
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011 

 
 

166

Manuscript received May 5, 2011 
Manuscript revised May 20, 2011 

Dynamic Threshold and Fast Motion Estimation Algorithm 

based on PSO for H.264’s Scene Change Detection 
                                          L.Koteswara Rao[1] ,             Dr.D.Venkata Rao[2]  

[1]Associate Professor, Dept of ECE, KGReddy College of Engg.& Tech. Hyderabad, AP, INDIA 
[2]Principal, PPD College of Engg.& Tech. Vijayawada, AP, INDIA 

                                                        
                
ABSTRACT 
 Many scene change detection algorithms proposed so far use 
fixed thresholds for identifying the scene change. These 
thresholds are   obtained empirically or   they   must   be 
calculated before the detection once the whole sequence is 
obtained. For videos having high scene complexity and variation, 
the performance of most of the scene change algorithms decrease 
considerably. In this paper, we study the correlation between 
local statistical   characteristics, scene duration   and   scene 
change.   Based   on   this   analysis,   we further   propose   and 
implement    a   scene   change   algorithm   for   H.264   codec, 
defining  an  automated,  dynamic  threshold  model  with  fast 
motion  estimation algorithm having low complexity  which  can 
efficiently trace out  scene changes. Experimental results on 
QCIF   videos indicate   very   good performance with 
significantly improved accuracy combined with minimum 
complexity. 
General Terms 
Video signal processing, Encoder. 
Index Terms 
Dynamic threshold model (DTM), scene change detection, 
automated   threshold,   scene   duration,   Motion   Estimation, 
H.264. 

1. Introduction 

Now a days, for number of video applications the scene 
change detection is of great importance. Scene change 
detection is a part of video encoder to improve its 
efficiency. Computational schemes of algorithms 
proposed previously defines a similarity measure between 
two consecutive  frames. When this   measure   reveals   a   
big enough change, a scene change is declared.  These 
schemes define a fixed threshold. If the value of the 
measure exceeds the threshold, a scene change is detected.  
However, a fixed threshold value cannot perform well for 
all videos mainly due   to   the   diversity   of   their   
characteristics.   The   key problem   is to obtain   an 
optimal value   for   such   fixed threshold.  If it is set too   
high, there is high probability that some cuts remain 
undetected. On the other hand if it is too low, the detection 
scheme produces false detections. In real-time videos, we 
can have both cases simultaneously. 
 

To solve the threshold selection problem, many 
approaches have been proposed. In  order  to  overcome  
the  detection problem,  a double  threshold  (high  – low)  
was proposed  to eliminate missed scene changes and 
dismiss false ones [1]. 
Although it improved the efficiency, results are not 
sufficient, especially in real- world videos with   high   
motion    like   sport   games.   In addition  to this  method,  
a  function-based  lowering  of  the threshold,  after  a  
scene  change  was used to  decay   from high  to  lower  
threshold  [2].  This technique was used to avoid false 
detections    close   to   a   real   scene    change, assuming   
that   scene   changes   cannot   occur immediately after 
each other.  However, in most of these methods an optimal   
threshold (or two thresholds) is required to be determined   
for   each   video   in   advance.   Other   methods were  
proposed   to   find   automatically   an   optimal   static 
threshold  e.g. using  histogram  differences [3],  entropy  
[4] or   the   Otsu   method [5],   but   they  still   have  the 
disadvantage  of  a  static threshold  and  therefore  they  
are not  suitable   for  real-time   applications. A truly 
dynamic threshold is presented in [6], where the  input 
data is filtered by a  median  filter  and  then  a  threshold  
is  set  using  the filtered  output  and  standard  deviation.  
However, it is not suitable for   real-time   applications, as 
the   median   filter uses    future   frames     as   well. A 
different approach for variable bit rate video is presented 
in [7], where the bit-rate used   in   each   frame is   the 
“change”   metric.    It   uses statistical properties of the 
metric values in a single shot, together with the shot’s 
length, to define a threshold. 
In this paper we focus on a dynamic threshold model w i t 
h fast motion estimation algorithm for real-time scene 
change detection in different video sequences.  The 
method we use is based on the extraction of the sum of 
absolute differences between consecutive   frames by 
using proposed motion estimation technique from   the 
H.264 codec. These differences serve as a   criterion   for   
the   choice   of   the compression method as well as for 
the temporal prediction. We   use   a   sliding   window   to   
extract   local   statistical properties   (mean value, 
standard deviation)    which   we further use to define a 
continuously updating automated thresholds. 
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This paper is organized as follows. In Section 2, the 
compression standard H.264 and its features are described. 
In Section 3, we define the motion estimation technique 
based on PSO. In section 4, we describe the dynamic 
threshold model for video streams. Section 5 includes the 
simulation results, while in Section 6 conclusions and 
final remarks can be found. 

2. H.264 Encoder 

H.264  [8]  is  the  newest  high  compression   digital   
video codec  standard   proposed   by  the  ITU-T Video 
Coding Experts  Group  together  with  the  ISO/IEC  
Moving  Picture Experts  Group  as  the  product  of  a  
collective  partnership effort known as  the Joint Video 
Team. This standard is also known as   Advanced   Video 
Coding (AVC). The H.264 encoder has three different 
types of frames defined: spatially predicted frames (I), 
from previous frames predicted frames (P), bi-
directionally predicted frames (B). Each color input frame 
contains both chrominance and luminance data. Each 
frame is tiled in macro blocks which are separately 
encoded spatially or temporally. Macro blocks in H.264 
are further tiled in smaller blocks.  Each block  can  be  
compared  with  the  respective   block  in  the previous  
frame  by  using  the  following  motion  estimation 
technique. 

3. BI-Directional Motion Estimation 
Algorithm based On Particle Swarm 
Optimization 

To impose smoothness constraints on the estimation 
motion field, the image domain is divided in to non 
overlapping small regions called Blocks assuming that the 
motion within each block can be characterized by a simple 
parametric model [9]. Generally, the  most  
straightforward  Block Matching Algorithms called  full  
search (FS)   simply compares   the given macro block 
(MB)  in the anchor  frame  with  all  candidate  MBs  in  
the  target  frame exhaustively  within a predefined search 
region.  This is not fit for real-time applications because of 
its unacceptable computational cost. To speed up the 
search, various    fast algorithms for block matching which 
reduce the number   of search candidates have been 
developed. Well known examples are three-step search 
(TSS),   Four   Step Search (FSS), block- based gradient 
descent  search (BBGDS)   and diamond   search (DS) 
have been proposed to reduce computational efforts, based 
on fixed search pattern and greedy search method. 
Over the last few years, promising computational 
intelligence methods, called evolutionary  computing 
techniques such as genetic algorithm (GA), particle swarm 

optimization (PSO) have been successfully applied to 
solve motion estimation problem [10]. Such approaches 
are suitable for achieving global optimal solution, which 
traditional fast BMAs are not able to obtain easily. The 
GA needs to set some key parameters such as population 
size, probability of mutation, probability of crossover, etc. 
If these parameters are not prefixed properly, efficiency of 
GA becomes lower and also it is time consuming process. 
So here we are adopted PSO procedure in order to do the 
bidirectional motion estimation [11]. Motivated by the 
potential improvement attainable by switching from 
independent search to joint search for the motion  vector 
estimation,  and  by  the  practical  requirement of  
avoiding  an excessively high search  complexity, the 
proposed  method is an iterative  technique  to jointly  
optimize  the motion  vectors  by using particle swarm 
optimization. PSO is a computational method that 
optimizes a problem by iteratively trying to improve a 
candidate solution with regard to a given measure of 
quality. 
 
Bidirectional ME [12] forms a major computation 
bottleneck in video processing applications such   as  
detection of noise in image sequences, interpolation/  
prediction of missing data in image sequences and de 
interlacing of image sequences. 
                Vf                                                   Vb 

 
      Frame K-1          Frame K              Frame K+1 

                 Fig 3.1 .Bidirectional motion estimation 
 
In general, Bidirectional motion estimation is performed 
by following the steps: 
1. Finding forward motion vector Vf   by taking past 
frame as reference frame. 
2. Finding backward motion vector Vb by taking future 
frame as reference. 
3.  Find  the  matching  error  for  both  methods  and  find  
the average motion vector position and its matching error. 
4. Compare all the three errors and take the motion vector 
which is giving the least error. 
 
Generally, the objective of a motion estimation algorithm 
is to minimize a cost function that measures the 
interpolation error in the macro block. Examples are the 
popular sum of absolute difference (SAD).The process of 
finding robust motion vectors using minimal computations 
is a heavily researched area, and various fast algorithms 
have been proposed. 
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In order to reduce the overall processing time in some 
video processing applications, the complexity of the 
bidirectional ME algorithm used [13]. The proposed novel 
technique to do the bidirectional motion estimation is 
based on PSO. The Block matching algorithm based on 
PSO is giving good results in terms of quality and less 
number of computations. Our idea is not to find the 
forward and backward motion vectors individually but to 
find the minimum matching macro block each time when 
PSO   is finding for a minimum matching block. So it will 
reduce the number of computations involved in finding 
out the minimum matching point. PSO is initialized with a 
group of random particles (solutions) and then searches 
for optima by updating generations. In every iteration, 
each particle is updated by following two “best” values.  
The first one is the best solution (fitness) it has achieved 
so far. (The fitness value is also stored.) This value is 
called pbest. Another “best” value that is tracked by the 
particle swarm optimizer is the best value, obtained so far 
by any particle in the population. This best value is a 
global best and called gbest. When a particle takes part of 
the population as its topological neighbors, the best value 
is a local best and is called lbest. The variables pbest and 
gbest and their increments are both necessary. 
Conceptually pbest  resembles autobiographical memory,  
as  each  individual  remembers  its  own  experience 
(though  only one  fact  about  it),  and  the  velocity 
adjustment associated with pbest has been called “simple 
nostalgia” in that the individual tends to return to the place 
that most satisfied it in the past. On the other hand, gbest 
is conceptually similar to publicized knowledge, or a 
group norm or standard, which individuals seek to attain. 
The  updating   formula for each particles velocity  and  
position  in conventional  standard PSO is written as 
 
Vid (t + 1) = W × Vid (t) + c1 × rand(.) × (pbest − Xid  
(t)) + c2 × rand (.) × (gbest − Xid  (t)) 

 
       Xid (t + 1) = Xid (t) + Vid (t + 1) 
 

where i = 1, 2…. N, N is the number of particles in the 
swarm, d = 1, 2….D, and D  is the dimension  of solution  
space; Vi = (Vi1 , Vi2  , ....Vid ), V id ε[−Vmax , Vmax ] 
is the velocity vector of particle  i  which  decides  the  
particle’s  displacement  in  each iteration. Similarly, Xi = 
(Xi1 , Xi2 ,…Xid ), Xid ε [−Xmax , Xmax ] is the position 
vector of particle i which is a potential solution in the 
solution space. the quality of the solution is measured by a 
fitness function, W is the inertia weight which decreases 
linearly during a run and c1, c2 are both positive  
constants, called the acceleration factors which are 
generally set to 2 and rand(.) and rand(.) are two   
independent  random number distributed uniformly over  
the range  [0, 1]; and Pg ,  Pi   are the best solutions  
discovered so far by the group and  itself respectively. The 

termination criterion for iterations is determined according 
to whether the presetting maximum generation or a 
designated value of the fitness is reached. 
Particle’s velocities on each dimension are clamped   to a 
maximum velocity Vmax. If the sum of accelerations 
would cause the velocity on that dimension to exceed 
Vmax, which is a parameter specified by the user. Then 
the velocity on  that dimension is limited to Vmax. 

3.1 Algorithm Steps 

The proposed algorithm can be summarized in the 
following steps 
 1. Initialization.  Assume c1 = 2, c2 = 2, and W be from 
0.9 to 0.4 linearly. 
2. Perform block matching algorithm  based on PSO. 
3. Each time find the minimum matching error (SAD) 
point in the past frame and the current  frame as shown in 
fig.3.1. 
4. Take the minimum out of both matching error (SAD), 
this is considered as the Cost function of our algorithm. 
5. For each generation we are getting the minimum error 
point in the two reference frame at a time. 
6. Until it reaches the stopping criteria it will continue the 
above steps. 
7. Save the final motion vector point for motion 
compensation.  
 
Since we are performing the Block matching procedure at 
a time in two reference frames, our objective function is to 
minimize the mean of the two matching errors between 
two frames. 
 

Cost fun = min (SADP, SADF) 
 
Here SADP and SADF are the sum of absolute difference 
of the past frame and future frames respectively. 
 
3.2 Experiments and Simulation results 
The performance   of   the   proposed   Bidirectional    
motion estimation block matching algorithm based on  
Particle Swarm Optimization(POS)  is  evaluated  in  
terms  of  Average  Mean  Square Prediction  Error  
(AMSPE)  in  table  3.1,  and  Average  Search points   
per   frame   in   table   3.2   is   computed   for   quality 
measurement. 
 

Sequence Bi-Ds Bi-Pso 

Zib Sport 125.1636 80.3798 
Euro Sport 32.4141 29.5195 

Akiyo 11.8697 16.3192 

Quiet 76.9223 51.4913 

Table 3.1.Average mean square prediction error 
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Table 3.2.Average search points per frame 

4. Automated Dynamic Threshold Model 
A scene is a block of frames between two scene changes. 
The sequence of SAD values that are computed has 
statistical properties that are valuable in our effort to 
detect scene changes. On scene changes we obtain a high 
SAD value which makes them detectable. However, we 
can also have high SAD values during rapid movement, 
sudden light changes and transition effects such as zoom 
in/out, dissolve etc.  Moreover, we can have scene 
changes with very different value levels. 
 
A scene break, where both scenes have similar  
background does not  give  a  peak  as  high  as   
 
if  they  had   different  ones. Consequently, a thresholding 
function is needed, which will be able to adapt to the 
character of the scene without the need for a previous 
input. If we want to preserve the real-time character of the 
algorithm, we should only use the previous sequence 
values, without looking in the future. For  the  proposed  
thresholding function,  we  use  local  statistical  properties  
of  the sequence. Let Xi be a random variable which 
models the SAD value in frame i. We use a sliding 
window of length N. If  the  actual frame number is  n, 
then  the window  lies between [n- (N+1), N-1].We  
compute   the  empirical  mean  value  mn and the 
standard  deviation  σn   of Xi  in  the  defined  window  as 
follows. 
 

       mn=     

σn  =    

 
We use the above two equations together with Xn-1   to 
define the threshold T (n) as follows: 
 
                T(n)=a.Xn-1+b.mn+c.σn 
 
Alternatively we can read the above equation as T(n) 
=a(Xn-1- mn)+(b+a) mn+c.σn which is more illustrative 

for the following discussion about appropriate choice of 
the constants. Constants a, b, c are very important because 
they determine the character of the thresholding function. 
If b takes high values, the threshold will become more 
rigid, keeping values without approaching the Xi sequence. 
This avoids wrong change detections like in case of 
intense motion scenes; but on the other hand, the detector 
can miss some low valued, difficult scene changes. A low 
value of b allows us to detect regions   with   high activity, 
which can provide valuable information to other 
applications (e.g. bit-rate control, semantics, error 
concealment etc.). As σn is the standard deviation, high 
values of c prevent from detecting intense motion as a 
scene change. On the contrary, a must  have  a  small  
value  because,  as  we  have already  discussed,   the   
properties   of  Xi  are not always welcome  in  scene  
change  detection. The whole procedure of choosing a, b, c 
is a tradeoff and should be performed with respect to the 
intended application. 
In  addition  to  the  dynamic  threshold  model  described,  
a function based lowering of the threshold   found   in  [2]   
is employed   to  avoid  false   detections   immediately  
after  a scene change. When a scene change is detected in 
frame p, the SAD value of this frame is assigned to the 
threshold. In this case,  for the next K frames we further 
use the threshold Te(n)  which is  decaying  exponentially,   
in  order  to  avoid false  scene  change  detection  very  
close  to   the previous change 
 

Te(n)=Xn-1 exp (-s(n-p)), 
 
where ‘s’ controls the speed of decaying. 

5. Experimental Results 

In this section, we validate the proposed scheme for real-
time encoding application. For this purpose we use the 
H.264 codec v9.2 found in [14] modified to extract the 
SAD values. We used video sequences with   football 
content. They were chosen because they have scenes with 
intense motion, change of light conditions, high 
complexity and different types of scene changes. There are 
changes between the field and the crowd, which are easy 
to detect but there are also scene changes with the same 
background (the playground) which are more complicated. 
In football sequences also many visual effects like zoom 
in/out and transition effects like dissolve, fade in/out can 
be found. 
All these characteristics make football videos very 
challenging for a scene change detector. The first   video 
sequence (“zibsport”) is a collage of highlights from the 
Austrian league. It includes the cup ceremony,  
celebrations, football highlights and even some violent 
incidents in the watching crowd. Its resolution is 320 x 

 
    Sequence 

    
   Bi-Ds 

 
  Bi-Pso 

 
  Zib Sport 

 
21.6463 

 
10.9515 

  
  Euro Sport 

 
21.3988 

 
11.3266 

 
    Akiyo 

 
19.7825 

 
9.9448 

 
    Quiet 

 
19.905 

 
7.5776 
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240, and its length is 4,000 frames. It was encoded with 
the H.264 codec with one I frame at the start and P and B 
frames in the format PBPBPBPB. The number of true 
scene changes in this sequence was 36. We obtained them 
manually  by watching the video and counting them. 
The second video sequence (“eurosport”) and it is a 
typical football match recorded in 2004. Its resolution is 
172 x 144 (QCIF) and it is encoded in the same way as the 
previous video. Its length is 20,000 frames. The number of 
true scene changes in this sequence was 64. The 
evaluation of the proposed method is performed by 
comparing with other methods and the ground truth.  For 
this reason we employ the “recall” and “precision” ratios 
 
Recall =Nc/( Nc+ Nm)                 
Precession= Nc/( Nc+ Nf) 
 
where Nc  is the number  of correct  detections,   
Nf  the number of false  ones and  
Nm the number of missed ones. 
 

Zib sport 

(320X480) 
True False Missed Recall 

Preces

sion 

Fixed 

threshold 
29 10 7 .8 .74 

Dynamic 

threshold 

without 

exponentia

l decaying 

35 2 1 .97 .94 

Dynamic 

threshold 

with 

exponentia

l decaying 

35 1 1 .97 .97 

Table 5.1 shows the results of the scene change detection with a fixed 
threshold, with the dynamic threshold with and without exponential 

decaying for Zib sport 

The fixed threshold used for comparison was chosen 
optimally (the  best  case)  after  having  the SAD  values  
for  the  whole sequence,  we  took  the  value  that  
minimizes  the  number  of missed and false detections. 
Dynamic threshold parameters a, b, c we set to the 
following values: a=-1, b=2, c=2. These values were 
chosen the same for both sequences although they have 
different resolution to test their sensitivity. We used a 
sliding window of size 20 frames and speed of exponential 
decaying s=0.02. Please note, that scene change detection 
is more difficult in small resolutions like QCIF and thus 

the results are better for the “zib sport” sequence. We 
could do better if we set the DTM parameters separately 
for the first and second sequence.However, despite the use 
of an optimal fixed threshold the DTM performs 
significantly better in both cases. 

Euro 

sport(320X480)
True False Missed Recall

Preces

sion 

Fixed threshold 43 12 17 .67 .78 

Dynamic 

threshold 

without 

exponential 

decaying 

60 6 4 .93 .91 

Dynamic 

threshold with 

exponential 

decaying 

60 6 4 .93 .91 

Table 5.2 shows the results of the scene change detection with a fixed 
threshold, with the dynamic threshold with and without exponential 

decaying for Euro sport 

Optimal setting of the DTM parameters may also be 
slightly different for sequences with another character (for 
instance a TV discussion, video clip, etc.). Exponential 
decaying improves the results slightly, but the added value 
is rather low compared to the contribution of DTM itself 
against the fixed threshold. 

 
 

     
FalseDetections                 Missed Detections 

 
 

 
True Detections                      Recall 
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Precession 

 6. Conclusions 

In this paper we presented a novel automated dynamic 
threshold model for scene change detection. It is based on 
the local statistical properties of the video sequence. The 
method was designed and implemented for H.264 codec, 
but the idea could be used for any other codec or even for 
raw video sequences as well. Proposed method has the 
advantage of low complexity. Moreover, it uses only 
previous frames for the detection, which makes is suitable 
for real time applications. The method performs 
significantly better than an optimum fixed threshold 
setting and gives very good results also for low resolutions. 
It can be further enhanced to recognize and handle 
different kinds   of transitions. 
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