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Summary 
Multipoint communication has passed from research to 
deployment and back to a research issue. For instance, even 
though several multicast variants exist, multicast deployment has 
been a challenge. In multicast address allocation, a multicast 
group address must be unique in its scope. However, on the 
Internet, this scope will often be global. Therefore implementing 
multicast at router-level still faces scalability problems especially 
in the number of groups that can be supported. XCAST (explicit 
multiunicast) solves this scalability problem by using unicast 
routes thereby eliminating multicast routes and complex 
distribution tree construction algorithms. When combined with 
mobile IPv6, XCAST can simplify node migration and its 
efficiency can be enhanced by using sender initiated congestion 
control. However the custom header structure of XCAST has 
also created obstacles in its deployment in the real-world. In this 
paper we therefore propose an “XCAST6 Routing Engine”, an 
out-of-the-box solution that simplifies gradual deployment of 
XCAST in the real-world. The contribution of this paper is two 
fold. We not only provide a simple solution that can hasten 
deployment of XCAST on the real Internet but we also 
exemplify through experimental performance evaluation of our 
solution with respect to a number of performance and resource 
utilization metrics, that contrary to other perceptions, XCAST 
does not actually add an extra ordinary load to the routing 
resources. 
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1. Introduction 

Multipoint communication has moved from research to 
deployment then back to research issues again. For 
instance, deployment of new services such as IPTV 
coupled with the increased use of collaborative 
applications and the emerging future multi-service Internet 
have reignited interest in research in multicast for both 
fixed and mobile networks. Multicast has been researched 
extensively over the nearly 30 years of the Internet. 
However challenges still persist regarding its deployment 
at network router-levels. In multicast address allocation, a 
multicast group address must be unique in its scope. On 
the Internet, this scope will often be global. Additionally, 
most multicast routing protocols exchange messages that 

create state for each (source, multicast group) pair in all 
the routers that are part of the point-to-multipoint tree. 
This per-flow signaling can possibly create huge multicast 
forwarding tables on the Internet routers [15]. Therefore 
different multicast variants exist but most of multicast 
applications implement multicast at the application level. 
XCAST6 (explicit multiunicast on IPv6) solves 
multicast’s group scalability problem by using unicast 
routes to deliver point-to-multipoint packets. It thus 
eliminates multicast routing tables, per-flow signaling and 
complex distribution tree construction algorithms. 
XCAST6 can also simplify migration problems in 
multipoint communication when combined with mobile 
IPv6. Its efficiency can also be enhanced using Sender 
Initiated Congestion Control protocol [13]. However, 
deployment of XCAST6 has had a few challenges with 
XCAST6 version 1.0 having been designed to utilize hop-
by-hop options header for deeper packet inspection. Hop-
by-hop options header has inherent characteristics that 
increase a router’s susceptibility to denial of service 
attacks[7] hence its use in XCAST6 was a drawback 
which has since been resolved by its total elimination in 
XCAST6 version 2.0 [12] all but with new deployment 
challenges. 
In this paper, we propose an out-of-the-box component; 
we call an “XCAST6 Routing Engine” that will simplify 
gradual deployment of XCAST6 in the real-world. We 
highlight its design and implementation then evaluate its 
performance based on various metrics and its utilization of 
CPU and Memory resources. This paper is organized into 
six sections. In the next section, we discuss the header 
structure of XCAST6 version 2.0 then define and show the 
need for the XCAST6 Routing Engine. The third section 
addresses the engine design while in section four we show 
how it can be implemented using FreeBSD. In section five, 
we show performance evaluation of the Routing Engine 
then related research works in section six and finally we 
provide our conclusion and future work in this area. 
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2. XCAST6 Header structure 

A simple XCAST6 version 2.0 packet comprises of two 
IPv6 headers, a routing extension header, a transport 
header and the payload as illustrated in figure 1. 

 

Fig. 1 XCAST6 version 2.0 header summary 

The outer IPv6 header is used to prepare a semi-permeable 
tunnel [16]. Semi-permeable tunneling is a trick like IP 
over IP tunneling that XCAST6 uses to make the 
XCAST6 datagram pass over non XCAST-aware nodes. 
The traffic class of the outer IPv6 header is “010111XX”. 
The first four bits of the traffic class are the 
“experimentally-assigned bits for XCAST6 by IRTF SAM 
RG”, while the fifth and sixth bits are for experimental or 
local use as described in RFC2474 and RFC4727 [5]. The 
remaining two bits, “XX” are Explicit Congestion 
Notification (ECN) bits as specified in RFC3168[6]. The 
Flow label comprises of three parts namely: “01010111” 
which is the ASCII code of ’X’ (0x58), reserved bits 
(‘00000’ by default) and the offset of ICMP target that 
specifies one of the destinations in the address list for 
which ICMP reflection, echo reply or errors, is not ignored. 
The ‘NextHeader’ points at the inner IPv6 header of an 
XCAST6 packet. The source address field contains either 
the address of the source node or that of the latest 
branching router while the destination address field is 
usually set to the first address listed in the destination 
bitmap. Figure 2 shows a detailed view of the outer IPv6 
header. 

 

Fig. 2 Outer IPv6 header 

The inner IPv6 header shown in figure 3 is processed by 
the node or the router specified by the destination address 
of the semi-permeable header. Its source address is set to 
the unicast address of the original XCAST sender and its 
destination address set to ALL_XCAST_NODES. If a 
node is XCAST-aware, it will know how to process this 
header. However, for non XCAST-aware nodes, they 
simply drop the packet since ALL_XCAST_NODES is in 
the range of multicast addresses and is required to be 
dropped without any ICMP notification by any node that 
cannot process it. 
 

 

Fig. 3 Inner IPv6 header 

The routing extension header in XCAST6 is used by the 
sending node to embed the list of destinations into 
XCAST6 header and also to maintain a bitmap for 
tracking XCAST packet delivery. The Nextheader and the 
Header extension length are filled with the type of the next 
header and the length of the routing header respectively. 
The type value in the routing header is 253, for “XCAST 
route”, from the experimental values defined in RFC4727 
[5]. To guarantee that non XCAST-capable routers discard 
the packets without replying with an ICMP error message, 
it is recommended that the fourth octet of the routing 
extension header be filled with zeros. 

 

Fig. 4 XCAST6 Routing extension header 

The number of destinations is contained in the fifth octet 
of the routing header. Due to the length limitations of the 
IPv6 routing header itself, the maximum number of 
destinations for XCAST6 is 126. To keep track on which 
hosts, the packets are to be delivered at each branching 
point, a bitmap is maintained in the routing header such 
that when a given field of the bitmap is set to 1, then a 
packet needs to be delivered to the corresponding 
destination, otherwise if a bitmap is not set, there is no 
need to deliver a packet to the destination address 
corresponding to the bit in the bitmap. The transport 
header in XCAST6 header defines the transport protocol 
family that needs to be used. XCAST has been tested with 
multimedia applications hence the transport headers of 
choice have been UDP and RTP due to their preference in 
transmission of multimedia content. 

2.1 XCAST packet processing in the routers 

When an XCAST packet is received by an XCAST-aware 
router, the router: 

i. Performs a route table lookup to find the next hops 
for each of the destinations listed in the XCAST 
packet. 

ii. Partitions the set of destinations based on their 
next hops. 
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iii. Replicates the packets so that there is only one 
copy of the packet for each of the next hops. 

iv. Modifies the list of destinations in each of the 
copies so that the list in the copy for a given next 
hop includes just the destinations that ought to be 
routed through that next hop. 

v. Sends the modified packets to each of these next 
hops. 

vi. If there is only one destination left for a given next 
hop, the router can optimize delivery by sending 
the XCAST packet as an ordinary unicast packet. 

3. The XCAST6 Routing Engine Design 

XCAST6 Routing Engine design has been prompted 
by the obstacles faced while deploying XCAST6 in the 
real-world.  

3.1 XCAST6 Deployment challenge 

Experiments and small scale video conferencing have 
been used to prove the advantages of XCAST6 especially 
in terms of group scalability [14]. Nonetheless deployment 
in the real world has not been easy. This is because 
XCAST protocol has a custom header structure with a new 
processing algorithm that is not understood by the 
commercial routers in the market today. However it is 
impractical to replace the existing routers with new 
XCAST-aware routers moreover the huge capital 
investments already put into the existing infrastructure on 
the Internet must be protected. Therefore, there is a need 
to consider simpler, cost effective method that can be used 
to realize the deployment of XCAST6 in the real-world as 
we escalate research on how it will be incorporated into 
the future routers. It is on this premise that we propose an 
out-of-the-box solution we call an “XCAST6 Routing 
Engine” that can be used to realize gradual deployment of 
XCAST6 in the real-world and then investigate further 
optimizations that could be done to help embed XCAST 
into the future routers. 

3.2 XCAST6 Routing Engine 

The XCAST6 Routing Engine is an XCAST6-aware node 
connected to the core router. Its purpose is to process 
XCAST6 packets as had been outlined earlier then send 
back the processed XCAST6 packets to the core router for 
further onward delivery. It is connected side-by-side to the 
core router as shown in the figure 5 and acts as a 
“software-router” for XCAST6 packets. As in figure 5, 
inbound packets in step 1 are examined by the core router 
and non-XCAST traffic is handled by the core-router’s 
forwarding engine while XCAST6 traffic is deflected to 
the XCAST6 Routing Engine in step 2 for processing. The 

XCAST6 packet is partitioned accordingly and sent back 
to the core router in step 3 where they are delivered to 
their final destinations as shown in step 4 above. 
 

 

Fig. 5 XCAST6 Routing Engine Concept 

3.3 Factors to consider in the design 

In order to realize this design, we investigate factors 
that need to be considered namely: 

i. How to identify and filter XCAST6 packets 
inbound to the core router. 

ii. How to process the XCAST6 packets in the 
routing 

iii. engine and still realize the same next hops as if 
processing was done in the core router. 

iv. How to forward XCAST6 packets correctly from 
the XCAST6 Routing Engine. 

3.4 Identifying and Filtering XCAST6 packets 

At the core router, only XCAST6 traffic is re-directed to 
the XCAST6 Routing Engine. The usual traffic remains to 
be processed within the core router itself. This 
requirement can be realized using policy routing 
framework. With this framework, we can implement a set 
of rules defining the relationship between the router and 
the external world in terms of the route information 
exchange and protocol interaction. We can define the list 
of routes that the router will accept from its peers, the list 
of routes the router can propagate to its peers and also 
determine the redistribution of routes between protocols 
and interfaces defined in the router. To identify XCAST6 
packets, we implemented a policy-based bit-matching 
utilizing the traffic class of IPv6 packets. On the core 
router, the policy matches the traffic class “010111” to 
XCAST6 and all IPv6 stream with that traffic class are 
forwarded to the XCAST6 Routing Engine. The policy, 
which can be implemented as a filter in the core router is 
associated with all inbound interfaces except the one onto 
which the XCAST6 Routing Engine is connected. This 
ensures that traffic inbound to router from all segments are 
handled appropriately. Below is an excerpt using Juniper’s 
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JUNOS syntax to show how we implemented the 
XCAST6 packet filter on a Juniper router. 

 
 
Listing 1. XCAST6 Policy routing on Juniper JUNOS 
For incoming packets, the policy, implemented as a filter-
based firewall, “FBF-Nxt-hdr” on IPv6 traffic (inet6) 
matches the 6 bit part of the IPv6 traffic class used for 
Differentiated Service Code Point. It counts the matching 
packets and assigns them to a specific routing table also 
called “FBF-Nxt-hdr” for the purpose of simplicity. 
 

 
 
Listing 2. Routing instance for XCAST6 packets 
In the listing above, the routing instance “FBFNxt-Hdr”, 
specifies the option type as ‘forwarding’ and the option is 
associated with the routing information base assigned a 
static route specifying XCAST6 Routing Engine as the 
next-hop. All matching packets are therefore forwarded to 
the XCAST6 Routing Engine. Once in the XCAST6 
Routing Engine, the packets are processed then sent back 
to the core router for effective onward delivery to their 
respective destinations. 
 

3.5 Synchronizing Routing tables 

In this architecture, both the core router and the XCAST6 
Routing Engine are network nodes, each with its own 
distinct routing table. However the existence of an 

XCAST6 Routing Engine is transparent to all other nodes 
in the network. Therefore XCAST6 packets need to be 
processed as if the processing was done by the core router 
performing a lookup on its own routing table. We thus 
seek to have a mechanism by which the routing table of 
the XCAST6 Routing Engine and that of the core router 
can be synchronized. We identified two methods by which 
this synchronization can be realized: 

i. Using Simple Network Management Protocol 
ii. Using Network Configuration Protocol. 

 

3.5.1 Routing Table Synchronization using SNMP 

SNMP is configured on both XCAST6 Routing Engine 
and the core router. A program running on the XCAST6 
Engine then invokes SNMP commands to get the core 
router’s routing table. In order to parse the IPv6 routing 
table in IPv6 MIB tree, we need to know the IPv6 routing 
table’s Object Identifier (OID). The OID is used to invoke 
either GetNextRequest or Get BulkRequest commands of 
SNMPv1 and SNMPv2 respectively [9]. The program then 
parses the dumped routing table to extract each 
“destination” and their corresponding “next hops” which 
together form a single route entry in the routing table. The 
new routes are compared against the route entries in the 
local routing table of the XCAST6 Routing Engine and 
any new route identified is updated on the local routing 
table. The program on the XCAST6 Routing Engine polls 
the core router to ensure the changes if exist, are updated 
on a regular interval. 
The challenge is that using GetNextRequest in SNMPv1 to 
traverse the MIB can require a large sequence of request-
response exchanges between the core router and the 
XCAST6 Engine especially in the real-world where core 
network routers usually have huge routing tables. This can 
introduce unwanted latencies or CPU load owing that most 
routers use simple processors. GetBulkRequest in 
SNMPv2 solves this problem since it reduces the number 
of protocol exchanges required to retrieve a large amount 
of MIB data by returning a series of variable bindings in a 
single response. However, the command generator 
(XCAST6 Routing Engine in this case) is required to 
specify a “max-repetitions” count so that the 
responder(core router) can fill in as many variable 
bindings as it can without exceeding either this count, or 
the maximum message size. The challenge however is that 
it is not possible to know the number of rows in the 
routing table before-hand. Therefore we cannot possibly 
set the ‘max-repetitions’ to an optimum value. With these 
limitations, SNMP operations in fetching huge data like 
the routing table of a core router can be highly processor 
intensive hence it is not a favoured approach. 
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3.5.2 Synchronization using NETCONF 
NETCONF protocol is enabled in both the core router and 
the XCAST6 Routing Engine. Additionally, SSH is 
required by the two nodes [8]. A client application running 
on the XCAST6 Routing Engine (we implemented a Perl 
program for this) embeds Remote Procedure Calls in XML 
(XML-RPC) and issues them to the core router over a 
secure channel via SSH. The XML embedded RPC 
request can be customized to request for information 
relating only to a specified table in the IPv6 Routing table 
hierarchy. The advantage of NETCONF over SNMP is 
that NETCONF operates in a transactional manner thereby 
manipulating semantically related data efficiently. 
Whereas SNMP modifies or retrieves the value of a single 
data at a time, NETCONF modifies or retrieves all or 
selected parameters in a single primitive operation. This 
ensures it does not incur load on CPU usage. On Juniper 
routers, the 
command to get the routing table data via NETCONF is 
<get-route-information>. The router’s response, also in 
XML-RPC, is processed using a custom XSLT template 
that extracts the various elements and zeroes in on 
‘destination’ and ‘next hop’ items for every single route 
entry in the table. The Perl program is set to poll the core 
router periodically to check if new routes have been 
defined in the core router. If a new route entry is found, 
the local routing table of the XCAST6 Routing Engine is 
updated accordingly. Otherwise no operation takes place if 
the two routing tables are in synchrony. 

3.6 Forwarding of processed XCAST6 packets 

Routers usually have multiple interfaces, each connecting 
to a different network segment thereby ensuring that 
traffic meant for each subnet is routed properly. 
Considering that XCAST6 packets are processed within 
the XCAST6 Routing Engine, with a routing table that 
nearly mirrors that of the core router, we need an interface 
corresponding to each of the interfaces on the core router. 
To implement multiple interfaces on the XCAST6 Routing 
Engine, we use a simple approach for cloning interface as 
shown in figure 6. For example, the core router in our 
testbed has 4 Gigabit interfaces as shown below.  
 

 
Fig. 6Virtual Interfaces 

To have a matching number of interfaces on the XCAST6 
Routing Engine, we clone a number of virtual interfaces 
on it using VLAN tagging (IEEE 802.1Q) techniques. 
Each of these interfaces is configured in its own subnet 
and ultimately ensures that the processed XCAST6 
packets are correctly forwarded to their next hops. 

4. Implementation 

We setup the testbed comprising of a Juniper router, 
the XCAST6 Routing Engine and other XCAST-aware 
nodes. The XCAST6 Routing Engine was implemented on 
a PC running FreeBSD7.2 with Pentium (M), 1.60GHz 
processor, 760 MB of RAM and 40GB hard disk. The low 
specifications of this PC is conducive for testing since 
most routers deployed today also run simpler CPUs and 
have small capacity memory modules installed. We 
installed our latest version of XCAST6 (version 2.0) onto 
this PC while the other test nodes also had XCAST6 
version 2.0 for their respective FreeBSD versions installed 
in them. The core router in the testbed runs on Juniper 
J2320 running JUNOS 9.3. It has 4 built-in Gigabit 
Ethernet ports, 3 modular interface slots, 512 MB DRAM, 
512MB compact flash and supports hardware encryption, 
Unified Access Control and content filtering. All the 
required configuration were done and the system 
confirmed to be running well through a process we term as 
testbed characterization.. Any unneeded protocols was 
disabled both on the XCAST6 Routing Engine and the 
core router to ensure that testing is not compromised so 
much by other external factors. The Juniper router is also 
additionally deployed onto the WIDE [17] network using 
the WIDE connection at Nagoya University so as to 
ensure it operates in a real Internet setting. 

5. Performance Evaluation 

Our aim was to evaluate the routing engine in a real 
Internet environment. We therefore deployed the routing 
engine in the WIDE [17] network at Nagoya University 
and used a DV format based videoconferencing 
application to evaluate its packet processing capability. 
Digital Video (DV) format [DV ref] is a packet based 
video/audio format with each format specifying a standard 
digital interface media to exchange the digital stream data. 
In our experiment, we receive the DV video from the 
firewire (IEEE1394) interface connected to a camera on 
one of the PCs in our testbed and receive the video 
transported across the network using our application on 
the other hosts in the network. Group management 
functionality is handled by the Scalable Adaptive 
Multicast Toolkit (SAMTK), a middleware for multipoint 
communication we have developed in our laboratory [18]. 
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DV format was chosen for this test because of the large 
size of the DV Frames (120Kbytes and 144Kbytes for 
NTSC and PAL respectively) and the high frame rate 
required for DV frame transmission (29.97 frames per 
second). 

5.1 Bandwidth Utilization 

Full DV stream consumes over 30Mbps when using 
standard NTSC quality video at 525 lines and 29.97 
picture frames per second. With four receivers placed in 
different IPv6 network segments in the testbed, we could 
therefore measure the inbound and outbound packets at 
the XCAST6 routing engine to determine its processing 
and also calculate the bandwidth utilization for both 
inbound and outbound XCAST6 traffics.  Varying DV 
frame rates on the sender side also allowed us to determine 
the processing capabilities of the routing engine with 
varying number of packets transmitted per unit time. The 
table below shows the varying results at each transmission 
rate. 

Table 1. Bandwidth utilization per frame rate 

DV 
Frame 
Rate 

Bandwidth 
IN (Mbps) 

Bandwidth 
OUT (Mbps) 

Expected 
Bandwidth 
OUT(Mbps
) 

1/1 36.024 144.098 144.096
1/2 19.181 76.720 76.724
1/3 13.516 54.062 54.063
1/4 10.683 42.731 42.732
1/5 8.984 35.940 35.937

 
The XCAST6 Engine is observed to partition packets 
appropriately and only an infinitesimal variance is noted 
between the output and the expected values. We attribute 
this to possible inclusion of the control and session 
management packets between the nodes and the Group 
Server in the network.  

 

Fig. 7 Inbound and Outbound Bandwidth for Full frame rate to Frame 
rate/3 

The graphs in figure 7 and figure 8 show the variation of 
the packet processing and bandwidth utilization with time 
as observed during the processing. The graphs show 
bandwidth utilization as reported on every 10 second 
interval. While notable variations were observed in the 
number of packets processed, the differences were very 
minimal and a consistent packet processing and 
partitioning is observed throughout the experiment period. 
For visibility purposes, we have plotted the observations 
in two graphs as shown in figure 7 and figure 8 below. 

 

Fig. 8 Inbound and Outbound Bandwidth for Frame rate/4 and Frame 
rate/5 

5.2 Latency and Latency Distribution 

To effectively measure latency and latency distribution, 
we used the network performance analysis tool, Spirent 
SmartBits 600B. The SmartBits 600B had 1 Gigabit card 
(smartMetrics XD 2 port Gigabit Ethernet, LAN-3320A). 
We defined five streams on each port based on custom 
XCAST6 packet with two destinations embedded in the 
header then measured the percentage utilization of the 
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bandwidth as packet transmission rate (packetss per 
second) is varied. A constant 136 bytes long payload was 
used for all the streams. Each stream had an effective 
length of 286 bytes excluding the signature bits added by 
SmartBits. 
For all packet rates, the average latency approaches the 
maximum values observed. We attribute this to the 
distribution of latencies which tend to be skewed towards 
the maximum value recorded in each case. At 50,000 
packets per second the latency values rise above 110 
microseconds which we attribute to the bandwidth 
utilization which was observed to hit above 50% at this 
frame rate. From this rate, the Engine starts dropping 
XCAST6 packets as observed from the log files. This is 
attributed to replicated XCAST6 packets being too many 
than the 1 Gigabit Ethernet adapter can transfer. Figure 9 
shows the observations. 
The large variation on the latency values observed 
motivated us to investigate the latency distribution of these 
values over the observed range. Since the observations 
were made at different packet transmission rates and at 
varying frequencies within each transmission rate, plotting 
them on histograms would not only be cumbersome but 
might also not be easy to interpret. We therefore applied 
the Kernel density estimation techniques in order to 
observe the percentage distribution of these values. Kernel 
density estimation plots provide the probability density 
estimates for a population using the measured data. This is 
done by replacing each measurement with a location 
(mean) of the measurement and a spread (deviation) 
selected by a free bandwidth parameter. Then the entire 
data set is summed and normalized by the number of 
measurements included. Figure 10 shows this estimation. 
We note that over 50% of the latency values observed are 
slightly above 110 microseconds as shown below. 
 

 

Fig. 9. Latency variation by packet transmission rate 

 

Fig. 10 Kernel Density Estimate of the latency distribution 

5.3 Packet loss 

Packet loss measurement in this setup was done not at the 
Interfaces of the routing engine but at the applications on 
the receiving hosts. Only infinitesimal packet loss of 
0.08% percent was detected at the hosts hence we deduce 
that the XCAST routing engine did not incur a significant 
packet loss while doing XCAST6 processing. This 
situation however might change when there are many 
receivers in the network transmitting many huge packets 
because of the likelihood of the XCAST6 routing engine 
replicating several packets when the next hop routers are 
significantly different for the many receiving nodes. 
However such situations in the real Internet are demmed 
to be rare hence, in as much as the packet loss ratio is 
expected to rise with the increase in the receivers, we still 
expect an efficient performance by the XCAST6 routing 
Engine. 

5.4 Internal system behaviour 

The aim of implementing XCAST6 Routing Engine is not 
only to simplify the deployment of XCAST6 in the real 
world but also to help in understanding the impact of 
XCAST6 protocol processing on the internal behavior of 
the routers especially with regards to system load level if 
XCAST6 were deployed in commercial routers. With the 
XCAST6 Routing Engine, we achieve this objective by 
actively profiling the FreeBSD system onto which the 
engine has been implemented when processing XCAST6 
packets.  
 
5.4.1 CPU Context Switch Counts due to bus I/O 
XCAST6 runs at the kernel level therefore, the reported 
observation is for “System level” and not “User level” 
CPU utilization. We used FreeBSD’s PMC tools [19], to 
investigate various internal activities of the system when 
processing XCAST6 packets. Using the PMC tools, we 
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registered the counts of context switches related to data 
read and data writes that the CPU makes when processing 
XCAST6 packets. This was compared with the 
observations made when the routing engine is not actively 
engaged in XCAST6 processing and also to when the 
engine is processing ICMP6 packets. Specifically the 
PMC tool was run by monitoring the changes in the 
behaviour of process that monitors software interrupts 
made by the network process (swi net) in FreeBSD. The 
results are presented as shown in figure 11 below.  
We observe that processing of both XCAST6 and ICMP6 
require almost equivalent counts of context switches due 
to CPU bus I/O activities. This dispels the general feeling 
that owing to its complex header structure, XCAST6 could 
impact heavily on the router’s CPU load. However we also 
note that ICMP6 registers fluctuations that on the lower 
bound are almost equivalent to observations made when 
the routing engine is not actively processing data packets. 
XCAST6 related observations on the other hand do not 
show this great fluctuation. This is expected considering 
the structure of the XCAST6 header which embeds two 
IPv6 packets.  
 

 

Fig. 11. Comparative count of Context Switches due to I/O requests on 
CPU bus 

5.4.2 CPU Context Switch Counts due to memory access 
We also investigated the number of context switches made 
due to memory access requests while processing XCAST6 
packets. Hyok Kim et al [20] have shown that these counts 
are correlated with the number of completed memory 
transactions and are important because they help in 
determining the system level memory bandwidth 
requirements. We therefore use them to help understand 
such memory bandwidth requirements for processing 
XCAST6 packets. The observations are shown in figure 
12. The counts of “system” memory (not userland 
memory) transactions for XCAST6 and ICMP6 processing 
and also when no active packet processing is done show 
clearly that XCAST6 processing registers higher counts 
while ICMP6 maps nearly equally to the system idle state. 

This is possibly attributed to the XCAST6 packet length 
which is certainly longer than that of ICMP6. 
 

 

Fig. 12 Comparative count of Context Switches due to memory 
transaction requests 

5.4.3 Impact of the embedded destinations on CPU and 
Memory utilization. 
We further investigated the impact of the embedded 
destinations in the XCAST6 header on CPU and Memory 
utilization. We used Spirent SmartBits 600B performance 
analysis tool in this measurement. Five streams were 
defined on each port based on custom XCAST6 packet, 
varying the number of destinations each time and 
subjecting the XCAST6 routing engine to the huge traffic 
generated by SmartBits but maintaining the bandwidth 
utilization at not more than 60% because the resulting 
XCAST6 outbound traffic are also sent through the same 
network interface and Vlan tagged interfaces that still 
depend on the same physical interface. It is observed that 
XCAST6 packets with fewer destinations consume more 
CPU resources than those with several XCAST 
destinations in the header as shown  
 

 

Fig. 13. XCAST6 CPU Utilization 

Packets with fewer XCAST6 destinations are shorter than 
those with many destinations embedded in the header. 
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Therefore several shorter packets are required to maintain 
a constant bandwidth compared to those needed for longer 
packets. With fewer destinations in the XCAST6 header, 
the CPU processes more XCAST6 packets than it does 
when the packet embeds several destinations hence the 
near-inverse proportionality depicted by the graph above. 

Despite the higher number of context switches related 
to System level memory read observed earlier, we also 
note that once a stable level is realized, XCAST6 does not 
consume a lot of memory resources even if the number of 
the headers in the XCAST6 packet is increased. Maximum 
memory utilization varies only slightly irrespective of the 
number of destinations as depicted in the figure below. 
We attribute this to the fact that XCAST6 runs at the 
kernel level therefore it launches no additional application 
that requires any huge memory resources. 
 

 

Fig. 14 XCAST6 Memory Utilization 

5.4.4 XCAST6 packet fragmentation 
We observed IP fragmentation when more than 70 
XCAST6 destinations are embedded in an XCAST6 
header. The MTU of the XCAST6 routing engine 
therefore needs to be set to a value that accommodates 
longer packets especially in deployment scenarios where 
the group membership is envisaged to approach 100 nodes. 
Enabling jumbo packets processing in the engine is 
recommended. Overall, the XCAST6 Routing Engine 
showed a very good performance within the acceptable 
limits. While CPU utilization is higher with fewer 
XCAST6 destinations, we note that XCAST6 is a group 
communication protocol hence scenarios like two 
destination can best work with peer-to-peer. Moreover, it 
is highly unlikely that a communication scenario can arise 
that imposes a requirement on maintaining a threshold on 
bandwidth utilization that we did in our test, for stress 
testing purposes only. Therefore when used with the right 
number of destinations that warrant group communication, 
XCAST6 is not CPU intensive. Should such a need a rise 
then XCAST6 can be complemented with SICC[13]. 

6. Related Works 

The SAMTK project[1] [18] provides interfaces for 
XCAST, ALM and ALR network plugins. ALR 
(Application Level Router) has some components that 
overlap with the functions of our routing engine. It parses 
UDP packets and does a lookup in its internal forwarding 
table to duplicate and deliver the packets to multiple 
destinations. In addition, it provides NAT traversal 
function by using a singe UDP port both for session 
registration and packet delivery. Many recent projects also 
attempt to define architectures for large scale Internet 
group services that can operate in the future Internet. 
OASIS[3] proposes a generic approach to inter-domain 
multicast, guided by an abstract, DHT-inspired overlay 
that may operate on a future Internet architecture. It is 
aimed at facilitating multipath multicast transport, offering 
fault-tolerant routing, and arbitrary redundancy for packets 
and paths. However, it is based on the assumptions of a 
globally available end-to-end unicast routing. Simple 
technologies such as the one we have presented here can 
help ensure the end-to-end unicast routing that OASIS 
assumes to always exist. 
Multipoint communication research is also ongoing 
in structured overlay and hybrid networks. In the 
HAMCast project[2], Xuemin Shen et al review the key 
concepts of multicast and broadcast data distribution. They 
further perform an analysis examining different 
distribution trees constructed on top of the key-based 
routing layer. Finally, they compare the performance 
characteristics of the various multicast approaches and 
identify major internal differences. This way, they seek to 
identify key areas that need optimization for application in 
the future Internet. 

7. Conclusion and Future work 

We have described the XCAST6 Routing Engine, a 
software routing component that simplifies gradual 
deployment of XCAST6 in the real-world even if the 
router is not XCAST-aware. We used a low cost PC with 
modest specification to implement the XCAST6 Routing 
Engine on both FreeBSD 6.2 and FreeBSD7.2, connecting 
the PC to a Juniper J2320 router as the core router in the 
testbed. To handle routing table synchronization issues, 
we proposed and implemented two different approaches 
using either SNMP or NETCONF. 
Performance evaluation of the XCAST6 Routing Engine 
has shown favorable results. XCAST6 Routing Engine has 
also been deployed in the WIDE network at Nagoya 
University and we are seeking to investigate O0S 
implementation on XCAST6 protocol and avail the 
information for other academic research. 
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As future work, we shall be seeking to implement the 
XCAST6 applications relying on the routing engine, that 
can be used in the QoS research in multipoint 
communication and also to investigate among other things, 
security considerations for XCAST6. 
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