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Summary 
Frequent itemset finding is the most costly processing step in 
analyzing large transactional databases. At each stage in 
discovering frequent itemset a huge number of candidate 
itemsets are produced. Then, if we predict which candidate 
itemset will be frequent and which will not, we can reduce 
wastage of time in the processing unfrequent itemsets. In this 
paper we propose a new parallel algorithm for frequent itemset 
mining, called probability of frequent itemset (PFI) mining 
algorithm. The PFI algorithm can predict frequency of the 
candidate based on the probability of its subset and makes 
priority between candidate itemsets base on it's probability. 
Moreover, the PFI algorithm passes the database only one time 
by dividing the database horizontally and distributes it over the 
system nodes. Also, while finding the k-itemsets, the algorithm 
can start a new stage (finding k+1 itemsets) with the discovered 
frequent k-itemsets while some other itemsets in the same stage 
have not been finished yet. Moreover, we introduce a method for 
reducing the number of transactions. We present the result on the 
performance of our algorithm on various datasets, and compare it 
against well known algorithms. 
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1. Introduction 

Association rule mining(ARM), one of the most 
important techniques of data mining, finds interesting 
associations and/or correlation relationships among large 
set of data items. Discovering this association rules in data 
can guide the decision making. A typical and widely-used 
example of association rule mining is Market Basket 
Analysis. An interesting algorithm, Apriori [3], has been 
proposed for computing large itemsets. Because databases 
are increasing in terms of both dimensions (number of 
attributes) and size (number of records), parallel 
computation is a crucial component for successful large-
scale data mining applications. To construct a parallel 
system, there are three models, namely; distributed 
memory systems(DMS), shared memory systems (SMS), 
and distributed shared memory systems (DSMS). The 
DSMS is the newest parallel technique [20]. In DMS each 
node has its private memory. If any node needs data from 
another node, it will send a request message to it. Hence, 

this system is also called ”message passing”. In this 
system the direct connection between nodes reduces 
system portability [12]. The SMS is based on the existence 
of a global memory shared among all nodes in the system. 
The SMS has various advantages, such as; it eases the data 
sharing and it eases the implementation of the parallel 
application [5]. The DSMS takes the advantages of the 
previous models. The DSMS systems have some 
countable advantages over the DMS based ones, e.g.; the 
application level ease of use, the DSMS is portable, and it 
is easy to share data and processes [5]. This is done by 
constructing a virtual shared memory using the available 
distributed memories system. Moreover, the DSMS has 
standard operations that make parallel programming 
portable and more comfortable [17]. The Jini system is an 
extension of the Java environment. The DSMS had been 
implemented as a service in Jini system. A JavaSpace is a 
service in Jini system that implements the DSMS model. A 
JavaSpace inherits the advantages of Jini and the Java 
platforms [16].  

To have efficient ARM algorithm, the number of 
database scanning (I/O operation) must be minimized. The 
new algorithm in this paper does one parallel scan for the 
database. This scan is done by dividing the database 
horizontally over the distributed nodes. The algorithm 
after finding 1-frequent itemset can start a new stage while 
the current stage is not finished yet. For example, suppose 
that, at the second stage ( 2L ) the itemsets 

BCACAB ,, are finished and frequent and the others 
itemsets like BDAEAD ,,  are not finished yet. Then the 

algorithm can start creating a new task (in 3L ) for 

counting the itemset " ABC ", that can be processed by 
any system clients. This allows creating new tasks for 
different stages. So, no node will be idle, because there are 
lots of new independent tasks in the distributed shared 
memory that can be taken to process. The performance of 
our algorithm has been done by making a comparison with 
three algorithms, the first one called "Hori-Vertical" 
which was proposed and implemented by us [25]. Also, 
Hori-Vertical uses the same parallel model. The second 
one called "Eclat" and it is the most important 
consideration when one want to solve such problems[23]. 
The third one is the one that introduced by Limine et al. 



 

 

that called ”Workload Management Distributed Frequent 
itemsets mining” (WMDF) is used in performance 
comparison [4]. The WMDF algorithm is based on the 
horizontal database partitioning and it makes load 
balancing between system nodes. 

The rest of the paper is organized as follows. Next 
section discusses the preliminary concepts of association 
rules. Section(3) introduces a JavaSpace service as a 
DSMS implementation over the Jini system. Section(4) 
introduces our new algorithm (PFI). Section(5) shows the 
results and performance discussion. 

2. Preliminary Concepts 

The problem of mining association rules can be 
formally stated as follows: Let },...,,{ 21 miiiI =  be a set 

of items. Let DB  be a database transactions, where each 
transaction consists of a set of items such that IT ⊆ . 
The support of an itemset ,X denoted )(Xσ , is the 
percentage of transactions in DB  which it occurs as a 
subset. Given an itemset ,IX ⊆ a transaction T  contains 
X  iff TX ⊆ . A X  frequent or large if its support is 

more than a user-specified minimum support (min_sup) 
value( S ). An itemset is maximal if it is not a subset of 
any other itemset [1]. 

An association rule is an implication of the form 
YX ⇒  has support p in the DB  if the probability of 

the transaction in DB contains both X and Y  is 
pYX =∪ )(σ . Where, IYX ⊆, and φ=∩YX . 

The confidence of the rule is the conditional probability 
that a transaction contains Y , given that it contains X , 
and is given as )(/)( YYX σσ ∪ . A rule is frequent if 
its support is greater than min_sup, and it is strong if its 
confidence is more than a user-specified minimum 
confidence (min_conf). The task of mining association 
rules is to find all the association rules whose support is 
larger than a minimum support threshold and whose 
confidence is larger than a minimum confidence threshold. 
The data mining task for association rules can be broken 
into two steps. The first step consists of finding all large 
itemsets, i.e., itemsets that occur in the database with a 
certain user-specified frequency, called minimum support. 
The second step consists of forming implication rules 
among the large itemsets [10]. In this paper, we only deal 
with the first step. 

The way itemsets are represented is decisive to 
compute their supports. Conceptually, a database is a two-
dimensional matrix where the rows represent the 
transactions and the columns represent the items. This 

matrix can be implemented in the following four different 
formats [24]: 

• Horizontal item-list (HIL): The database is 
represented as a set of transactions, storing each 
transaction as a list of item identifiers (item-list). 

• Horizontal item-vector (HIV): The database is 
represented as a set of transactions, but each 
transaction is stored as a bit-vector (item-vector) 
of 1’s and 0’s to express the presence or absence 
of the items in the transaction. 

• Vertical tid-list (VTL): The database is organized 
as a set of columns with each column storing an 
ordered list (tid-list) of only the transaction 
identifiers (TID) of the transactions in which the 
item exists. 

• Vertical tid-vector (VTV): This is similar to VTL, 
except that each column is stored as a bit-vector 
(tid-vector) of 1’s and 0’s to express the presence 
or absence of the items in the transactions. 

 
Fig. 1.   Database layout  

To scan the dataset in parallel way, it must be divided 
vertically or horizontally. The vertical division is based on 
the items and the horizontal division is based on the 
number of transaction per part. Our algorithm is based on 
the horizontal partitioning in the first stage and it handle 
the dataset vertically in the other stages. In the hori-
zontally division, the database is divided into N parts. So, 
the database DB will be divided into 
( 21, DBDB , .... , NDB ). Then, i

N
i DBDB 1=∪= . As the 

number of database parts increases, the size of each part 
decreases. If the size of database partition is very small, all 
nodes will waste their time in taking and retrieving the 
database partitions. The best choice of N will depend on 
the number of nodes and its resources [4]. For a given 
minimum support threshold ,S an itemset x is globally 
frequent if it is frequent in DB ; its support x.sup is 
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greater than DBS × , and is locally frequent in a node iN  

if it is frequent in iDB ; its support ix sup.  is greater 

than iDBS × . 
- Property 1: A globally frequent itemset must be locally 
frequent in at least one node [7]. 
- Property 2: All subsets of a globally frequent itemset 
are globally frequent [7]. 

3. Jini-JavaSpace System 

Jini system extends the Java environment from a 
single virtual machine to a network of virtual machines. 
Jini system is a distributed system based on the idea of 
federating group of users and the resources required by 
these users to have a large monolithic system [16], [15]. 
The power of the Jini comes from the services, since 
services can be anything joined to the network. A 
JavaSpace is a service in Jini system that implements the 
DSMS model.  

 
Fig. 2.   JavaSpace model 

JavaSpace is a distributed shared memory service that 
is implemented over Jini System [14]. The object that can 
be written in JavaSpace service is called ”entry”. The 
entry can contain data or/and processes. Sometimes the 
entry is called tuple. JavaSpace contains the following 
operations: take, takeIfExists, read, readIfExists, write, 
notify, snapshot. The write operation is to write an entry in 
JavaSpace. To read an entry from the JavaSpace, the 
read() or readIfExists() operation is used. The consecutive 
reading operation of the same template may return 
different entries even if JavaSpace contents are not 
changed. The difference between these two versions of 
reading is that; readIfExist-s() is not blocked if the tuple is 
not found in the space, it returns a null tuple if there is no 
matching tuple. Take() or takeIfExists() are two operations 
that extract entries from JavaSpace. In other words, these 
operations are similar to read and readIfExists() operations 
except that; taking operations remove the entry from the 
space. The snapshot operation is to take a copy of existing 
entry, but this copy is not updated in spite of the changes 
that may occur in the original entry. The notify operation 

is used to define an event that triggers when a specific 
entry is written [14]. See figure 2. 

4. The proposed Algorithm 

The first issue to have high performance ARM 
algorithm is reducing number of database scanning. But it 
is impossible to reduce number of database scanning to be 
less than one. The second issue is reducing number of 
comparison and searching area. PFI algorithm does only 
one scan over the database. Finding the first frequent 
itemset is done by dividing the dataset horizontally and the 
other stages is done using VTV layout. Then, reducing 
number of comparison is done in both of dataset 
dimensions.  

So, now we discuss the ways of reducing number of 
comparisons. The frequent itemset of size k ( k -itemsets)  
is denoted by .kL  The set kL  is founded scanning its 

superset, that called ,kC to determine the support for each 

candidate in .kC  The set kC is generated form 1−kL  from 

)}.,(),(|{ 11 −− ∧= kkk LcpruneLcjoincC  This is 

means .kk CL ⊂ Practically kC is so much big than 

frequent itemsets .kL  So, the new idea for reducing the 
number of comparison is to reduce searching of 
unfrequent itemsets in .kC  This is done by predicting the 

probability of each element in kC  from the support of its 

subsets in .1−kL  The support of any itemset is the 
percentage of transactions in database which it occurs as a 
subset. This is also meaning the probability of appearing 
this itemset. So, let nPPP ,...,, 21  be the independent 

probability of the items nAAA ,...,, 21 respectively. Let the 

probability for any two items gf AA ,  is gf PP , such 

that gf PP < . Then the probability of both itemset 

gf AA , appearing in one transaction is fgP . If fA and 

gA are total non-correlation, gffg PPP .= . Also if 

fA and gA are total correlation, fgP is the minimum of 

fP  and gP  (i.e. ffg PP = ). Then ffggf PPPP ≤≤.  
[26]. This is means that, the upper pound of the 
probability of any two itemsets ( fA and gA ) to be exist in 
the same transactions is minimum probability of these 
itemsets( fP ), and the lower bound of probability of these 

itemsets to be exist in the same transactions is gf pp . So, 



 

 

for any two frequent itemsets gf AA , , if the .. SPP gf <  
This means that; if these two itemsets are non-correlation 
they will not be frequent. Also, if the upper bound (the 
items are correlation) is not big enough than minimum 
support ,S the new itemset fgA has a weak probability to 
be frequent. 

Let δ is be the ratio of S that decided if any itemset 
has big enough probability to be frequent. Where 

.10 ≤≤ δ  Then, we suppose that the upper bound of the 
probability of the new itemset fP  must be: 

)1( δ+≥ SPf          (1) 
The previous equation means that, the maximum 

probability of the new itemset fgA  must exceed the 

minimum support with δ . For example, let 1.0=δ , 
then the estimated maximum support of fgA must exceed 
the minimum support with ten percent. This is because, the 
intersection between two tid lists (transaction id lists 
for fA and gA ) will not be exceed the shortest one( fA  

list). Also, if the length of shortest list is much closed to 
the minimum support, the intersection between these two 
lists will be less than the minimum support. In the 
practical section (section 5) different values of δ will be 
tested to show how much the dataset vertical dimension 
will be shrunk in all stages. Also, we will show the effect 
of δ in the algorithm performance. So, before creating a 
task for the new itemset from the frequent itemsets that we 
have, the new itemsets can be divided in to three parts: 

a) Strong probability frequent itemsets: that has lower 
probability bound greater than or equal the minimum 
support ( Spp gf ≥ ). These itemsets will take high 

priority in processing by the algorithm. 
b) Itemsets that pass the condition in equation(1). In 

another words, the new itemsets that it's maximum 
estimated probability big enough than .S  These 
itemset will take the second priority in processing. 

c) Very weak frequent probability itemsets: that does 
not pass the condition in equation(1). These itemsets 
can take the lower priority in processing or it can be 
omitted. In our algorithm and the practical test we 
had omit these itemsets. Also, in some sensitive 
application these itemsets can take the third priority. 

What we discussed so far is the method of reducing 
the searching range vertically. Now we turn to discuss the 
way of reducing the search range horizontally (number of 
transactions). Each client sorts its database partition 
depends on number of items in transaction into segments. 
In other words, the HIV for each node is divided into 
segments. These segments defined by range of ratio of 

items in each transaction ).(r For example, the first 
segment contains the very rich transaction (transaction 
contains more than equal 70% of the database items) 

10070 ≤≤ r .  The second segment contains more than 
or equal 50% and less than 70% of the database items, and 
so on.  Each node after finishing the creation of the sorted 
HIV, it will encapsulates HIV with meta-data about the 
start and the end of each segment into result entry. Then 
the node writes result entry into JavaSpace. So database 
will be transformed into HIV that is sorted into segments 
( qgg ,....,1 ). The first segment 1g  contains the very rich 

transactions. Also, the last segment qg  contains the very 

poor transactions. The definition of all segments is depend 
on the application. So, the probability of any frequent item 
to be locally frequent in the first segment is very high. 
Also, the probability of any frequent item to be locally 
frequent in the last segment is very low. This is because, 
let the definition of the first segment is that contains 
transactions that have more than t  of the database items. 
So, the total probability of a transaction in this segment 
contains an item: 

∑
=

=
t

i
ipP

1
  (2) 

Where ip  represents the probability of item .i This means 
that the probability of purchasing any item in rich basket 
(transaction) is very high. Also, if t is small, this means 
that transaction belongs to poor segment and it has low 
probability to exist in this transaction. 
- Property 3: for all globally frequent items Iba ∈, such 
that;  a  is locally frequent in the segment r but b is not. 
a  will be globally frequent in the itemset rDB − , but 
b may not .  
Proof: Let the segment r contains two items Iba ∈, , 
such that both of ba,  are globally frequent. Also, let a be 
locally frequent in r but b is not. So, in the dataset 

rDB − the item a may be not globally frequent. Because 
the item a may be only locally frequent in segment r  
(Property 1). But the item b  will still globally frequent, 
because the item b in the neglected segment r  is not 
locally frequent and it is frequent in one or more segments 
in .rDB − □ 
- Property 4: If a segment g its transactions contains only 
one item( },1|:|{ == TTg this segment can be neglected 
without effecting k-frequent itemsets(where k>1).  

Proof: Let all transaction in a segment g has one 
items and suppose that two items ji, are globally frequent 
and locally frequent in .g  Nothing transactions in this 
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segment contains both of i and .j  So, if we neglecting this 
segment in finding the highest frequent itemsets (k>1), it 
will not effect the count of the itemset .ij  

Also, let the segment g is the only locally frequent 
segment for the item .i  Then after neglecting this segment 
the item i will not be frequent. But g is omit at k>1. This 
is means that, i has been detected as frequent item. □ 

Then we can use these two properties to shrink the 
dataset as follows. If the segment r  is very poor segment 
and Ii∈∀ is not locally frequent in r , the segment r can 
be omitted in the searching. Also, if all transaction in a 
segment contains only one item, this segment will be 
omitted. This will reduce searching in database size 
dimension. 

Our algorithm only scans the database in the initial 
stage ( 1=k ) (see algorithm 1). In the other stages 
( 1>k ) the algorithm depends on the distributed shared 
memory, because the size of the database will be shrunk. 
In the initial stage of our algorithm the database is divided 
horizontally. So, the first stage of our algorithm is to 
create a task for each database partition. That is done by 
calling the Initial_task_creation procedure (see algorithm 
2). Initial_task_creation procedure writes the tasks in the 
distributed shared memory to be executed by the system 
nodes. The algorithm will collect the results by calling 
InitialResultCollector procedure to collect the results from  
system nodes. Then, the master process merges the HIV 
partitions, that come from the nodes, into single HIV with 
keeping the segment structure. After that the algorithm 
omit the poor segments that do not have any local frequent 
itemsets. Also, the segments that its transaction has only 
one item will be omitted. These tasks in the form of 
JavaSpace entry are called ”taskEntry”. Each client will 
take one taskEntry after anther to execute it. Each client 
will scan its partition and convert it to the HIV (Horizontal 
Item Vector).  
Algorithm 1:The master Process in the algorithm 
 

kCV
 /*Vector of stages for Candidate itemsets */  

Call Initial_task_creation() procedure  
Call Initial_Result_Collector() procedure 
Omit the neglectable segments 
Convert the HIV to VTV format in kCV . 
Call taskCreator() thread. 
Call ResultCollector() thread 
While true do 
   If all tasks finished and Ck.size < 1 then  
      Kill ResultCollector() thread  
      Kill taskCreator() thread  
      Break the loop  
   End  
End 

 

 
 
 

Algorithm 2: Initial_task_creation   procedure    
 For i = 1; i ≤ N; i ++ do  

           Create taskEntry(
iDB )  

            Write taskEntry(
iDB ) in the JavaSpace 

End 
 

Algorithm 3: The taskEntry Algorithm 
  

 If (k=l)  then   
     /*The 1-itemsets (need database scan)*/  
     For all transactions iDBt∈  do  

If   item ti∈   then 
     Increase the item  i counter 
     Convert the transaction into binary form iHIV . 
     Put the transaction ( t ) into its segments. 

        End 
     End 
     Encapsulate the iHIV  into a resultEntry. 
Else 

/*At the stages k>1. We have two itemsets X and Y must 
be joined into new itemset XY and count it’s frequent*/  
resultList = X.TIDList ∩  Y.TIDList 
If the itemset XY is non-frequent then 
     resultList=φ  
End 
Encapsulate the resultList into a resultEntry. 

End 
Return a resultEntry that to the DSMS (JavaSpace) 

  

 

Algorithm4: The Initial_Result_Collector procedure 
 While there are unfinished initial task entry do 

      If new initialResultEntry written then  
          Take resultEntry;  
          i

N
i HIVHIV 1== U    /*Merge the iHIV  depends on 

the segments */ 
      End 
End 

 

Algorithm 5: The ResultCollector thread algorithm 
 While true do 

   If new resultEntry written then  
        Take resultEntry;  
        Update kCV ; 
   End 
End 

 

Algorithm 6: The taskCreator thread algorithm 
 

 1L ={large 1–itemset} 
112 LLC ×=  

For 2Cc∈∀  
   If lower bound of S≥cP  Then   /* The probability of 

the candidate c is strong */ 



 

 

   Create a taskEntry for c with priority =1;  
   Write the new taskEntry into JavaSpace;  
   update kCV ; 
Else if )1(Pc δ+≥ S  then   
   Create a taskEntry for c with priority =2;  
   Write the new taskEntry into JavaSpace;  
   update kCV ; 
Else  
Neglect creating task for c  
update kCV ; 
End 
while true do 

If new itemset finished then 
If the itemset is large then 

Join the itemset with the other finished 
itemsets in the same stage;  

   Prune the new candidate c ;  
                   If lower bound of S≥cP  then   
                     Create a taskEntry for c with priority =1;  
                     Write the new taskEntry into JavaSpace;  
                     Update kCV ; 
                   Else if )1(Pc δ+≥ S  then   
                    Create a taskEntry for c with priority =2;  
                    Write the new taskEntry into JavaSpace;  
                    Update kCV ; 

          Else 
                       Neglect creating task for c  
                       update kCV ; 

           End 
Else 

update kCV ; 
Delete related information this itemset 
from the kCV ;  

End 
End  

End 
  

 

Finding the first frequent itemset (k=1) is done by 
scanning the database. Finding the other itemsets (k>1) is 
done on the VTV(Vertical tid–Vector ). The ”taskEntry” is 
a JavaSpace entry that contains algorithm for counting the 
frequency of the itemset .i The taskEntry algorithm 
contains two cases, see algorithm(3). The first case, 
when ,1=k the client must create the iHIV  by scanning its 
database partition to count the frequency of all database 
items and sort this partition transaction depending on 
segments. The second case is at 1>k . At this stage the 
taskEntry contains two TID lists of two itemsets 
( X and Y ). Also at this case, the client must create a 
resultList that contains the intersection between the two 
itemset( YX , ) TIDLists. If the new itemset is not 

frequent, the result list will be empty. Then, the client will 
create an entry called ”resultEntry” that encapsulates 
the iHIV   or resultList. The resultEntry must be written to 
the JavaSpace by the client. 

The master process calls the Initial_Result_Collector 
procedure to collect all result entries. This procedure 
merges the HIV presentation for all database partitions 
that exists in all result entries into single HIV format and 
keeping the segment sort(see algorithm 4). Also, the 
master process omits poor segments that do not contain 
any frequent items. Then, the algorithm starts building 

kCV vector, that is a vector to register candidates, frequent 
itemsets and the related information for each stage. The 
first stage in

kCV vector is 1C , that contains the first 

frequent itemset that has been taken form the HIV 
structure. So, the algorithm generates new tasks by calling 
the taskCreator thread. The taskCreator thread checks if 
there is any finished itemset. If the finished itemset is not 
large, that itemset must be registered as unfrequent and its 
related information like tid list must be deleted from the 
vector. If the itemset is large, it will join this itemset to the 
other finished large itemset in the same stage. After 
joining, the algorithm must make prune to the new 
candidates. Then, it creates a new taskEntry for the new 
candidates and puts it in the JavaSpace. Algorithm(6) 
contains the pseudo code of taskCreator thread.  The 
function of ResultCollec- tor thread is to collect any result 
entry in the JavaSpace and inform the taskCreator 
thread(seen algorithm 5). The algorithm will finish if all 
tasks in the kCV  are finished and the size of the last stage 
of this vector is less than 1. This means that, all 
taskEntries created by the algorithm are finished and the 
last stage of the algorithm does not have any candidates. 
At this point, the algorithm must kill all the threads it has 
and the large frequent itemsets is exists in kCV vector. 

5. Experimental Results 

The experimental test of PFI was performed in three 
objectives. The first objective is to list effect of δ on the 
set of candidate kC (section 5.1). The second objective is 

to list different values of δ to determine the best (section 
5.2). The third objective is to test the performance of the 
new algorithm by comparing it with the other algorithms 
(section 5.3). All experiments ware performed on five PCs. 
These PCs can be heterogeneous, but in performance test 
we would like to unify the resource of the system nodes. 
This was to highlight the effect of other parameter like, 
database size, minimum support, δ , and number of nodes 
in the system. These PCs had a CPU of type Intel(R) 
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Core(TM) 2Duo 1.6 G.H and 2GB RAM. The 
intercommunication between the machines was done by 
100 Mbps Ethernet. The software environment was as 
follows; Windows XP professional, Java JDK 1.4.2 04 
[13], Jini(TM) Technology Starter Kit v2.0.2 [16] and a 
free visual platform for Jini 2.0 was called Inca X(TM) [9]. 
To measure the performance of the algorithms we use 
three synthetic datasets: D1=T10I4D10K, 
D2=T10I4D100K, D3=T10I10D1000K. The dataset 
T10I4D10K meant an average transaction size of 10, an 
average size of the maximum potentially frequent itemsets 
of 4, and 10000 generated transactions. These datasets 
generated by the algorithm for generating synthetic 
databases that described by Agrawal and Srikant [3]. Each 
experiment was repeated 4 times. The average of the four 
runs was taken and used for analysis. We chose four 
values of δ (these are {0.01, 0.1, 0.2, 0.3}) for PFI test. 

5.1 The Reduction of Candidate Test: 

In this section the effect of δ on the number of 
candidates was tested. Figures(4,5,6) show the effect of δ  
at minimum support 1% on the candidates in D1, D2, D3 
respectively. The same test was done with minimum 
support 10% (figures 7, 8, 9). Moreover, this test was also 
repeated using high ratio of minimum support(35%) in 
figures(10, 11, 12). Form these figures we noticed that, 
increasing the value of δ the number of candidate 
decreased. Decreasing the number of candidate will 
increase the performance but it will decrease the accuracy. 
At %1=δ  the number of candidates is closed to that 
yield by Apriori algorithm. But at big database or at small 
value of minimum support the difference between the 
number of candidates that yields from Apriori and PFI(at 

%1=δ ) was thousands of candidates. This makes 
predication that the performance will be enhanced by PFI. 
But first we must check the effect of δ  on the accuracy in 
the next section. 

 

 
Fig.4. Total number of candidate at minimum support 1% on D1 

 

 
Fig.5. Total number of candidate at minimum support 1% on D2 

 

 
Fig.6. Total number of candidate at minimum support 1% on D3 

 
Fig.7. Total number of candidate at minimum support 10% on D1 

 

 
Fig.8. Total number of candidate at minimum support 10% on D2 

 



 

 

 
Fig.9. Total number of candidate at minimum support 10% on D3 

 

 
Fig.10. Total number of candidate at minimum support 35% on D1 

 

 
Fig.11. Total number of candidate at minimum support 35% on D2 

 

 
Fig.12. Total number of candidate at minimum support 35% on D3 

5.2 The Accuracy Test: 

In this section we will test the effect of δ on the 
number of frequent itemset in each stage ( k - itemsets). 
We compare PFI with Apriori algorithm that represents 
the complete result that should be appearing. Also, PFI 
algorithm classifies the candidate into three groups. The 

first group, called strong probability frequent itemsets, 
contains the itemsets that have lower probability bound 
greater than or equal the minimum support ( Spp gf ≥ ). 
We test the performance of the new algorithm with this 
hard condition and we called it "PFIHard". We had to 
show the effect of this condition on filtering the itemset. 
Also, we will show whether the hard condition is 
sufficient or it can be use to accelerate the algorithm 
response time.  

Figures from 13 to 21 show frequent itemsets 
comparison between the frequent itemsets that yield from 
PFI and the Apriori algorithm at different minimum 
supports ( }35%,10%,1{=s ). We can notice that, the 
curves of PFI and Apriori are closed at the beginning and 
at the end. This means that, the smallest and maximal 
frequent itemset that will yield from PFI and Apriori will 
be approximately identical. Also, the PFI at 01.0=δ and 
Apriori curve are completely identical. 

 

 
Fig.13. number of frequent itemsets at minimum support 1% on D1 

 

 
Fig.14. number of frequent itemsets at minimum support 1% on D2 

 

 
Fig.15. number of frequent itemsets at minimum support 1% on D3 
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Fig.16. number of frequent itemsets at minimum support 10% on D1 

 
Fig.17. number of frequent itemsets at minimum support 10% on D2 

 
Fig.18. number of frequent itemsets at minimum support 10% on D3 

 
Fig.19. number of frequent itemsets at minimum support 35% on D1 

 
Fig.20. number of frequent itemsets at minimum support 35% on D2 

 

 
Fig.21. number of frequent itemsets at minimum support 35% on D3 

5.1 The Performance Test: 

Now, we compare the performance of PFI algo-
rithm with the Hori-Vertical, Eclat, WMDF and Apriori 
algorithms. Figure (22) shows the performance 
comparison on dataset D1. From this figure we can notice 
that PFI has performance better than Hori-Vertical 
algorithm. By increasing the minimum support the PFI at 

01.0=δ  curve is coming closed to Hori-Vertical. Also, 
by increasing the value of δ the performance of the PFI is 
increased.  

 
Fig.22. performance comparison on database D1 

 
Fig.23. performance comparison on database D2 

 
Fig.24. performance comparison on database D3 



 

 

 
Figure (23) shows the same test using D2 as datasets. 

We can notice that, at the big minimum support the 
performance of the Eclat, WMDF and Apriori algorithms 
are closed. The performance comparison using big 
datasets (D3) is shown in figure (24). From all of the 
previous figures, we notice that, the PFI algorithm has the 
best performance. Also, at 01.0=δ the PFI and 
HoriVertical are closed at the big minimum support. The 
Apriori algorithm has the worst performance because this 
algorithm is a sequential and runs on one machine. The 
Eclat algorithm have performance better than the WMDF 
algorithm. This is because, the Eclat algorithm scans the 
database three times and the WMDF algorithm scans the 
database a lot of times. But at the big minimum support, 
the performance of the WMDF is going to be better than 
Eclat. 

 

 
Fig.25. performance comparison on database D3 

Now we will test the effect of increasing number of 
nodes on the performance of PFI algorithm. Also we will 
compare it with the previous parallel association rules 
algorithms. The Apriori will not be in this test because its 
sequential algorithm. So, we measure the performance of 
the parallel algorithms (Ecalt, WMDF, HoriVertical) using 
different number of clients in the system, as seen in figure 
28. This test is done using the biggest dataset we have 
(D3) and in case of minimum support equals 0.5%. From 
this figure we can notice that, the WMDF curve is not 
smooth because the redistribution of the database blocks 
can raise the communications. The Hori-Vertical 
algorithm is going to be better than the PFI specially as 
increasing number of clients. Also, PFI algorithm has the 
performance better than PFI algorithm at small number of 
nodes.  

From the entire previous test we can conclude the 
following.  The PFI produce very accurate output at 

01.0=δ . Also, as increasing the value of δ the number 
of candidate will be decreased but the accuracy will also 
decreased. The performance of PFI is better than the 
performance of HoriVertical algorithm at the small value 
of minimum support and on big database, this is 
becauseδ  will be more effective. As increasing number 

of nodes the performance HoriVertical algorithm is being 
better than PFI.  

6. Conclusion 

Through this paper, we have presented PFI algorithm. 
The PFI uses a DSMS which has various advantages over 
the other parallel models. The PFI algorithm based on 
reducing dataset searching area vertically (the number of 
candidates) and horizontally(number of transaction). Also, 
PFI has powerful features, such as; scanning the database 
only one time and processing different stages of large 
itemsets at the same time. Moreover, a comparison of PFI 
algorithm with our previous algorithm "HoriVertical", a 
well-known algorithm Eclat, Apriori algorithm and a new 
load balanced algorithm called WMDF was made. In 
general the PFI algorithm has the best performance. The 
PFI has reasonable performance and produce accurate 
output at 01.0=δ . Also, increasing the value of δ will 
give a good performance enhancement but will reduce the 
accuracy. So, δ  will be depending on the type and the 
size of the dataset. As increasing the number of system 
nodes the performance of the HoriVertical was better than 
the performance of the PFI. Future studies are required to 
fix this problem. 
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