
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

22

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Design of the Journaling File System for Performance

Enhancement

Seung-Ju, Jang

Dong-Eui University, Dept. of Computer Engineering

Summary
In this paper, I developed for the purpose of ensuring stability in
the data processing of the file to save space. If the file is write-
through compression techniques give the effect to reduce storage
space. In the result, we can save storage space on small
embedded systems to maximize the capacity is used. This paper
was implemented using the ext3 file system of the Linux
Operating System. The compression algorithm was implemented
in ext3 file system. EXT3 journaling file system through
selective compression algorithm prevents the performance
degradation and uses the available storage space efficiently. In
experiment, the time consuming for compression does not take
so long. It shows that the selective compression algorithm is
better on space-efficient vs. time-consuming.
Key words: Journaling File System, Selective
Compression Algorithm, Performance Enhancement,
Linux O.S.

1. Introduction

With the development of embedded systems the use of
the Linux operating system is rapidly increasing. Linux
operating system has been expanded to the use of smart
system. Especially to ensure data security technology has
become essential in portable devices.
The existing computer system uses fsck(1M) in order to
ensure the stability of the file system. When you apply
fsck(1M) for a large file system it makes problems. If the
file system to a larger capacity, it takes a lot of time to
perform fsck(1M) when the capacity of the file system is
large.

This paper uses the ext3 file system as Linux journaling
file system. The ext3 file system uses a module called jbd.
The jbd is a universal library provides the journaling. The
purpose of journaling is to keep the consistency of the
meta-data. Thus, writing of the block will be conducted in
the following order.

Fig. 1 Journaling File System Structure

(1) The block will be recorded in a journal area in the case

of writing at the same time. At this point leading block
is descriptor, commit block is placed at the end [4-7].

(2) After the end of treatment committed, write to the

actual block. This process is called "check point
processing". Write of every block to the ends is called
"complete check point".

This paper is developed for journaling capabilities to

ensure data reliability in embedded systems. In addition,
the proposed function saves file handling space. It has
been developed for this purpose. If the file is write-
through, It reduces the storage space through compression
techniques. This paper was implemented using the EXT3
file system of the Linux operating system. The
compression algorithm was implemented in the EXT3 file
system.

This paper is composed of followings. Section 2 is a
related studies of this paper. Section 3 designs the
selective compression algorithm and developing contents.
Section 4 is an experimental result. And finally, Section 5
concludes this paper.

2. The Related Research

The previous studies associated with journaling file
system are as follows. JFS2 is the first journaling file
system used for many years in the IBM AIX operating
system before being ported into Linux. Although based on
the original JFS, the JFS2 is a 64-bit file system. It has
improved to be more scalable and has been enhanced to
support multi-processor architecture [1-3].

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

23

JFS2 file system supports high-performance ordered
journaling techniques with additional system recovery.
JFS2 also provides extent-based file allocation to improve
performance. Extent-based allocation is allocating
consecutive block, rather than assigning a single block of
contiguous blocks [7-10].

EXT3fs is the most popular journaling file system, and
it is based on the EXT2 file system. EXT3fs is actually
compatible with EXT2fs. EXT3fs uses the same structure
of the EXT2fs and journaling was simply added.
Moreover, the partition of the EXT3fs is even mounted as
EXT2 file system and EXT2 file system can be converted
to EXT3 file system [11-13].

The EXT3fs allows three types of journaling(writeback,
ordered, data), but the ordered mode is the default mode.
Journal commit policy can be set, but basically commit is
executed when one of the commit timer is time-out or a
1/4 journal is full [14-17].

3. Design of the Selective Compression
Algorithm

This paper uses the Linux EXT3 file system. A journal
area of the EXT3 file system can be used inside area or
some other partitions. If you use inside area in the file
system, the 8 I-node number is used. I-node 8 is a file that
uses the journal to the area. Journals zone exists as one file
behind the scenes. It does not seem to have a directory
entry. The user cannot see this I-node. Because journal
area has the following structure in Fig. 2.

Fig. 2 Journal Area Structure

When the Journaling file systems write the files, they
first check for the sequence. The reason for checking the
sequence is that the large files with user's compression
techniques show the sequential approach characteristics
such as multimedia files. Sequential inspection technique
is performed in a similar manner with reading the pre-
existing Linux sequential test. When previous page of the
file ready unit is to read the current file offset and the
offset of the page adjacent to the unit is to determine the

ordered sequence. And subsequently it increases the size
of the window which refers to the set of contiguous pages.
When the window size reaches to the threshold set,
approach in future decides that the file has sequential
order.
Compression filter checks the file with a compression ratio
of sequential test. Compression test procedure compresses
each page and calculates cumulative compression rate.
When the window size approaches to the threshold and the
cumulative compression ratio is higher than the threshold,
the suggested algorithm decides that it is a user file. After
that, write operation does not make compression
procedure.

The selective compression algorithm of this paper
associated with the journaling function is as follows.

● In the basic operation, the first part of the file is

compressed and the compression ratio is checked.
● Compression rate of the compressed file decides

whether compression is handled or not.
● If you use a compression algorithm, compress the

journal information
● If you do not need to compress, the file should be saved

in the traditional way without compression.

I apply compressed techniques to the file for the
purpose of efficient space utilization and improvement of
writing speed in the EXT3 file system. During the process
of file compression, compression technique is applied to
the uncompressed files, after identifying the compressed
file and uncompressed files of the user level.

User level compression file types are such as mp3,
mpeg, jpeg, pdf. The Fig. 3. is a complete system
architecture for implementation system.

Fig.3 Proposed System Structure

This paper proposes a new compression techniques for
a EXT3 journaling file system to improve the writing
speed and to use storage space efficiently. Journaling file
system actually requires two write operations for a single
write operation, besides additional disk space is required.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

24

During the process of file compression, compression
technique is applied to the uncompressed files, after
identifying the compressed file and uncompressed files of
the user level. It can reduce the waste of processor cycles
which comes from unnecessary duplication of files
compression. When user-level re-compression of the
compressed file, original size and compressed files are
created in a similar size. There will be unnecessary waste
of resources and increase of disk recording time because
of the compressed files as large as original files in the
middle of user level re-compression. The decision of
whether or not the user file compression is performed in
such a process. EXT3 journaling file system through
selective compression algorithm prevents the performance
degradation and uses the available storage space
efficiently. The data files are compression selectively. The
selective compression algorithm is as follows. Users files
are separated compression or non-compression files. The
proposed algorithm of this paper just applied for the non-
compression files.

Fig. 4 shows the flow of the action of the selective
compression algorithm which is proposed in this paper.

Fig. 4. Selective Compression Algorithm

Fig. 4, READ system call makes files access. If it
doesn't access file normally, program exits and prints out
error messages. If it accesses file normally, compression
procedure including variable initialization for compression
filter is performed. For the destination file, it compresses
the front portion of file and measures the size of
compressed files. Compression ratio for a predetermined
threshold can be compared with the size. If the
compression ratio of the files is higher than a
predetermined compression threshold, it proceeds to
compress files and save them. If the compression ratio of
the files is lower than a predetermined compression
threshold, the original file will be saved.

In this paper, Zlib compression algorithm is used. Zlib
is a kind of data compression library written in C. Zlib is

general purpose lossless compression
algorithm(DEFLATE), so it has been widely used because
it was not affected by patent. DEFLATE algorithm has
been published as RFC 1951. Internally, DEFLATE
algorithm is applied by the LZ77 compression algorithm,
and Huffman coding. Zlib is proved to be reliable.
Therefore, it guarantees decompression for compression
files. When trying compressing them in the same way
again, this algorithm is not be compressed any more. Zlib
provides several functions in C, we can simply compress
the files using those functions.

4. Experiments and Evaluation

This study carried out the experiments in the physical
system. Table 1 is the experimental environment.

Table 1. Experimental Environment
HW Environment SW Environment

CPU : Intel(R)

Core(TM)2 Duo

CPU 6400

@2.13GHz

RAM : 2GB

Fedora Release 9/kernel

Linux 2.6.33.6

file system : EXT3FS

ordered mode(EXT3FS

default-mode,

zlib ver1.2.5

Table 1. shows the implementation system

environments to test. The implementation O.S used in the
physical system is Fedora Linux O.S. The experimental
results are like followings. Therefore, I use the Linux
EXT3 file system for the purpose of experimental
environments. The proposed idea gives high compression
rate for frequent using character strings.

For a high compression ratio file, the time to spent in
data compression and time to record the compressed data
to disk will be shorter than the time to record the original
files on disk. On the other hand, user-level files and low
compression files which create the original size
compression files waste resources and increase disk
recording time because of unnecessary file compression.
Therefore, the technique of the selective compression
algorithm is required for a low compression ratio files and
high compression files.

Fig. 5 Write Execution Time Comparison for High Compression Ratio
File and Low Compression Files

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

25

Fig. 5. shows comparison of execution time for writing
file according to compression ratio. If you save a user-
level compression file without the selective compression
algorithm, you may waste unnecessary resources and
decrease writing speed due to redundant compression
process.

During file compression, compression program is to
determine compression or not by checking compression
ratio of a certain portion of the file. By setting the
threshold of compression ratio, if the file compression is
lower than the threshold, the proposed algorithm
determine it as a user-level file and does not compress the
rest of file. If the compression ratio is higher than the
threshold, the rest of file is compressed and written on the
hard disk.

File compression is performed using the Zlib library
gzib format. Zlib compression library is a freely available
license unlimited. This library provides integrity checking
function of compression and decompression functions in
memory. Zlib is a proven and reliable. It ensures
extracting compressed files normally. In the same way re-
compressing does not work anymore.

In this paper, I used kernel version 2.6.33 based on
Linux. Kernel 2.6.33 version is supplied by Fedora core 9,
and supports EXT3 file system. When you check var/log
message file after rebuilding the kernel which applies
printk() function to ext3_journal_start() of /fs/ext3/inode.c,
you can see that the journal function starts at
ext3_write_begin() function. As a user program calls
write() system call, write operation starts
generic_file_buffered_write() function of /mm/filemap.c.
Using Zlib library, generic_file_buffered_write() function
is applied to the compression scheme.

If you encounter file system stability problems, the
work of the file system is down, modified data can be
corrupted or recovery may be impossible. The proposed
enhancement of the EXT3 file system is maintained
stability, because it performs journaling ordered mode of
existing EXT3 file system.

Table 2. File Types used in the Experiment

Fig. 6 Comparison of Overall Performance

Fig. 7 Comparison of Individual File Performance for a Particular File

I experimented the proposed idea's implementation.
Each of 20 randomly selected Hangul, Excel, and Power
Point files, was tested. Temporary compressed files are the
beginning 10240 bytes of each file and specifying a
threshold of compression. The selective compression
algorithm determines to store compression file or un-
compression file by comparing between compression
rate(threshold) and compression rate of temporary
compression file's compression rate.

Compared to the original source file size is 100, the size
of the compressed file was expressed as percentage. A
lower percentage number will be compressed as much.
The final compression efficiency ratio significantly
dropped in the case of Hangul file. Meanwhile, the
compression efficiency ratio in Excel file was much higher.

The efficiency ratio for the temporary compressed files
of Hangul was good. However, the final compression
ratio of Hangul was revealed bad. Therefore it seems to be
better idea to specify the availability of this algorithm after
compressing a little more by increasing the threshold.

In Word files and Power Point files, the compression
efficiency is different according to each file. To determine
compression, it was found out that the proposed algorithm
is good by filtering. Overall, the time consuming for
compression does not take so long. It shows that the
selective compression algorithm is better on space-
efficient vs. time-consuming.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

26

5. Conclusions

This paper proposed to adapt the selective compression
algorithm in Linux EXT3 journaling file system. This
feature was developed to save file processing space as
well as ensure data reliability in embedded systems. It
gives the effect to reduce the storage space through the
selective compression technique when you have a writings
file.

By doing so, this algorithm saves storage space on small
embedded systems and maximizes the storage capacity.
This paper was implemented in the Linux Operating
System using the EXT3 file system. We implemented the
selective compression algorithm in the EXT3 file system.
The proposed algorithm was implemented and tested. The
files used on the test are ordinary files such as Power Point,
Excel and MS-Word files. The result of the experiment
shows that the highly compressed file in the enhancement
EXT3 file system can save the storage space

Whether to compress or not should be previously
determined for all the files. The performance of the file
system may be degraded because compression is
performed ever in a portion of the low compression file.
However, the burden is negligible compared to the
benefits of saving the storage space. The proposed
selective compression algorithm could be confirmed to be
superior to the general compression algorithm.

Acknowledgments

This work was supported by Dong-eui University
Grant.(2010AA177)

References
[1] RedHat, “Red Hat’s New Journaling File System ext3”,

2001
[2] http://www.zlib.net/manual.html
[3] TAKAHASI HIROKAZU, “Linux Kernel 2.6 Structure and

Principles”, Hanbitmedia, 2007
[4] Daniel P.Bovet, Marco Cesati, “Understanding the LINUX

KERNEL”, O’Relly, January 2001.
[5] C.S. Han,, “Design of the Meta-data Journaling Mechanism

to Enhancement and Stabability in FAT File System", The
KIISS Journal, Vol.36, No. 3, 2009.

[6] RedHat, “Red Hat’s New Journaling File System : ext3”,
2001

[7] J.S.Suk, Log-ordered Mode Journaling for the EXT3 File
System", KIISE 06 Conference A, 2006.

[8] S.W.Kim, "Design of the Meta-data Journaling Structure for
Shared Disk File System", Korea Multimedia Conference,
2000.

[9] T.H.Kim, "Journaling File System for Enhancement
Reliability in the NAND Flash Memory", KIISE 2006
Conference A, 2006.

[10] D.H.Yok, "The Journaling File System for NAND Flash
Memory", Korea Foreign Language Univ. M.S thesis, 2009.

[11] Prabhakaran, V. Arpaci-Dusseau, A. C. Arpaci-Dusseau, R.
H. “Analysis and Evolution of Journaling File Systems”,
PROCEEDINGS OF THE GENERAL TRACK, 2005.

[12] Preslan, K. W. Barry, A. Brassow, J. Cattelan, R. Manthei,
A. Nygaard, E. Van Oort, S. Teigland, D. Tilstra, M.
O'Keefe, M. “Implementing Journaling in a Linux Shared
Disk File System”, NASA CONFERENCE PUBLICATION,
2000.

[13] Daniel P.Bovet, Marco Cesati, “Understanding the LINUX
KERNEL”, O’Relly, January 2001.

[14] H.J.Choi, "The Efficiency Log Control Mechanism for Log
Reduction, Fragement Data Management of Journaling File
System", KAIST PH.D thesis, 2008.

[15] E.Y.Jung, "Design and Implementation of Journaling File
System for Mobile Computing Environment", Vol.8.No.1,
2001.

[16] H.C.Lee, "Journaling Mechanism and Indexing Structure of
Nand Flash Memory File System for Mobile Multimedia
Device", Technology Science Journal Vol.37-1, pp.41-49,
2007.

[17] T.H. Kim, "Journaling Recovery Mechanism for the RFFS",
Busan Nat'l Univ. M.S thesis, 2007.

Seung-Ju, Jang received a B.Sc. degree
in Computer Science and Statistics, and
M.Sc. degree, and his Ph.D. in Computer
Engineering, all from Busan National
University, in 1985, 1991, and 1996,
respectively. He is a member of IEEE and
ACM. He has been an associate Professor
in the Department of Computer
Engineering at Dongeui University since
1996. He was a member of

ETRI(Electronic and Telecommunication Research Institute) in
Daejon, Korea, from 1987 to 1996, and developed the National
Administration Multiprocessor Minicomputer during those years.
His current research interests include fault-tolerant computing
systems, distributed systems in the UNIX Operating Systems,
multimedia operating systems, security system, and parallel
algorithms.

