributed Worm Signature Detection," Proc. of the 13th
USENIX Security Symp., pp.271.286, 2004.

[30] J. Newsome, B. Karp, and D. Song, "Polygraph: Automati-
cally Generating Signatures for Polymorphic Worms," Proc.
of the 2005 Symp. on Security and Privacy (S&P ’05),
pp.226--241, 2005.

[31] X. Wang, Z. Li, J. Xu, M.K. Reiter, C. Kil, and J.Y. Choi,
"Packet Vaccine: Black-box Exploit Detection and Signa-
ture Generation," Proc. of the 13th Conf. on Computer and
Communications Security (CCS ’06), pp.37--46, 2006.

[32] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, "Pre-
dicting the Resource Consumption of Network Intrusion
Detection Systems," Proc. of the 11th Int’l Symp. on Recent
Advances in Intrusion Detection (RAID ’08), pp.135--154,
2008.

Miyuki Hanaoka received her B.E.
degree from the University of Electro-
Communications in 2005, and M.E. from
Keio University in 2007. Her research
interests include network security and
system software. She is a member of IEEE,
ACM, and USENIX.

Kenji Kono received the B.Sc.
degree in 1993, M.Sc. degree in 1995, and
Ph.D. degree in 2000, all in computer
science from the University of Tokyo. He
is an associate professor of the Department
of Information and Computer Science at
Keio University. His research interests
include operating systems, system soft-
ware and Internet security. He is a member
of the IEEE/CS, ACM and USENIX

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

11

Toshio Hirotsu received Ph.D. degree
in computer science from Keio University
in 1995. From 1995 to 2004, he worked in
NTT Laboratories, Japan. He was in the
Department of Information and Computer
Science at Toyohashi University of Tech-
nology as an Associate Professor from 2004
to 2009. He is currenty a Professor of the
faculty of the Computer and Information

Science at Hosei University. His research interests include sys-
tem software for Internet and the ubiquitous environment.

Hirotake Abe received the B.Eng.
degree in 1999, the M.Eng. degree in
2001, and the Ph.D. degree in 2004, all
from University of Tsukuba, Japan. From
2004 to 2007, he was a research staff of
Japan Science and Technology Agency.
From 2007 to 2010, he was an Assistant
Professor in Toyohashi University of

Technology, Japan. He is currently an Assistant Professor in
Cybermedia Center, Osaka University, Japan. His research
interests include system software, distributed systems and com-
puter security. He received the distinguished paper award from
IPSJ (Information Processing Society of Japan) in 2005.

