
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

145

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Automatic Functional Verification of OPNET Models with
SDL-OPNET Co-Simulation

Tae-Hyong Kim, Qi-Ping Yang, Jae-Woo Kim

Kumoh National Institute of Technology, Gumi, Korea

Summary
Owing to the model-driven development (MDD) technology,
reliable network protocols could be developed with an integrated
and systematic way. As performance, another core metric for
evaluation of network protocols, is usually not the target of MDD
process, how to connect performance evaluation to the MDD
process is an important issue. This paper presents a method to
enhance the reliability of performance evaluation when a
performance model of a network protocol should be designed
separately in a different performance simulation tool. The
proposed method verifies the functional correctness of the
OPNET model of a network protocol generated from its original
SDL model designed with an SDL-based MDD process by
SDL-OPNET co-simulation. A test system designed in SDL is
used to automate the verification process and all the components
of the verification system could be obtained systematically in the
proposed method. Experimental results with the logical link
control (LLC) protocol show the applicability of the proposed
method. The proposed method could be also applied to other
MDD and performance simulation tools only if they provide
external interfaces for co-simulation.
Key words:
Model-driven development, model verification, Performance
evaluation, Co-simulation

1. Introduction

As the requirements of network protocols are getting more
various and complicated, development of correct and
reliable protocol implementations has been a major issue
in protocol engineering. Conformance testing is a standard
method to obtain that goal by checking if a protocol
implementation conforms to the standard or the
specification of that protocol [1]. The formal description
techniques such as the specification and description
language (SDL) [2] enabled formal methods in
conformance testing and automatic protocol development
with model-driven approaches [3-5]. Several powerful
model-driven development (MDD) tools such as IBM’s
Rational Tau [6] are currently in use to design, verify, and
implement network protocols.
Performance evaluation is also necessary in designing a
network protocol since performance is another core
requirement of a network protocol. Among various

performance evaluation techniques, simulation techniques
with powerful performance simulation tools have been
widely accepted as a practical and reliable method as
network environments and protocol behaviors are getting
more complicated. OPNET Modeler is a leading network
performance simulation tool; it provides a lot of network
models including latest wireless protocols and is used by
numerous world-wide users in research and development
areas [7]. Note that performance simulation tools use their
own techniques in designing network models which are
not compatible each other. Nor do they allow importing
models designed by MDD technologies. In this situation, a
protocol must be modeled repeatedly and separately for
functional verification and for performance evaluation,
which may result in inconsistency between the two models
of a protocol. There have been several approaches to
overcome this problem that try to integrate both functional
verification and performance evaluation. Some studies
developed new tools that support MDD with standard
modeling languages and performance evaluation with
some extensions on those languages [8-10], of which the
universality would be restricted due to the specific tools
and extensions on the standard. Others tried to use
well-known MDD tools and performance simulation tools
both by tool coupling or model mapping [11-13]. While
modeling mapping, trying to automate performance model
generation, has an advantage of individual use of tools,
mapping process cannot be completely automated and the
functional equivalence between two models cannot be
guaranteed.
Recently we presented mapping rules from an SDL model
of a network protocol to its corresponding OPNET model
because two models have similar extended finite state
machine (EFSM) structure and Tau generates executable C
code from SDL models [13]. Our tool supports
semi-automatic model conversion only and there is still a
possibility of functional inconsistency between the models
due to some manual conversion. The motivation of this
work is to verify the functional conformance of a
generated OPNET models to its original SDL model.
There are several different approaches of simulation model
verification as verification of simulation models is an
important issue in modeling and simulation (M&S)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

146

systems. Most verification work of a performance
simulation model, however, focuses on the performance of
the model and usually uses manual process. This paper
presents a method to verify the functionality of an OPNET
model automatically when an OPNET model was
generated from an SDL model designed by an MDD
approach.
This paper is organized as follows. Section 2 introduces
some related work on model verification of M&S systems
and the proposed verification technique is explained in
section 3. Section 4 shows an experimental result with a
simple logical link control (LLC) protocol [14]. Finally
conclusions are drawn in section 5.

2. Related Work

This section introduces two different verification
approaches of performance simulation models and related
case studies of verification of OPNET models as related
work.
The first verification approach of performance simulation
model majorly focuses on the performance correctness of
the models. It usually compares simulation results with the
reference data or experimental results with real network
products. When the National Institute of Standards and
Technology (NIST) developed an OPNET model for the
dynamic source routing (DSR) protocol for mobile and
ad-hoc networks (MANETs), they compared the
simulation results with other published data [15]. B. Van
den Broeck et al. tried to verify router models in OPNET
by comparing with actual behaviors of real routers [16].
Nicola Baldo et al. validated the IEEE 802.11 medium
access (MAC) layer model in ns-3 [17] using their
EXTREME tested [18]. By this approach, performance
models could be freed of some bugs and improved through
calibration processes.
 Functional correctness is the target of the other
verification approach. A simple way to functional
verification is to test the required functionalities of the
model one by one manually. Developers of performance
simulators normally issue verification reports of their
models regularly which have verdict tables of each
functional requirement. For complete verification of the
model, formal methods could be used such as model
checking. With the tools supporting those formal methods,
this verification approach might be also automated.
Karthikeyan Bhargavan et al. developed Verisim by
connecting two existing tools, ns-2 [19] and the MaC
monitoring and checking framework [20], which verifies
some properties on traces produced by ns-2 with MaC’s
model checking feature [21]. Mamadou K. Traoré tried to
perform theorem proving-based verification of the discrete
event system specification (DEVS) models by specifying
formal semantics on those models [22]. Ahmed Sobeih et

al. proposed modified J-SIM, a Java-based simulator, to
support state space exploration and verified the ad-hoc
on-demand distance vector (AODV) routing protocol by
model checking [23]. There has been no functional
verification work of performance simulation models with
MDD-based approach yet, where the verification process
can be supported by MDD tools.

3. The Proposed Verification Technique

The goal of this paper is to automate the checking if the
OPNET model of a network protocol generated from
SDL-OPNET model mapping conforms to that original
SDL model within the same MDD process. To obtain that
goal we propose test architecture of an OPNET model with
SDL-OPNET co-simulation techniques.

3.1 MDD-based Verification Approach

The proposed approach considers an efficient performance
evaluation method of MDD models and tries to use a
well-known powerful performance simulation tool. Fig. 1
shows how model mapping between formal models and
performance simulation models is used in the general
MDD process. While the formal model and the
implementation are verified according to the specification
or the standard for developing a reliable implementation,
the performance simulation model converted form the
formal model should be verified with respect to that formal
model or the implementation for developing a
performance-guaranteed implementation.

Specification
(Standard)

Formal Model

Implementation

Performance
Simulation

Models

Verification by
Co-simulation

Verification

Fig. 1 The proposed MDD-based verification of performance simulation

model

As the reference of performance simulation model
verification is the original formal model, we use the
co-simulation technique between the MDD tool and the
performance simulation tool. With test harness for
co-simulation designed in the MDD technique, verification
process could be managed by the MDD tool in an
integrated and automated method. IBM Rational Tau and
OPNET Modeler are used in our verification method but
any MDD tools and performance simulation tools could be

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

147

used also in this approach if both tools provide some
external interfaces for co-simulation. Details of the
proposed verification technique with co-simulation are
shown in subsection 3.3.

3.2 SDL-OPNET Co-simulation

Co-simulation between IBM Rational Tau and OPNET
Modeler can be realized with Tau’s environment interface
and Modeler’s external system interface (ESI). Tau
provides some input and output (I/O) functions for the
environment, e.g., xInEnv() and xOutEnv(), in target code
generation, which can be used for message exchanges with
external code. Modeler supports co-simulation with other
simulator by providing a special co-simulation package
which includes external system definition (ESD), Esys
kernel procedure, and external system access (ESA)
application program interfaces (API). Fig. 2 shows the
SDL-OPNET co-simulation structure of the proposed
technique.

OPNET Modeler ESI

ESA
Callback

other
models

Node A

SDL Tester System

Original
Model

Esys
Kernel

Procedure

xInEnv()

Test channel

Co-Simulation
Controller

ESA APIESI
Interrupt

xOutEnv()

- SDL System
Initialization

- OPNET System
Initialization

- Event
Scheduling

- Packet
Transfer

- Packet Format
Conversion

Mapped
Model

Tester Model

Reference
channel

Node B

Esys
(ESD)

Fig. 2 Our SDL-OPNET co-simulation structure

 The target model in Modeler exchanges messages
with the test model designed in Tau through Modeler’s ESI
and Tau’s environment functions. An external
co-simulation controller was developed for realization of
co-simulation; it initializes SDL and OPNET systems,
handles event scheduling, and transfers packets by
converting the packet format between SDL and OPNET
models. Messages from the target model in OPNET to the
tester model are sent by the matched Esys module which
defines ESI special gateway. When the Esys module calls
an Esys kernel procedure, the corresponding ESA callback
function is called which was configured in ESI. Then, the
callback function designed in the co-simulation controller
sends the message to the tester model in Tau through
xOutEnv() function after message format conversion.
When the co-simulation controller receives a message
from the tester model in Tau through xInEnv() function, it

sends the message to ESI with ESA API after message
format conversion. Then an ESI interrupt occurs and the
Esys module can fetch the message with the Esys kernel
procedure.

3.3 SDL Tester System

Verification of the target OPNET model is controlled and
managed by an SDL tester system designed with Tau. The
SDL tester system is composed of test I/O blocks, a test
control block, and an optional reference block logically.
For automatic and systematic verification, test cases can be
generated by analyzing the original SDL model with
structural model-based test generation methods such as the
transition tour or the unique input output (UIO) method. In
this approach, generated test cases are stored in the test
control block with the test verdict process that sends a test
message to OPNET Modeler through SDL-OPNET
co-simulation and verifies the functional correctness of the
target OPNET model by observing and analyzing
incoming messages from OPNET Modeler. Instead of an
individual design of test control block of each target
protocol, general test control block could be used with a
test reference block which contains the original SDL
model. In this approach, the test control block sends
messages to OPNET modeler and test reference block and
performs on-the-fly analysis by comparing incoming
messages from those two interfaces. This approach can be
applicable to complete verification of the target model and
would increase the portability of the test harness and the
level of test automation.
 Fig. 3 shows two node-based test architecture which
can be used for simple verification with the
inter-operability testing concept. The test I/O blocks are
logically located on top of the target OPNET model and its
peer and messages between the target model and the upper
layer protocol are observed and controlled by the test
control block.

M
essage M

apping

Fig. 3 Two node-based simple test architecture

 More sophisticated test architecture is shown in Fig. 4
for complete verification of the target OPNET model. In
addition to upper co-simulation interfaces of the target
model, a lower interface is added for observing messages
from the target model to the lower layer protocol. This

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

148

architecture is good for the general test control block with
a reference block.

OPNET Modeler

Target
Protocol

Peer
Protocol

Lower
Protocols

Lower
Protocol

Network Model

ESI/EnvF

Upper I/O
Block

Lower I/O
Block

ESI/EnvF

Test
Control
Block

Reference
Block

Node A Node B

SDL Tester System
Fig. 4 Test architecture for complete functional verification

4. Experimental Results

For checking the efficacy of the proposed performance
model verification technique, we designed a simple LLC
protocol in SDL that supports go-back-N automatic repeat
request (ARQ) [14]. With our model conversion tool that
generates, from Tau generated C code of a SDL model, a
corresponding OPNET model in a semi-automatic way, the
target performance OPNET model was produced [13].
Then the functional verification system of the target model
was constructed by designing an SDL-OPNET
co-simulation controller and an SDL test system as shown
in the previous section.

4.1 LLC model in SDL and OPNET

The top-level diagram of our simplified LLC system in
SDL is shown in Fig.5. Two blocks, ‘LLC_Sender’ and
‘LLC_Responder’ for the required LLC functionalities use
several primitive messages and protocol data units (PDU)
for upper and lower layer interactions respectively which
were defined according to the IEEE 802.2 standard.
Blocks ‘LLC_Tester’ and “MAC’ are added in the system
for verification of ‘LLC_Sender’ and ‘LLC_Responder’ in
by Tau’s Simulator. Both the SDL processes in
‘LLC_Sender’ and ‘LLC_Responder’ have four states,
‘Connected’, ‘Wait_Connected’, ‘Disconnected’, and
‘Wait_Disconnected’. Fig. 6 shows the extended finite
state machine (EFSM) diagram of the converted LLC
sender process model in OPNET modeler. Note that four
SDL states have been mapped to the corresponding
unforced states in red and two new states were added for
handling SDL conditional transitions in the OPNET
model.

Fig. 5 SDL diagram of the simplified LLC system

Fig. 6 EFSM diagram of the converted LLC sender process model

4.2 Co-simulation Controller and SDL Test System
Design

For co-simulation between the target OPNET model and
the SDL test system, co-simulation controller was
developed in external C code which contains packet
conversion between OPNET and SDL message formats.
Fig.7 shows the node model diagram of OPNET’s LLC
sender where queue module ‘llc_sender’ is the target
conversion model for verification and Esys module
‘llc_socosim_test’ was added for using the ESI defined in
the ESD.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

149

Fig. 7 EFSM diagram of the converted LLC sender process model

In this experiment, we used the two node-based test
architecture shown in Fig.3 for its simplicity. The tester
process of the test control block in the SDL test system is
shown in Fig.8. This process sends test messages to the
OPNET models and compares incoming messages through
the co-simulation interface with the expected messages
represented in the test cases generated separately.

Fig. 8 EFSM diagram of the converted LLC sender process model

4.3 Verification Results

For functional verification of the LLC sender and receiver
models in OPNET converted from the SDL models, we
used an interoperability testing-level of test coverage

because it can test the sender and receiver models at the
same time. We generated 8 test cases the by transition tour
method and implemented test verdict logic with those test
cases in the test process of the SDL test system. All the
system including the SDL test system, OPNET simulation
models, and the external co-simulation controller system
were compiled and linked to produce the executable code
using the OPNET console, which is necessary if we use
the co-simulation package provided by OPNET.
 Fig.9 shows the verification process of the target
OPNET model with the generated code. All textual
messages except the boxed messages were produced by
the SDL test system. Seven tests were passed among total
eight tests. One test which sends the disconnecting request
messages has not been passed because there was some
incomplete part in the disconnection phase of the
OPNET’s LLC responder model. The SDL test system
found that incompleteness of the converted target OPNET
model, which was also reported by OPNET console
debugger in boxed messages.

Fig. 9 Screenshot of the verification process with co-simulation

5. Conclusions

The MDD technology is an integrated and systematical
method to obtain reliable products and MDD processes
can be also easily automated. Performance requirements
are also necessary points to be satisfied in developing
network products. How to connect performance evaluation
to the MDD process is therefore an important issue in the
development of network protocols.
For the purpose of that goal, we tried to use existing
well-known tools the reliability and competency of which
have been proved in the market over time. Systematic
coupling or linking different tools having peculiar design
approaches is, however, very hard work. The problem that
this paper attacked is how to guarantee the functional
correctness of the OPNET models that were generated
from the SDL model designed with Tau for reliable
performance evaluation of that model. This paper
presented an automatic functional verification method of
such OPNET models with SDL-OPNET co-simulation.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

150

The proposed performance model verification technique
requires developing a co-simulation controller with
appropriate message exchange and packet conversion
between two models in SDL and OPNET and modifying
the OPNET simulation model slightly with Esys module
and ESD definition for co-simulation between Tau and
Modeler. This work could be done straightly according to
the design rule provided by the OPNET’s co-simulation
package with little possibility of critical faults affecting the
verification results. The SDL tester system is the test
harness which is necessary for the verification. Designing
that system could be also systemized and even automated
with analysis of the original SDL models. The proposed
technique could be also applied to other MDD and
performance simulation tools if they provide external
interfaces for co-simulation.
We are planning to apply the proposed technique to more
complicated network protocol such as resource
management protocols of the long term evolution (LTE)
system [24] to check its applicability. We are also
interested in automatic generation of the test system that
uses the testing and test control notation (TTCN) as well
as SDL for better manageability of the verification
process.

Acknowledgment

This paper was supported by Sabbatical Research Fund,
Kumoh National Institute of Technology.

References
[1] ISO, "OSI Conformance Testing Methodology and

Framework", IS-9646, 1991
[2] ITU, "Specification and Description Language", ITU-T

Recommendation Z.100, 2000
[3] ITU-T, “Framework on formal methods in conformance

testing”, Recommendation Z.500, May 1997.
[4] Philipp Becker, Dennis Christmann, and Reinhard Gotzhein,

“Model-driven development of time-critical protocols with
SDL-MDD”, In Proceedings of the 14th international SDL
conference on Design for motes and mobiles (SDL'09),
pp.34-52. 2009.

[5] Anas Showk, David Szczesny, Shadi Traboulsi, Irv Badr,
Elizabeth Gonzalez, and Attila Bilgic. “Modeling LTE
protocol for mobile terminals using a formal description
technique”, In Proceedings of the 14th international SDL
conference on Design for motes and mobiles (SDL'09),
pp.222-238, 2009.

[6] IBM Co. Ltd., Rational TAU SDL Suite, Ver. 6.3, 2009. See
http://www-01.ibm.com/software/awdtools/tau/.

[7] OPNET Technology Inc., OPNET Modeler. See
http://www.opnet.com.

[8] J. Hintelmann M. Diefenbruch and B. Muller-Clostermann,
“Quest: Performance evaluation of sdl systems”, In IFIP
TC6/6.1, International Conference on Formal Description
Techniques IX / Protocol Specification, Testing and
Verification XVI, volume 69, pages 229–-244. Kluwer,
1996.

[9] C. U. Smith and L. G. Williams, “Performance Engineering
Evaluation of Object Oriented Systems with SPE.ED”, Int'l
Conf. on Computer Performance Evaluation: Modeling
Techniques and Tools, LNCS 1245, Springer, 1997.

[10] C. Schaffer, R. Raschholfer, and A. Simma, “EaSy-Sim: A
Tool Environment for the Design of Complex, Real-Time
Systems”, Proc. Int'l Conf. on Computer Aided System
Technologies, Springer, 1995.

[11] T. Kuhn, A. Geraldy, R. Gotzhein, and F. Rothländer,
“ns+SDL - The Network Simulator for SDL Systems”, SDL
2005 - Model Driven, Lecture Notes in Computer Science
3530, pp. 103-116, Springer, 2005.

[12] Qi-Ping Yang and Tae-Hyong Kim, “SDL-OPNET
Co-Simulation Technique for the Development of
Communication Protocols with an Integrated Approach to
Functional Verification and Performance Evaluation”,
Journal of the Korea Society for Simulation, Vol.19, No.2,
2010.

[13] Jae-Woo Kim and Tae-Hyong Kim, “SDL-OPNET Model
Conversion Technique for the Development of
Communication Protocols with an Integrated Model Design
Approach”, Journal of the Institute of Embedded
Engineering of Korea, Vol.5, No.2, 2010.

[14] IEEE, “Logical Link Control”, IEEE Standard 802.2.
[15] J. Ballah. “OPNET DSR Verification and Validation”.

Thesis, Air Force Institute of Technology, Air University,
March 2002.

[16] B. Van den Broeck, P. Leys, J. Potemans, J. Theunis, E. Van
Lil, A. Van de Capelle, “Validation of Router Models in
OPNET”, OPNETWORK 2002.

[17] The ns-3 Network Simulator, See http://www.nsnam.org//.
[18] Nicola Baldo, Manuel Requena-Esteso, Jose Nunez-

Martinez, Marc Portoles-Comeras, Jaume Nin-Guerrero,
Paolo Dini, and Josep Mangues-Bafalluy. “Validation of the
IEEE 802.11 MAC model in the ns3 simulator using the
EXTREME testbed”. The 3rd International ICST
Conference on Simulation Tools and Techniques
(SIMUTools '10). 2010.

[19] The Network Simulator ns 2, http://www.isi.edu/nsnam/ns/.
[20] M. Kim, M. Viswanathan, H. Ben-Abdallah, S. Kannan, I.

Lee, and O. Sokolsky. “Formally specified monitoring of
temporal properties”, In Proc. of ECRTS, 1999.

[21] K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. Obradovic,
O. Sokolsky, and M. Viswanathan, “Verisim: Formal
analysis of network simulations”, IEEE Transactions on
Software Engineering, 28(2):129-145, February 2002.

[22] M. K. Traore, “Analyzing static and temporal properties of
simulation models”, In Proc. of the 2006 Winter Simulation
Conference, 2006.

[23] Ahmed Sobeih, Mahesh Viswanathan, Darko Marinov and
Jennifer C. Hou, "J-Sim: An Integrated Environment for
Simulation and Model Checking of Network Protocols,"
Proceedings of the IEEE International Symposium on
Parallel and Distributed Processing (IEEE IPDPS 2007),
NSF Next Generation Software Program Workshop, Long
Beach, CA, March 2007.

[24] 3GPP, “UTRA-UTRAN Long Term Evolution (LTE) and
3GPP System Architecture Evolution (SAE)”, See
http://www.3gpp.org/Highlights/LTE/LTE.htm.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

151

Tae-Hyong Kim received the B.S. and
M.S. degrees, from Yonsei University in
1992 and 1995, respectively, and a Ph.D.
degree in electrical and electronic
engineering from the same university in
2001. He was a postdoctoral fellow at the
School of Information Technology and
Engineering (SITE) at the University of
Ottawa from 2001 to 2002. He is
currently an assistant professor in the

School of Computer and Software Engineering (SCSE) at the
Kumoh National Institute of Technology (KIT) in Korea. His
current research interests include software and protocol
specification, verification and testing techniques, communication
protocols, and next generation mobile networks. He is a member
of the SDL Forum Society.

Qi-Ping Yang received the B.S. degree
in communication engineering from Jilin
University, Changchun, China, in 2001,
and the M.S. degree in computer
engineering from Kumoh National
Institute of Technology (KIT), Gumi,
Korea, in 2006. He is currently a Ph.D.
candidate in the School of Computer and
Software Engineering at KIT. His current
research interest is software testing
techniques and next generation mobile

networks.

Jae-Woo Kim received the B.S. degree
in computer and software engineering
from Kumoh National Institute of
Technology (KIT), Gumi, Korea, in 2004,
and the M.S. degree in computer
engineering from the same university in
2006. He is currently a Ph.D. candidate
in the School of Computer and Software
Engineering at KIT. His current research
interest is protocol engineering and next
generation mobile networks.

