
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

166

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Dynamic Threshold and Fast Motion Estimation Algorithm

based on PSO for H.264’s Scene Change Detection
 L.Koteswara Rao[1] , Dr.D.Venkata Rao[2]

[1]Associate Professor, Dept of ECE, KGReddy College of Engg.& Tech. Hyderabad, AP, INDIA
[2]Principal, PPD College of Engg.& Tech. Vijayawada, AP, INDIA

ABSTRACT
 Many scene change detection algorithms proposed so far use
fixed thresholds for identifying the scene change. These
thresholds are obtained empirically or they must be
calculated before the detection once the whole sequence is
obtained. For videos having high scene complexity and variation,
the performance of most of the scene change algorithms decrease
considerably. In this paper, we study the correlation between
local statistical characteristics, scene duration and scene
change. Based on this analysis, we further propose and
implement a scene change algorithm for H.264 codec,
defining an automated, dynamic threshold model with fast
motion estimation algorithm having low complexity which can
efficiently trace out scene changes. Experimental results on
QCIF videos indicate very good performance with
significantly improved accuracy combined with minimum
complexity.
General Terms
Video signal processing, Encoder.
Index Terms
Dynamic threshold model (DTM), scene change detection,
automated threshold, scene duration, Motion Estimation,
H.264.

1. Introduction

Now a days, for number of video applications the scene
change detection is of great importance. Scene change
detection is a part of video encoder to improve its
efficiency. Computational schemes of algorithms
proposed previously defines a similarity measure between
two consecutive frames. When this measure reveals a
big enough change, a scene change is declared. These
schemes define a fixed threshold. If the value of the
measure exceeds the threshold, a scene change is detected.
However, a fixed threshold value cannot perform well for
all videos mainly due to the diversity of their
characteristics. The key problem is to obtain an
optimal value for such fixed threshold. If it is set too
high, there is high probability that some cuts remain
undetected. On the other hand if it is too low, the detection
scheme produces false detections. In real-time videos, we
can have both cases simultaneously.

To solve the threshold selection problem, many
approaches have been proposed. In order to overcome
the detection problem, a double threshold (high – low)
was proposed to eliminate missed scene changes and
dismiss false ones [1].
Although it improved the efficiency, results are not
sufficient, especially in real- world videos with high
motion like sport games. In addition to this method,
a function-based lowering of the threshold, after a
scene change was used to decay from high to lower
threshold [2]. This technique was used to avoid false
detections close to a real scene change, assuming
that scene changes cannot occur immediately after
each other. However, in most of these methods an optimal
threshold (or two thresholds) is required to be determined
for each video in advance. Other methods were
proposed to find automatically an optimal static
threshold e.g. using histogram differences [3], entropy
[4] or the Otsu method [5], but they still have the
disadvantage of a static threshold and therefore they
are not suitable for real-time applications. A truly
dynamic threshold is presented in [6], where the input
data is filtered by a median filter and then a threshold
is set using the filtered output and standard deviation.
However, it is not suitable for real-time applications, as
the median filter uses future frames as well. A
different approach for variable bit rate video is presented
in [7], where the bit-rate used in each frame is the
“change” metric. It uses statistical properties of the
metric values in a single shot, together with the shot’s
length, to define a threshold.
In this paper we focus on a dynamic threshold model w i t
h fast motion estimation algorithm for real-time scene
change detection in different video sequences. The
method we use is based on the extraction of the sum of
absolute differences between consecutive frames by
using proposed motion estimation technique from the
H.264 codec. These differences serve as a criterion for
the choice of the compression method as well as for
the temporal prediction. We use a sliding window to
extract local statistical properties (mean value,
standard deviation) which we further use to define a
continuously updating automated thresholds.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

167

This paper is organized as follows. In Section 2, the
compression standard H.264 and its features are described.
In Section 3, we define the motion estimation technique
based on PSO. In section 4, we describe the dynamic
threshold model for video streams. Section 5 includes the
simulation results, while in Section 6 conclusions and
final remarks can be found.

2. H.264 Encoder

H.264 [8] is the newest high compression digital
video codec standard proposed by the ITU-T Video
Coding Experts Group together with the ISO/IEC
Moving Picture Experts Group as the product of a
collective partnership effort known as the Joint Video
Team. This standard is also known as Advanced Video
Coding (AVC). The H.264 encoder has three different
types of frames defined: spatially predicted frames (I),
from previous frames predicted frames (P), bi-
directionally predicted frames (B). Each color input frame
contains both chrominance and luminance data. Each
frame is tiled in macro blocks which are separately
encoded spatially or temporally. Macro blocks in H.264
are further tiled in smaller blocks. Each block can be
compared with the respective block in the previous
frame by using the following motion estimation
technique.

3. BI-Directional Motion Estimation
Algorithm based On Particle Swarm
Optimization

To impose smoothness constraints on the estimation
motion field, the image domain is divided in to non
overlapping small regions called Blocks assuming that the
motion within each block can be characterized by a simple
parametric model [9]. Generally, the most
straightforward Block Matching Algorithms called full
search (FS) simply compares the given macro block
(MB) in the anchor frame with all candidate MBs in
the target frame exhaustively within a predefined search
region. This is not fit for real-time applications because of
its unacceptable computational cost. To speed up the
search, various fast algorithms for block matching which
reduce the number of search candidates have been
developed. Well known examples are three-step search
(TSS), Four Step Search (FSS), block- based gradient
descent search (BBGDS) and diamond search (DS)
have been proposed to reduce computational efforts, based
on fixed search pattern and greedy search method.
Over the last few years, promising computational
intelligence methods, called evolutionary computing
techniques such as genetic algorithm (GA), particle swarm

optimization (PSO) have been successfully applied to
solve motion estimation problem [10]. Such approaches
are suitable for achieving global optimal solution, which
traditional fast BMAs are not able to obtain easily. The
GA needs to set some key parameters such as population
size, probability of mutation, probability of crossover, etc.
If these parameters are not prefixed properly, efficiency of
GA becomes lower and also it is time consuming process.
So here we are adopted PSO procedure in order to do the
bidirectional motion estimation [11]. Motivated by the
potential improvement attainable by switching from
independent search to joint search for the motion vector
estimation, and by the practical requirement of
avoiding an excessively high search complexity, the
proposed method is an iterative technique to jointly
optimize the motion vectors by using particle swarm
optimization. PSO is a computational method that
optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of
quality.

Bidirectional ME [12] forms a major computation
bottleneck in video processing applications such as
detection of noise in image sequences, interpolation/
prediction of missing data in image sequences and de
interlacing of image sequences.
 Vf Vb

 Frame K-1 Frame K Frame K+1

 Fig 3.1 .Bidirectional motion estimation

In general, Bidirectional motion estimation is performed
by following the steps:
1. Finding forward motion vector Vf by taking past
frame as reference frame.
2. Finding backward motion vector Vb by taking future
frame as reference.
3. Find the matching error for both methods and find
the average motion vector position and its matching error.
4. Compare all the three errors and take the motion vector
which is giving the least error.

Generally, the objective of a motion estimation algorithm
is to minimize a cost function that measures the
interpolation error in the macro block. Examples are the
popular sum of absolute difference (SAD).The process of
finding robust motion vectors using minimal computations
is a heavily researched area, and various fast algorithms
have been proposed.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

168

In order to reduce the overall processing time in some
video processing applications, the complexity of the
bidirectional ME algorithm used [13]. The proposed novel
technique to do the bidirectional motion estimation is
based on PSO. The Block matching algorithm based on
PSO is giving good results in terms of quality and less
number of computations. Our idea is not to find the
forward and backward motion vectors individually but to
find the minimum matching macro block each time when
PSO is finding for a minimum matching block. So it will
reduce the number of computations involved in finding
out the minimum matching point. PSO is initialized with a
group of random particles (solutions) and then searches
for optima by updating generations. In every iteration,
each particle is updated by following two “best” values.
The first one is the best solution (fitness) it has achieved
so far. (The fitness value is also stored.) This value is
called pbest. Another “best” value that is tracked by the
particle swarm optimizer is the best value, obtained so far
by any particle in the population. This best value is a
global best and called gbest. When a particle takes part of
the population as its topological neighbors, the best value
is a local best and is called lbest. The variables pbest and
gbest and their increments are both necessary.
Conceptually pbest resembles autobiographical memory,
as each individual remembers its own experience
(though only one fact about it), and the velocity
adjustment associated with pbest has been called “simple
nostalgia” in that the individual tends to return to the place
that most satisfied it in the past. On the other hand, gbest
is conceptually similar to publicized knowledge, or a
group norm or standard, which individuals seek to attain.
The updating formula for each particles velocity and
position in conventional standard PSO is written as

Vid (t + 1) = W × Vid (t) + c1 × rand(.) × (pbest − Xid
(t)) + c2 × rand (.) × (gbest − Xid (t))

 Xid (t + 1) = Xid (t) + Vid (t + 1)

where i = 1, 2…. N, N is the number of particles in the
swarm, d = 1, 2….D, and D is the dimension of solution
space; Vi = (Vi1 , Vi2 ,Vid), V id ε[−Vmax , Vmax]
is the velocity vector of particle i which decides the
particle’s displacement in each iteration. Similarly, Xi =
(Xi1 , Xi2 ,…Xid), Xid ε [−Xmax , Xmax] is the position
vector of particle i which is a potential solution in the
solution space. the quality of the solution is measured by a
fitness function, W is the inertia weight which decreases
linearly during a run and c1, c2 are both positive
constants, called the acceleration factors which are
generally set to 2 and rand(.) and rand(.) are two
independent random number distributed uniformly over
the range [0, 1]; and Pg , Pi are the best solutions
discovered so far by the group and itself respectively. The

termination criterion for iterations is determined according
to whether the presetting maximum generation or a
designated value of the fitness is reached.
Particle’s velocities on each dimension are clamped to a
maximum velocity Vmax. If the sum of accelerations
would cause the velocity on that dimension to exceed
Vmax, which is a parameter specified by the user. Then
the velocity on that dimension is limited to Vmax.

3.1 Algorithm Steps

The proposed algorithm can be summarized in the
following steps
 1. Initialization. Assume c1 = 2, c2 = 2, and W be from
0.9 to 0.4 linearly.
2. Perform block matching algorithm based on PSO.
3. Each time find the minimum matching error (SAD)
point in the past frame and the current frame as shown in
fig.3.1.
4. Take the minimum out of both matching error (SAD),
this is considered as the Cost function of our algorithm.
5. For each generation we are getting the minimum error
point in the two reference frame at a time.
6. Until it reaches the stopping criteria it will continue the
above steps.
7. Save the final motion vector point for motion
compensation.

Since we are performing the Block matching procedure at
a time in two reference frames, our objective function is to
minimize the mean of the two matching errors between
two frames.

Cost fun = min (SADP, SADF)

Here SADP and SADF are the sum of absolute difference
of the past frame and future frames respectively.

3.2 Experiments and Simulation results
The performance of the proposed Bidirectional
motion estimation block matching algorithm based on
Particle Swarm Optimization(POS) is evaluated in
terms of Average Mean Square Prediction Error
(AMSPE) in table 3.1, and Average Search points
per frame in table 3.2 is computed for quality
measurement.

Sequence Bi-Ds Bi-Pso

Zib Sport 125.1636 80.3798
Euro Sport 32.4141 29.5195

Akiyo 11.8697 16.3192

Quiet 76.9223 51.4913

Table 3.1.Average mean square prediction error

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

169

Table 3.2.Average search points per frame

4. Automated Dynamic Threshold Model
A scene is a block of frames between two scene changes.
The sequence of SAD values that are computed has
statistical properties that are valuable in our effort to
detect scene changes. On scene changes we obtain a high
SAD value which makes them detectable. However, we
can also have high SAD values during rapid movement,
sudden light changes and transition effects such as zoom
in/out, dissolve etc. Moreover, we can have scene
changes with very different value levels.

A scene break, where both scenes have similar
background does not give a peak as high as

if they had different ones. Consequently, a thresholding
function is needed, which will be able to adapt to the
character of the scene without the need for a previous
input. If we want to preserve the real-time character of the
algorithm, we should only use the previous sequence
values, without looking in the future. For the proposed
thresholding function, we use local statistical properties
of the sequence. Let Xi be a random variable which
models the SAD value in frame i. We use a sliding
window of length N. If the actual frame number is n,
then the window lies between [n- (N+1), N-1].We
compute the empirical mean value mn and the
standard deviation σn of Xi in the defined window as
follows.

 mn=

σn =

We use the above two equations together with Xn-1 to
define the threshold T (n) as follows:

 T(n)=a.Xn-1+b.mn+c.σn

Alternatively we can read the above equation as T(n)
=a(Xn-1- mn)+(b+a) mn+c.σn which is more illustrative

for the following discussion about appropriate choice of
the constants. Constants a, b, c are very important because
they determine the character of the thresholding function.
If b takes high values, the threshold will become more
rigid, keeping values without approaching the Xi sequence.
This avoids wrong change detections like in case of
intense motion scenes; but on the other hand, the detector
can miss some low valued, difficult scene changes. A low
value of b allows us to detect regions with high activity,
which can provide valuable information to other
applications (e.g. bit-rate control, semantics, error
concealment etc.). As σn is the standard deviation, high
values of c prevent from detecting intense motion as a
scene change. On the contrary, a must have a small
value because, as we have already discussed, the
properties of Xi are not always welcome in scene
change detection. The whole procedure of choosing a, b, c
is a tradeoff and should be performed with respect to the
intended application.
In addition to the dynamic threshold model described,
a function based lowering of the threshold found in [2]
is employed to avoid false detections immediately
after a scene change. When a scene change is detected in
frame p, the SAD value of this frame is assigned to the
threshold. In this case, for the next K frames we further
use the threshold Te(n) which is decaying exponentially,
in order to avoid false scene change detection very
close to the previous change

Te(n)=Xn-1 exp (-s(n-p)),

where ‘s’ controls the speed of decaying.

5. Experimental Results

In this section, we validate the proposed scheme for real-
time encoding application. For this purpose we use the
H.264 codec v9.2 found in [14] modified to extract the
SAD values. We used video sequences with football
content. They were chosen because they have scenes with
intense motion, change of light conditions, high
complexity and different types of scene changes. There are
changes between the field and the crowd, which are easy
to detect but there are also scene changes with the same
background (the playground) which are more complicated.
In football sequences also many visual effects like zoom
in/out and transition effects like dissolve, fade in/out can
be found.
All these characteristics make football videos very
challenging for a scene change detector. The first video
sequence (“zibsport”) is a collage of highlights from the
Austrian league. It includes the cup ceremony,
celebrations, football highlights and even some violent
incidents in the watching crowd. Its resolution is 320 x

 Sequence

 Bi-Ds

 Bi-Pso

 Zib Sport

21.6463

10.9515

 Euro Sport

21.3988

11.3266

 Akiyo

19.7825

9.9448

 Quiet

19.905

7.5776

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

170

240, and its length is 4,000 frames. It was encoded with
the H.264 codec with one I frame at the start and P and B
frames in the format PBPBPBPB. The number of true
scene changes in this sequence was 36. We obtained them
manually by watching the video and counting them.
The second video sequence (“eurosport”) and it is a
typical football match recorded in 2004. Its resolution is
172 x 144 (QCIF) and it is encoded in the same way as the
previous video. Its length is 20,000 frames. The number of
true scene changes in this sequence was 64. The
evaluation of the proposed method is performed by
comparing with other methods and the ground truth. For
this reason we employ the “recall” and “precision” ratios

Recall =Nc/(Nc+ Nm)
Precession= Nc/(Nc+ Nf)

where Nc is the number of correct detections,
Nf the number of false ones and
Nm the number of missed ones.

Zib sport

(320X480)
True False Missed Recall

Preces

sion

Fixed

threshold
29 10 7 .8 .74

Dynamic

threshold

without

exponentia

l decaying

35 2 1 .97 .94

Dynamic

threshold

with

exponentia

l decaying

35 1 1 .97 .97

Table 5.1 shows the results of the scene change detection with a fixed
threshold, with the dynamic threshold with and without exponential

decaying for Zib sport

The fixed threshold used for comparison was chosen
optimally (the best case) after having the SAD values
for the whole sequence, we took the value that
minimizes the number of missed and false detections.
Dynamic threshold parameters a, b, c we set to the
following values: a=-1, b=2, c=2. These values were
chosen the same for both sequences although they have
different resolution to test their sensitivity. We used a
sliding window of size 20 frames and speed of exponential
decaying s=0.02. Please note, that scene change detection
is more difficult in small resolutions like QCIF and thus

the results are better for the “zib sport” sequence. We
could do better if we set the DTM parameters separately
for the first and second sequence.However, despite the use
of an optimal fixed threshold the DTM performs
significantly better in both cases.

Euro

sport(320X480)
True False Missed Recall

Preces

sion

Fixed threshold 43 12 17 .67 .78

Dynamic

threshold

without

exponential

decaying

60 6 4 .93 .91

Dynamic

threshold with

exponential

decaying

60 6 4 .93 .91

Table 5.2 shows the results of the scene change detection with a fixed
threshold, with the dynamic threshold with and without exponential

decaying for Euro sport

Optimal setting of the DTM parameters may also be
slightly different for sequences with another character (for
instance a TV discussion, video clip, etc.). Exponential
decaying improves the results slightly, but the added value
is rather low compared to the contribution of DTM itself
against the fixed threshold.

FalseDetections Missed Detections

True Detections Recall

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

171

Precession

 6. Conclusions

In this paper we presented a novel automated dynamic
threshold model for scene change detection. It is based on
the local statistical properties of the video sequence. The
method was designed and implemented for H.264 codec,
but the idea could be used for any other codec or even for
raw video sequences as well. Proposed method has the
advantage of low complexity. Moreover, it uses only
previous frames for the detection, which makes is suitable
for real time applications. The method performs
significantly better than an optimum fixed threshold
setting and gives very good results also for low resolutions.
It can be further enhanced to recognize and handle
different kinds of transitions.

REFERENCES
[1] C.L.Huang, B.Y.Liao, A Robust Scene-Change Detection

Method for Video Segmentation, IEEE Transactions on
Circuits and Systems for Video Technology, vol. 11, no.12,
pp.1281-1288, Dec.2001.

[2] S.Youm, W.Kim, Dynamic Threshold Method for Scene
Change Detection, ICME, vol.2, pp. 337- 340, 2003.

[3] X.Wang, and Z.Weng, Scene Abrupt Change Detection,
Canadian Conference on Electrical and Computer
Engineering, vol. 2, pp. 880-883, 2000.

[4] K.W.Sze, K.M.Lam, G.Qiu, Scene Cut Detection using the
Colored Pattern Appearance Model, ICIP, vol.2, pp. 1017-
1020, 2003.

[5] P. K.Sahoo and S.Soltani, A. K.C.Wong and Y.C.Chen, A
survey of thresholding techniques, CVGIP, vol. 41, pp.233-
260, 1988.

[6] H.C.Liu, G.Zick, Automatic Determination of Scene
Changes in MPEG Compressed Video, ISCAS, vol.1 ,
pp.764-767, 1995.

[7] H.Li, G.Liu, Z.Zhang, Y. Li, Adaptive Scene Detection
Algorithm for VBR Video Stream, IEEE Transactions on
Multimedia, vol. 6, no. 4, pp. 624-633, Aug. 2004.

[8] H.264 and MPEG-4 video compression by Iain E. G.
Richardson.

[9] Video Processing and Communications by Yao Wang,
Joern Ostermann,Ya-Quin Zhang.

[10] R.C.Eberhart, Y.Shi, “Comparison between genetic
Algorithms and particle swarm optimization,” in Proc.
IEEE Int. Conf. Evol. Comput., Anchorage, AK, pp.
611616, May 1998.

[11] Y.H.Shi and R.C.Eberhart. Empirical study of particle
swarm optimization. In Proc. IEEE Congress on
Evolutionary Computation, 1999.

[12] M.-K.Kim, and J.-K. “Efficient motion estimation
Algorithm for bidirectional l pre-diction scheme,”
Electronic Letters, vol.30, no.8, pp.632-633, April 1994.

[13] X.Li, Y.Lu, D.Zhao, W.Gao, S.Ma, “Enhanced direct
coding for bipredictive pictures,” Proc. IEEE ISCAS,
vol.3, pp.785-788, 2004.

[14] H.264/ AVC Software Coordination, JM Software, v9.2,
available in http://iphome.hhi.de/suehring/tml/.

