
IJCSNS International Journal of Computer Science and Network Security, VOL.1 No. , May 2011

1

Manuscript received November 1, 2010

Manuscript revised November

A fast Parallel Association Rule Mining Algorithm Based on the
Probability of Frequent Itemsets

Marghny H. Mohamed† and Hosam E. Refaat††
margami@gmail.com hosam.refaat@yahoo.com

Dept. of Computer Science, Faculty of Computers and Information, Asyut University, Egypt

Summary
Frequent itemset finding is the most costly processing step in
analyzing large transactional databases. At each stage in
discovering frequent itemset a huge number of candidate
itemsets are produced. Then, if we predict which candidate
itemset will be frequent and which will not, we can reduce
wastage of time in the processing unfrequent itemsets. In this
paper we propose a new parallel algorithm for frequent itemset
mining, called probability of frequent itemset (PFI) mining
algorithm. The PFI algorithm can predict frequency of the
candidate based on the probability of its subset and makes
priority between candidate itemsets base on it's probability.
Moreover, the PFI algorithm passes the database only one time
by dividing the database horizontally and distributes it over the
system nodes. Also, while finding the k-itemsets, the algorithm
can start a new stage (finding k+1 itemsets) with the discovered
frequent k-itemsets while some other itemsets in the same stage
have not been finished yet. Moreover, we introduce a method for
reducing the number of transactions. We present the result on the
performance of our algorithm on various datasets, and compare it
against well known algorithms.
Key words:
Parallel Systems, Distributed shared memory, data mining,
Association rule, Linda system, Tuple-space, Jini, JavaSpace.

1. Introduction

Association rule mining(ARM), one of the most
important techniques of data mining, finds interesting
associations and/or correlation relationships among large
set of data items. Discovering this association rules in data
can guide the decision making. A typical and widely-used
example of association rule mining is Market Basket
Analysis. An interesting algorithm, Apriori [3], has been
proposed for computing large itemsets. Because databases
are increasing in terms of both dimensions (number of
attributes) and size (number of records), parallel
computation is a crucial component for successful large-
scale data mining applications. To construct a parallel
system, there are three models, namely; distributed
memory systems(DMS), shared memory systems (SMS),
and distributed shared memory systems (DSMS). The
DSMS is the newest parallel technique [20]. In DMS each
node has its private memory. If any node needs data from
another node, it will send a request message to it. Hence,

this system is also called ”message passing”. In this
system the direct connection between nodes reduces
system portability [12]. The SMS is based on the existence
of a global memory shared among all nodes in the system.
The SMS has various advantages, such as; it eases the data
sharing and it eases the implementation of the parallel
application [5]. The DSMS takes the advantages of the
previous models. The DSMS systems have some
countable advantages over the DMS based ones, e.g.; the
application level ease of use, the DSMS is portable, and it
is easy to share data and processes [5]. This is done by
constructing a virtual shared memory using the available
distributed memories system. Moreover, the DSMS has
standard operations that make parallel programming
portable and more comfortable [17]. The Jini system is an
extension of the Java environment. The DSMS had been
implemented as a service in Jini system. A JavaSpace is a
service in Jini system that implements the DSMS model. A
JavaSpace inherits the advantages of Jini and the Java
platforms [16].

To have efficient ARM algorithm, the number of
database scanning (I/O operation) must be minimized. The
new algorithm in this paper does one parallel scan for the
database. This scan is done by dividing the database
horizontally over the distributed nodes. The algorithm
after finding 1-frequent itemset can start a new stage while
the current stage is not finished yet. For example, suppose
that, at the second stage (2L) the itemsets

BCACAB ,, are finished and frequent and the others
itemsets like BDAEAD ,, are not finished yet. Then the

algorithm can start creating a new task (in 3L) for

counting the itemset " ABC ", that can be processed by
any system clients. This allows creating new tasks for
different stages. So, no node will be idle, because there are
lots of new independent tasks in the distributed shared
memory that can be taken to process. The performance of
our algorithm has been done by making a comparison with
three algorithms, the first one called "Hori-Vertical"
which was proposed and implemented by us [25]. Also,
Hori-Vertical uses the same parallel model. The second
one called "Eclat" and it is the most important
consideration when one want to solve such problems[23].
The third one is the one that introduced by Limine et al.

that called ”Workload Management Distributed Frequent
itemsets mining” (WMDF) is used in performance
comparison [4]. The WMDF algorithm is based on the
horizontal database partitioning and it makes load
balancing between system nodes.

The rest of the paper is organized as follows. Next
section discusses the preliminary concepts of association
rules. Section(3) introduces a JavaSpace service as a
DSMS implementation over the Jini system. Section(4)
introduces our new algorithm (PFI). Section(5) shows the
results and performance discussion.

2. Preliminary Concepts

The problem of mining association rules can be
formally stated as follows: Let },...,,{ 21 miiiI = be a set

of items. Let DB be a database transactions, where each
transaction consists of a set of items such that IT ⊆ .
The support of an itemset ,X denoted)(Xσ , is the
percentage of transactions in DB which it occurs as a
subset. Given an itemset ,IX ⊆ a transaction T contains
X iff TX ⊆ . A X frequent or large if its support is

more than a user-specified minimum support (min_sup)
value(S). An itemset is maximal if it is not a subset of
any other itemset [1].

An association rule is an implication of the form
YX ⇒ has support p in the DB if the probability of

the transaction in DB contains both X and Y is
pYX =∪)(σ . Where, IYX ⊆, and φ=∩YX .

The confidence of the rule is the conditional probability
that a transaction contains Y , given that it contains X ,
and is given as)(/)(YYX σσ ∪ . A rule is frequent if
its support is greater than min_sup, and it is strong if its
confidence is more than a user-specified minimum
confidence (min_conf). The task of mining association
rules is to find all the association rules whose support is
larger than a minimum support threshold and whose
confidence is larger than a minimum confidence threshold.
The data mining task for association rules can be broken
into two steps. The first step consists of finding all large
itemsets, i.e., itemsets that occur in the database with a
certain user-specified frequency, called minimum support.
The second step consists of forming implication rules
among the large itemsets [10]. In this paper, we only deal
with the first step.

The way itemsets are represented is decisive to
compute their supports. Conceptually, a database is a two-
dimensional matrix where the rows represent the
transactions and the columns represent the items. This

matrix can be implemented in the following four different
formats [24]:

• Horizontal item-list (HIL): The database is
represented as a set of transactions, storing each
transaction as a list of item identifiers (item-list).

• Horizontal item-vector (HIV): The database is
represented as a set of transactions, but each
transaction is stored as a bit-vector (item-vector)
of 1’s and 0’s to express the presence or absence
of the items in the transaction.

• Vertical tid-list (VTL): The database is organized
as a set of columns with each column storing an
ordered list (tid-list) of only the transaction
identifiers (TID) of the transactions in which the
item exists.

• Vertical tid-vector (VTV): This is similar to VTL,
except that each column is stored as a bit-vector
(tid-vector) of 1’s and 0’s to express the presence
or absence of the items in the transactions.

Fig. 1. Database layout

To scan the dataset in parallel way, it must be divided
vertically or horizontally. The vertical division is based on
the items and the horizontal division is based on the
number of transaction per part. Our algorithm is based on
the horizontal partitioning in the first stage and it handle
the dataset vertically in the other stages. In the hori-
zontally division, the database is divided into N parts. So,
the database DB will be divided into
(21, DBDB , , NDB). Then, i

N
i DBDB 1=∪= . As the

number of database parts increases, the size of each part
decreases. If the size of database partition is very small, all
nodes will waste their time in taking and retrieving the
database partitions. The best choice of N will depend on
the number of nodes and its resources [4]. For a given
minimum support threshold ,S an itemset x is globally
frequent if it is frequent in DB ; its support x.sup is

IJCSNS International Journal of Computer Science and Network Security, VOL.1 No. , May 2011

3

greater than DBS × , and is locally frequent in a node iN

if it is frequent in iDB ; its support ix sup. is greater

than iDBS × .
- Property 1: A globally frequent itemset must be locally
frequent in at least one node [7].
- Property 2: All subsets of a globally frequent itemset
are globally frequent [7].

3. Jini-JavaSpace System

Jini system extends the Java environment from a
single virtual machine to a network of virtual machines.
Jini system is a distributed system based on the idea of
federating group of users and the resources required by
these users to have a large monolithic system [16], [15].
The power of the Jini comes from the services, since
services can be anything joined to the network. A
JavaSpace is a service in Jini system that implements the
DSMS model.

Fig. 2. JavaSpace model

JavaSpace is a distributed shared memory service that
is implemented over Jini System [14]. The object that can
be written in JavaSpace service is called ”entry”. The
entry can contain data or/and processes. Sometimes the
entry is called tuple. JavaSpace contains the following
operations: take, takeIfExists, read, readIfExists, write,
notify, snapshot. The write operation is to write an entry in
JavaSpace. To read an entry from the JavaSpace, the
read() or readIfExists() operation is used. The consecutive
reading operation of the same template may return
different entries even if JavaSpace contents are not
changed. The difference between these two versions of
reading is that; readIfExist-s() is not blocked if the tuple is
not found in the space, it returns a null tuple if there is no
matching tuple. Take() or takeIfExists() are two operations
that extract entries from JavaSpace. In other words, these
operations are similar to read and readIfExists() operations
except that; taking operations remove the entry from the
space. The snapshot operation is to take a copy of existing
entry, but this copy is not updated in spite of the changes
that may occur in the original entry. The notify operation

is used to define an event that triggers when a specific
entry is written [14]. See figure 2.

4. The proposed Algorithm

The first issue to have high performance ARM
algorithm is reducing number of database scanning. But it
is impossible to reduce number of database scanning to be
less than one. The second issue is reducing number of
comparison and searching area. PFI algorithm does only
one scan over the database. Finding the first frequent
itemset is done by dividing the dataset horizontally and the
other stages is done using VTV layout. Then, reducing
number of comparison is done in both of dataset
dimensions.

So, now we discuss the ways of reducing number of
comparisons. The frequent itemset of size k (k -itemsets)
is denoted by .kL The set kL is founded scanning its

superset, that called ,kC to determine the support for each

candidate in .kC The set kC is generated form 1−kL from

)}.,(),(|{ 11 −− ∧= kkk LcpruneLcjoincC This is

means .kk CL ⊂ Practically kC is so much big than

frequent itemsets .kL So, the new idea for reducing the
number of comparison is to reduce searching of
unfrequent itemsets in .kC This is done by predicting the

probability of each element in kC from the support of its

subsets in .1−kL The support of any itemset is the
percentage of transactions in database which it occurs as a
subset. This is also meaning the probability of appearing
this itemset. So, let nPPP ,...,, 21 be the independent

probability of the items nAAA ,...,, 21 respectively. Let the

probability for any two items gf AA , is gf PP , such

that gf PP < . Then the probability of both itemset

gf AA , appearing in one transaction is fgP . If fA and

gA are total non-correlation, gffg PPP .= . Also if

fA and gA are total correlation, fgP is the minimum of

fP and gP (i.e. ffg PP =). Then ffggf PPPP ≤≤.
[26]. This is means that, the upper pound of the
probability of any two itemsets (fA and gA) to be exist in
the same transactions is minimum probability of these
itemsets(fP), and the lower bound of probability of these

itemsets to be exist in the same transactions is gf pp . So,

for any two frequent itemsets gf AA , , if the .. SPP gf <
This means that; if these two itemsets are non-correlation
they will not be frequent. Also, if the upper bound (the
items are correlation) is not big enough than minimum
support ,S the new itemset fgA has a weak probability to
be frequent.

Let δ is be the ratio of S that decided if any itemset
has big enough probability to be frequent. Where

.10 ≤≤ δ Then, we suppose that the upper bound of the
probability of the new itemset fP must be:

)1(δ+≥ SPf (1)
The previous equation means that, the maximum

probability of the new itemset fgA must exceed the

minimum support with δ . For example, let 1.0=δ ,
then the estimated maximum support of fgA must exceed
the minimum support with ten percent. This is because, the
intersection between two tid lists (transaction id lists
for fA and gA) will not be exceed the shortest one(fA

list). Also, if the length of shortest list is much closed to
the minimum support, the intersection between these two
lists will be less than the minimum support. In the
practical section (section 5) different values of δ will be
tested to show how much the dataset vertical dimension
will be shrunk in all stages. Also, we will show the effect
of δ in the algorithm performance. So, before creating a
task for the new itemset from the frequent itemsets that we
have, the new itemsets can be divided in to three parts:

a) Strong probability frequent itemsets: that has lower
probability bound greater than or equal the minimum
support (Spp gf ≥). These itemsets will take high

priority in processing by the algorithm.
b) Itemsets that pass the condition in equation(1). In

another words, the new itemsets that it's maximum
estimated probability big enough than .S These
itemset will take the second priority in processing.

c) Very weak frequent probability itemsets: that does
not pass the condition in equation(1). These itemsets
can take the lower priority in processing or it can be
omitted. In our algorithm and the practical test we
had omit these itemsets. Also, in some sensitive
application these itemsets can take the third priority.

What we discussed so far is the method of reducing
the searching range vertically. Now we turn to discuss the
way of reducing the search range horizontally (number of
transactions). Each client sorts its database partition
depends on number of items in transaction into segments.
In other words, the HIV for each node is divided into
segments. These segments defined by range of ratio of

items in each transaction).(r For example, the first
segment contains the very rich transaction (transaction
contains more than equal 70% of the database items)

10070 ≤≤ r . The second segment contains more than
or equal 50% and less than 70% of the database items, and
so on. Each node after finishing the creation of the sorted
HIV, it will encapsulates HIV with meta-data about the
start and the end of each segment into result entry. Then
the node writes result entry into JavaSpace. So database
will be transformed into HIV that is sorted into segments
(qgg ,....,1). The first segment 1g contains the very rich

transactions. Also, the last segment qg contains the very

poor transactions. The definition of all segments is depend
on the application. So, the probability of any frequent item
to be locally frequent in the first segment is very high.
Also, the probability of any frequent item to be locally
frequent in the last segment is very low. This is because,
let the definition of the first segment is that contains
transactions that have more than t of the database items.
So, the total probability of a transaction in this segment
contains an item:

∑
=

=
t

i
ipP

1
 (2)

Where ip represents the probability of item .i This means
that the probability of purchasing any item in rich basket
(transaction) is very high. Also, if t is small, this means
that transaction belongs to poor segment and it has low
probability to exist in this transaction.
- Property 3: for all globally frequent items Iba ∈, such
that; a is locally frequent in the segment r but b is not.
a will be globally frequent in the itemset rDB − , but
b may not .
Proof: Let the segment r contains two items Iba ∈, ,
such that both of ba, are globally frequent. Also, let a be
locally frequent in r but b is not. So, in the dataset

rDB − the item a may be not globally frequent. Because
the item a may be only locally frequent in segment r
(Property 1). But the item b will still globally frequent,
because the item b in the neglected segment r is not
locally frequent and it is frequent in one or more segments
in .rDB − □
- Property 4: If a segment g its transactions contains only
one item(},1|:|{ == TTg this segment can be neglected
without effecting k-frequent itemsets(where k>1).

Proof: Let all transaction in a segment g has one
items and suppose that two items ji, are globally frequent
and locally frequent in .g Nothing transactions in this

IJCSNS International Journal of Computer Science and Network Security, VOL.1 No. , May 2011

5

segment contains both of i and .j So, if we neglecting this
segment in finding the highest frequent itemsets (k>1), it
will not effect the count of the itemset .ij

Also, let the segment g is the only locally frequent
segment for the item .i Then after neglecting this segment
the item i will not be frequent. But g is omit at k>1. This
is means that, i has been detected as frequent item. □

Then we can use these two properties to shrink the
dataset as follows. If the segment r is very poor segment
and Ii∈∀ is not locally frequent in r , the segment r can
be omitted in the searching. Also, if all transaction in a
segment contains only one item, this segment will be
omitted. This will reduce searching in database size
dimension.

Our algorithm only scans the database in the initial
stage (1=k) (see algorithm 1). In the other stages
(1>k) the algorithm depends on the distributed shared
memory, because the size of the database will be shrunk.
In the initial stage of our algorithm the database is divided
horizontally. So, the first stage of our algorithm is to
create a task for each database partition. That is done by
calling the Initial_task_creation procedure (see algorithm
2). Initial_task_creation procedure writes the tasks in the
distributed shared memory to be executed by the system
nodes. The algorithm will collect the results by calling
InitialResultCollector procedure to collect the results from
system nodes. Then, the master process merges the HIV
partitions, that come from the nodes, into single HIV with
keeping the segment structure. After that the algorithm
omit the poor segments that do not have any local frequent
itemsets. Also, the segments that its transaction has only
one item will be omitted. These tasks in the form of
JavaSpace entry are called ”taskEntry”. Each client will
take one taskEntry after anther to execute it. Each client
will scan its partition and convert it to the HIV (Horizontal
Item Vector).
Algorithm 1:The master Process in the algorithm

kCV
 /*Vector of stages for Candidate itemsets */

Call Initial_task_creation() procedure
Call Initial_Result_Collector() procedure
Omit the neglectable segments
Convert the HIV to VTV format in kCV .
Call taskCreator() thread.
Call ResultCollector() thread
While true do
 If all tasks finished and Ck.size < 1 then
 Kill ResultCollector() thread
 Kill taskCreator() thread
 Break the loop
 End
End

Algorithm 2: Initial_task_creation procedure
 For i = 1; i ≤ N; i ++ do

 Create taskEntry(
iDB)

 Write taskEntry(
iDB) in the JavaSpace

End

Algorithm 3: The taskEntry Algorithm

 If (k=l) then
 /*The 1-itemsets (need database scan)*/
 For all transactions iDBt∈ do

If item ti∈ then
 Increase the item i counter
 Convert the transaction into binary form iHIV .
 Put the transaction (t) into its segments.

 End
 End
 Encapsulate the iHIV into a resultEntry.
Else

/*At the stages k>1. We have two itemsets X and Y must
be joined into new itemset XY and count it’s frequent*/
resultList = X.TIDList ∩ Y.TIDList
If the itemset XY is non-frequent then
 resultList=φ
End
Encapsulate the resultList into a resultEntry.

End
Return a resultEntry that to the DSMS (JavaSpace)

Algorithm4: The Initial_Result_Collector procedure
 While there are unfinished initial task entry do

 If new initialResultEntry written then
 Take resultEntry;
 i

N
i HIVHIV 1== U /*Merge the iHIV depends on

the segments */
 End
End

Algorithm 5: The ResultCollector thread algorithm
 While true do

 If new resultEntry written then
 Take resultEntry;
 Update kCV ;
 End
End

Algorithm 6: The taskCreator thread algorithm

 1L ={large 1–itemset}
112 LLC ×=

For 2Cc∈∀
 If lower bound of S≥cP Then /* The probability of

the candidate c is strong */

 Create a taskEntry for c with priority =1;
 Write the new taskEntry into JavaSpace;
 update kCV ;
Else if)1(Pc δ+≥ S then
 Create a taskEntry for c with priority =2;
 Write the new taskEntry into JavaSpace;
 update kCV ;
Else
Neglect creating task for c
update kCV ;
End
while true do

If new itemset finished then
If the itemset is large then

Join the itemset with the other finished
itemsets in the same stage;

 Prune the new candidate c ;
 If lower bound of S≥cP then
 Create a taskEntry for c with priority =1;
 Write the new taskEntry into JavaSpace;
 Update kCV ;
 Else if)1(Pc δ+≥ S then
 Create a taskEntry for c with priority =2;
 Write the new taskEntry into JavaSpace;
 Update kCV ;

 Else
 Neglect creating task for c
 update kCV ;

 End
Else

update kCV ;
Delete related information this itemset
from the kCV ;

End
End

End

Finding the first frequent itemset (k=1) is done by
scanning the database. Finding the other itemsets (k>1) is
done on the VTV(Vertical tid–Vector). The ”taskEntry” is
a JavaSpace entry that contains algorithm for counting the
frequency of the itemset .i The taskEntry algorithm
contains two cases, see algorithm(3). The first case,
when ,1=k the client must create the iHIV by scanning its
database partition to count the frequency of all database
items and sort this partition transaction depending on
segments. The second case is at 1>k . At this stage the
taskEntry contains two TID lists of two itemsets
(X and Y). Also at this case, the client must create a
resultList that contains the intersection between the two
itemset(YX ,) TIDLists. If the new itemset is not

frequent, the result list will be empty. Then, the client will
create an entry called ”resultEntry” that encapsulates
the iHIV or resultList. The resultEntry must be written to
the JavaSpace by the client.

The master process calls the Initial_Result_Collector
procedure to collect all result entries. This procedure
merges the HIV presentation for all database partitions
that exists in all result entries into single HIV format and
keeping the segment sort(see algorithm 4). Also, the
master process omits poor segments that do not contain
any frequent items. Then, the algorithm starts building

kCV vector, that is a vector to register candidates, frequent
itemsets and the related information for each stage. The
first stage in

kCV vector is 1C , that contains the first

frequent itemset that has been taken form the HIV
structure. So, the algorithm generates new tasks by calling
the taskCreator thread. The taskCreator thread checks if
there is any finished itemset. If the finished itemset is not
large, that itemset must be registered as unfrequent and its
related information like tid list must be deleted from the
vector. If the itemset is large, it will join this itemset to the
other finished large itemset in the same stage. After
joining, the algorithm must make prune to the new
candidates. Then, it creates a new taskEntry for the new
candidates and puts it in the JavaSpace. Algorithm(6)
contains the pseudo code of taskCreator thread. The
function of ResultCollec- tor thread is to collect any result
entry in the JavaSpace and inform the taskCreator
thread(seen algorithm 5). The algorithm will finish if all
tasks in the kCV are finished and the size of the last stage
of this vector is less than 1. This means that, all
taskEntries created by the algorithm are finished and the
last stage of the algorithm does not have any candidates.
At this point, the algorithm must kill all the threads it has
and the large frequent itemsets is exists in kCV vector.

5. Experimental Results

The experimental test of PFI was performed in three
objectives. The first objective is to list effect of δ on the
set of candidate kC (section 5.1). The second objective is

to list different values of δ to determine the best (section
5.2). The third objective is to test the performance of the
new algorithm by comparing it with the other algorithms
(section 5.3). All experiments ware performed on five PCs.
These PCs can be heterogeneous, but in performance test
we would like to unify the resource of the system nodes.
This was to highlight the effect of other parameter like,
database size, minimum support, δ , and number of nodes
in the system. These PCs had a CPU of type Intel(R)

IJCSNS International Journal of Computer Science and Network Security, VOL.1 No. , May 2011

7

Core(TM) 2Duo 1.6 G.H and 2GB RAM. The
intercommunication between the machines was done by
100 Mbps Ethernet. The software environment was as
follows; Windows XP professional, Java JDK 1.4.2 04
[13], Jini(TM) Technology Starter Kit v2.0.2 [16] and a
free visual platform for Jini 2.0 was called Inca X(TM) [9].
To measure the performance of the algorithms we use
three synthetic datasets: D1=T10I4D10K,
D2=T10I4D100K, D3=T10I10D1000K. The dataset
T10I4D10K meant an average transaction size of 10, an
average size of the maximum potentially frequent itemsets
of 4, and 10000 generated transactions. These datasets
generated by the algorithm for generating synthetic
databases that described by Agrawal and Srikant [3]. Each
experiment was repeated 4 times. The average of the four
runs was taken and used for analysis. We chose four
values of δ (these are {0.01, 0.1, 0.2, 0.3}) for PFI test.

5.1 The Reduction of Candidate Test:

In this section the effect of δ on the number of
candidates was tested. Figures(4,5,6) show the effect of δ
at minimum support 1% on the candidates in D1, D2, D3
respectively. The same test was done with minimum
support 10% (figures 7, 8, 9). Moreover, this test was also
repeated using high ratio of minimum support(35%) in
figures(10, 11, 12). Form these figures we noticed that,
increasing the value of δ the number of candidate
decreased. Decreasing the number of candidate will
increase the performance but it will decrease the accuracy.
At %1=δ the number of candidates is closed to that
yield by Apriori algorithm. But at big database or at small
value of minimum support the difference between the
number of candidates that yields from Apriori and PFI(at

%1=δ) was thousands of candidates. This makes
predication that the performance will be enhanced by PFI.
But first we must check the effect of δ on the accuracy in
the next section.

Fig.4. Total number of candidate at minimum support 1% on D1

Fig.5. Total number of candidate at minimum support 1% on D2

Fig.6. Total number of candidate at minimum support 1% on D3

Fig.7. Total number of candidate at minimum support 10% on D1

Fig.8. Total number of candidate at minimum support 10% on D2

Fig.9. Total number of candidate at minimum support 10% on D3

Fig.10. Total number of candidate at minimum support 35% on D1

Fig.11. Total number of candidate at minimum support 35% on D2

Fig.12. Total number of candidate at minimum support 35% on D3

5.2 The Accuracy Test:

In this section we will test the effect of δ on the
number of frequent itemset in each stage (k - itemsets).
We compare PFI with Apriori algorithm that represents
the complete result that should be appearing. Also, PFI
algorithm classifies the candidate into three groups. The

first group, called strong probability frequent itemsets,
contains the itemsets that have lower probability bound
greater than or equal the minimum support (Spp gf ≥).
We test the performance of the new algorithm with this
hard condition and we called it "PFIHard". We had to
show the effect of this condition on filtering the itemset.
Also, we will show whether the hard condition is
sufficient or it can be use to accelerate the algorithm
response time.

Figures from 13 to 21 show frequent itemsets
comparison between the frequent itemsets that yield from
PFI and the Apriori algorithm at different minimum
supports (}35%,10%,1{=s). We can notice that, the
curves of PFI and Apriori are closed at the beginning and
at the end. This means that, the smallest and maximal
frequent itemset that will yield from PFI and Apriori will
be approximately identical. Also, the PFI at 01.0=δ and
Apriori curve are completely identical.

Fig.13. number of frequent itemsets at minimum support 1% on D1

Fig.14. number of frequent itemsets at minimum support 1% on D2

Fig.15. number of frequent itemsets at minimum support 1% on D3

IJCSNS International Journal of Computer Science and Network Security, VOL.1 No. , May 2011

9

Fig.16. number of frequent itemsets at minimum support 10% on D1

Fig.17. number of frequent itemsets at minimum support 10% on D2

Fig.18. number of frequent itemsets at minimum support 10% on D3

Fig.19. number of frequent itemsets at minimum support 35% on D1

Fig.20. number of frequent itemsets at minimum support 35% on D2

Fig.21. number of frequent itemsets at minimum support 35% on D3

5.1 The Performance Test:

Now, we compare the performance of PFI algo-
rithm with the Hori-Vertical, Eclat, WMDF and Apriori
algorithms. Figure (22) shows the performance
comparison on dataset D1. From this figure we can notice
that PFI has performance better than Hori-Vertical
algorithm. By increasing the minimum support the PFI at

01.0=δ curve is coming closed to Hori-Vertical. Also,
by increasing the value of δ the performance of the PFI is
increased.

Fig.22. performance comparison on database D1

Fig.23. performance comparison on database D2

Fig.24. performance comparison on database D3

Figure (23) shows the same test using D2 as datasets.

We can notice that, at the big minimum support the
performance of the Eclat, WMDF and Apriori algorithms
are closed. The performance comparison using big
datasets (D3) is shown in figure (24). From all of the
previous figures, we notice that, the PFI algorithm has the
best performance. Also, at 01.0=δ the PFI and
HoriVertical are closed at the big minimum support. The
Apriori algorithm has the worst performance because this
algorithm is a sequential and runs on one machine. The
Eclat algorithm have performance better than the WMDF
algorithm. This is because, the Eclat algorithm scans the
database three times and the WMDF algorithm scans the
database a lot of times. But at the big minimum support,
the performance of the WMDF is going to be better than
Eclat.

Fig.25. performance comparison on database D3

Now we will test the effect of increasing number of
nodes on the performance of PFI algorithm. Also we will
compare it with the previous parallel association rules
algorithms. The Apriori will not be in this test because its
sequential algorithm. So, we measure the performance of
the parallel algorithms (Ecalt, WMDF, HoriVertical) using
different number of clients in the system, as seen in figure
28. This test is done using the biggest dataset we have
(D3) and in case of minimum support equals 0.5%. From
this figure we can notice that, the WMDF curve is not
smooth because the redistribution of the database blocks
can raise the communications. The Hori-Vertical
algorithm is going to be better than the PFI specially as
increasing number of clients. Also, PFI algorithm has the
performance better than PFI algorithm at small number of
nodes.

From the entire previous test we can conclude the
following. The PFI produce very accurate output at

01.0=δ . Also, as increasing the value of δ the number
of candidate will be decreased but the accuracy will also
decreased. The performance of PFI is better than the
performance of HoriVertical algorithm at the small value
of minimum support and on big database, this is
becauseδ will be more effective. As increasing number

of nodes the performance HoriVertical algorithm is being
better than PFI.

6. Conclusion

Through this paper, we have presented PFI algorithm.
The PFI uses a DSMS which has various advantages over
the other parallel models. The PFI algorithm based on
reducing dataset searching area vertically (the number of
candidates) and horizontally(number of transaction). Also,
PFI has powerful features, such as; scanning the database
only one time and processing different stages of large
itemsets at the same time. Moreover, a comparison of PFI
algorithm with our previous algorithm "HoriVertical", a
well-known algorithm Eclat, Apriori algorithm and a new
load balanced algorithm called WMDF was made. In
general the PFI algorithm has the best performance. The
PFI has reasonable performance and produce accurate
output at 01.0=δ . Also, increasing the value of δ will
give a good performance enhancement but will reduce the
accuracy. So, δ will be depending on the type and the
size of the dataset. As increasing the number of system
nodes the performance of the HoriVertical was better than
the performance of the PFI. Future studies are required to
fix this problem.
References
[1] R. Agrawal, T. Imielinski, and A. Swami, Mining association rules

between sets of items in large databases., In Proc. of the ACM
SIGMOD Conference on Management of Data, pages 207-216,
Washington (1993).

[2] R. Agrawal and J. C. Shafer, Parallel mining of association rules,
IEEE Transactions On Knowledge And Data Engineering, Volume
8 pages:962-969 (1996).

[3] R. Agrawal and R. Srikant, Fast algorithms for mining association
rules in large databases, Proceedings of the 20th International
Conference on Very Large Data Bases, pages 487–499 (1994).

[4] L. M. Aouad, N Le-Khac, and T. M. Kechadi, Distributed frequent
itemsets mining in heterogeneous platforms, Engineering, Computer
and Architecture, Volume 1 (2007).

[5] U. Badawi., A single system image supporting distributed objects,
Ph.D. thesis, Dept. of Mathematics, Faculty of Science,Cairo
University, nov. 2000.

[6] D. W. Cheung and Y. Xiao, Effect of data skewness in parallel
mining of association rules, Lecture Notes in Computer Science,
Volume 1394 (1998).

[7] T. Vincent W. Ada D. Cheung, H. Jiawei and Y. Yongjian, A fast
distributed algorithm for mining association rules., 4th Intl. Conf.
Parallel and Distributed Info. Systems, (1996.).

[8] M. Hahsler, G. Bettina, K. Hornik, and C. Buchta, Introduction to
arules a computational environment for mining association rules
and frequent item sets, 2010.

[9] inca X, Inca x(tm) community edition, available from Incax WWW
Site (http://www.incax.com/download.com), 2007.

[10] H. Jiawei and M. Kamber, Data mining: Concepts and techniques,
second edition (the morgan kaufmann series in data management
systems), 2 ed., vol. 2, Morgan Kaufmann; 2 edition, November
2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.1 No. , May 2011

11

[11] S. Kotsiantis and D. Kanellopoulos, Association rules mining: A
recent overview, GESTS International Transactions on Computer
Science and Engineering, Volume 32 Pages:71–82 (2006).

[12] T. G. Mattson, Programming environments for parallel and dis-
tributed computing: A comparison of p4, pvm, linda and tcgms-g.,
ftp Server, ftp.cs.yale.edu (1995).

[13] Sun Microsystems., Java development kit, vol. 1.4.2 04, available
from Sun Microsystems WWW Site
(http://www.sun.com/products/jdk), 2004.

[14] Sun Microsystems, Javaspaces specification, vol. 2.0.2, available
from Sun Microsystems WWW Site
(http://java.sun.com/products/javaspaces), jun 2008.

[15] Sun Microsystems, Jini architecture specification, vol.
v2.0.2, available from Sun Microsystems WWW
Site (http://www.sun.com/jini/), jun 2008.

[16] Sun Microsystems, Jini technology core platform specification., vol.
v2.0.2, available from Sun Microsystems WWW Site
(http://www.sun.com/jini/), jun 2008.

[17] H. E. Refaat, New mechanism to integrate fault tolerance in a
distributed shared memory based system, Computer science, Cairo
Uni, 2007.

[18] A. Schuster and R. Wolff, Communication-efficient distributed
mining of association rules, ACM SIGMOD Int’l. Conference on
Management of Data, Santa Barbara, California, pp. 473-484.
(2001).

[19] P. Tang and M. Turkia, Parallelizing frequent item-set mining with
fp-trees., Technical Report titus.compsci.ualr.edu/ ptang/papers/par-
fi.pdf, Department of Computer Science,University of Arkansas at
Little Rock (2005).

[20] M. Tomasevic, J. Protic, and V. Milutinovic., Distributed shared
memory: Concepts and systems., IEEE Parallel and Distributed
technology, 4(2):63-79 (1996).

[21] D. YaJun and L. HaiMing, Strategy for mining association rules for
web pages based on formal concept analysis, Appl. Soft Com-put.
volume 10 pages:772–783 (2010).

[22] M. J. Zaki, Parallel and distributed association mining: A survey,
IEEE Concurrency 7 (1999), 14–25.

[23] M. J. Zaki, S. Parthasarathy, and L. Wei, A localized algorithm for
parallel association mining, In Proceedings of the 9th Annual ACM
Symposium on Parallel Algorithms and Architectures, 1997, pp.
321–330.

[24] P. Shenoy, J. R. Haritsa, S. Sundarshan, G. Bhalotia , M.
Bawa, and D. Shah. Turbo-charging vertical mining of large
databases. In Proceedings of 2000 ACM SIGMOD
International Conference on Management of Data, pages
22–33, 2000

[25] H. Marghny, and H. Refaat. Hori-Vertical Distributed
Frequent Itemsets Mining Algorithm on Heterogeneous
Distributed Shared Memory System. IJCSNS International
Journal of Computer Science and Network Security,
VOL.10 No.11 , pages 56–62 , November 2010.

[26] LI Pingxiang, CHEN Jiangping and BIAN Fuling. A
Developed Algorithm of Apriori Based on Association
Analysis. Geo-Spatial Information Science. VOL 7. Issue 2.
June 2004.

 Marghny H. Mohamed,
Dept. of Computer Science, Faculty of
Computers and Information Science,
Asyut University, Asyut, Egypt. He
received the PhD degree in computer
science from the University of
Kyushu, Japan, in 2001, and the MS

from Asyut university in computer science, in 1993 and
BS degree in Mathematics from Asyut University, Egypt,
in 1988. He is an associate professor in the Department of
Computer Science, University of Asyut. He has many
publications which in the fields of Data Mining, Text
Mining, Information Retrieval, Web Mining, Machine
Learning, Pattern Recognition, Neural Networks,
Evolutionary Computation, Fuzzy Systems. Dr. Marghny
is a member of the Egyptian mathematical society and
Egyptian syndicate of scientific professions., he is a
member of some research projects in Asyut university,
Egypt. He is a Manager of the project entitled "Medical
Diagnostic System for Endemic Diseases in Egypt Using
Self Organizing Data Mining".

 Hosam E Refaat: has been
graduated from the Faculty of Science,
Asyut university, Egypt, in 1998. In
October 2006, he finished his Master
degree in the field of distributed systems
from the faculty of Science, Cairo
University, Egypt. Currently, he is a
lecturer of Computer Science in King

Khalid University– Kingdom of Saudi Arabia.

