
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

200

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Design, Implementation and Evaluation of a Routing Engine for
a multipoint communication protocol: XCAST6

Odira Elisha Abade†, ††, ††† Katsuhiko Kaji†,†† and Nobuo Kawaguchi†,††,

†Graduate School of Engineering, Nagoya University, Japan
††WIDE Project, Japan

†††School of Computing & Informatics, University of Nairobi, Kenya
Summary
Multipoint communication has passed from research to
deployment and back to a research issue. For instance, even
though several multicast variants exist, multicast deployment has
been a challenge. In multicast address allocation, a multicast
group address must be unique in its scope. However, on the
Internet, this scope will often be global. Therefore implementing
multicast at router-level still faces scalability problems especially
in the number of groups that can be supported. XCAST (explicit
multiunicast) solves this scalability problem by using unicast
routes thereby eliminating multicast routes and complex
distribution tree construction algorithms. When combined with
mobile IPv6, XCAST can simplify node migration and its
efficiency can be enhanced by using sender initiated congestion
control. However the custom header structure of XCAST has
also created obstacles in its deployment in the real-world. In this
paper we therefore propose an “XCAST6 Routing Engine”, an
out-of-the-box solution that simplifies gradual deployment of
XCAST in the real-world. The contribution of this paper is two
fold. We not only provide a simple solution that can hasten
deployment of XCAST on the real Internet but we also
exemplify through experimental performance evaluation of our
solution with respect to a number of performance and resource
utilization metrics, that contrary to other perceptions, XCAST
does not actually add an extra ordinary load to the routing
resources.
Key words:
XCAST6, Multipoint communication, Routing Engine, Scalability,
IPv6, Performance..

1. Introduction

Multipoint communication has moved from research to
deployment then back to research issues again. For
instance, deployment of new services such as IPTV
coupled with the increased use of collaborative
applications and the emerging future multi-service Internet
have reignited interest in research in multicast for both
fixed and mobile networks. Multicast has been researched
extensively over the nearly 30 years of the Internet.
However challenges still persist regarding its deployment
at network router-levels. In multicast address allocation, a
multicast group address must be unique in its scope. On
the Internet, this scope will often be global. Additionally,
most multicast routing protocols exchange messages that

create state for each (source, multicast group) pair in all
the routers that are part of the point-to-multipoint tree.
This per-flow signaling can possibly create huge multicast
forwarding tables on the Internet routers [15]. Therefore
different multicast variants exist but most of multicast
applications implement multicast at the application level.
XCAST6 (explicit multiunicast on IPv6) solves
multicast’s group scalability problem by using unicast
routes to deliver point-to-multipoint packets. It thus
eliminates multicast routing tables, per-flow signaling and
complex distribution tree construction algorithms.
XCAST6 can also simplify migration problems in
multipoint communication when combined with mobile
IPv6. Its efficiency can also be enhanced using Sender
Initiated Congestion Control protocol [13]. However,
deployment of XCAST6 has had a few challenges with
XCAST6 version 1.0 having been designed to utilize hop-
by-hop options header for deeper packet inspection. Hop-
by-hop options header has inherent characteristics that
increase a router’s susceptibility to denial of service
attacks[7] hence its use in XCAST6 was a drawback
which has since been resolved by its total elimination in
XCAST6 version 2.0 [12] all but with new deployment
challenges.
In this paper, we propose an out-of-the-box component;
we call an “XCAST6 Routing Engine” that will simplify
gradual deployment of XCAST6 in the real-world. We
highlight its design and implementation then evaluate its
performance based on various metrics and its utilization of
CPU and Memory resources. This paper is organized into
six sections. In the next section, we discuss the header
structure of XCAST6 version 2.0 then define and show the
need for the XCAST6 Routing Engine. The third section
addresses the engine design while in section four we show
how it can be implemented using FreeBSD. In section five,
we show performance evaluation of the Routing Engine
then related research works in section six and finally we
provide our conclusion and future work in this area.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

201

2. XCAST6 Header structure

A simple XCAST6 version 2.0 packet comprises of two
IPv6 headers, a routing extension header, a transport
header and the payload as illustrated in figure 1.

Fig. 1 XCAST6 version 2.0 header summary

The outer IPv6 header is used to prepare a semi-permeable
tunnel [16]. Semi-permeable tunneling is a trick like IP
over IP tunneling that XCAST6 uses to make the
XCAST6 datagram pass over non XCAST-aware nodes.
The traffic class of the outer IPv6 header is “010111XX”.
The first four bits of the traffic class are the
“experimentally-assigned bits for XCAST6 by IRTF SAM
RG”, while the fifth and sixth bits are for experimental or
local use as described in RFC2474 and RFC4727 [5]. The
remaining two bits, “XX” are Explicit Congestion
Notification (ECN) bits as specified in RFC3168[6]. The
Flow label comprises of three parts namely: “01010111”
which is the ASCII code of ’X’ (0x58), reserved bits
(‘00000’ by default) and the offset of ICMP target that
specifies one of the destinations in the address list for
which ICMP reflection, echo reply or errors, is not ignored.
The ‘NextHeader’ points at the inner IPv6 header of an
XCAST6 packet. The source address field contains either
the address of the source node or that of the latest
branching router while the destination address field is
usually set to the first address listed in the destination
bitmap. Figure 2 shows a detailed view of the outer IPv6
header.

Fig. 2 Outer IPv6 header

The inner IPv6 header shown in figure 3 is processed by
the node or the router specified by the destination address
of the semi-permeable header. Its source address is set to
the unicast address of the original XCAST sender and its
destination address set to ALL_XCAST_NODES. If a
node is XCAST-aware, it will know how to process this
header. However, for non XCAST-aware nodes, they
simply drop the packet since ALL_XCAST_NODES is in
the range of multicast addresses and is required to be
dropped without any ICMP notification by any node that
cannot process it.

Fig. 3 Inner IPv6 header

The routing extension header in XCAST6 is used by the
sending node to embed the list of destinations into
XCAST6 header and also to maintain a bitmap for
tracking XCAST packet delivery. The Nextheader and the
Header extension length are filled with the type of the next
header and the length of the routing header respectively.
The type value in the routing header is 253, for “XCAST
route”, from the experimental values defined in RFC4727
[5]. To guarantee that non XCAST-capable routers discard
the packets without replying with an ICMP error message,
it is recommended that the fourth octet of the routing
extension header be filled with zeros.

Fig. 4 XCAST6 Routing extension header

The number of destinations is contained in the fifth octet
of the routing header. Due to the length limitations of the
IPv6 routing header itself, the maximum number of
destinations for XCAST6 is 126. To keep track on which
hosts, the packets are to be delivered at each branching
point, a bitmap is maintained in the routing header such
that when a given field of the bitmap is set to 1, then a
packet needs to be delivered to the corresponding
destination, otherwise if a bitmap is not set, there is no
need to deliver a packet to the destination address
corresponding to the bit in the bitmap. The transport
header in XCAST6 header defines the transport protocol
family that needs to be used. XCAST has been tested with
multimedia applications hence the transport headers of
choice have been UDP and RTP due to their preference in
transmission of multimedia content.

2.1 XCAST packet processing in the routers

When an XCAST packet is received by an XCAST-aware
router, the router:

i. Performs a route table lookup to find the next hops
for each of the destinations listed in the XCAST
packet.

ii. Partitions the set of destinations based on their
next hops.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

202

iii. Replicates the packets so that there is only one
copy of the packet for each of the next hops.

iv. Modifies the list of destinations in each of the
copies so that the list in the copy for a given next
hop includes just the destinations that ought to be
routed through that next hop.

v. Sends the modified packets to each of these next
hops.

vi. If there is only one destination left for a given next
hop, the router can optimize delivery by sending
the XCAST packet as an ordinary unicast packet.

3. The XCAST6 Routing Engine Design

XCAST6 Routing Engine design has been prompted
by the obstacles faced while deploying XCAST6 in the
real-world.

3.1 XCAST6 Deployment challenge

Experiments and small scale video conferencing have
been used to prove the advantages of XCAST6 especially
in terms of group scalability [14]. Nonetheless deployment
in the real world has not been easy. This is because
XCAST protocol has a custom header structure with a new
processing algorithm that is not understood by the
commercial routers in the market today. However it is
impractical to replace the existing routers with new
XCAST-aware routers moreover the huge capital
investments already put into the existing infrastructure on
the Internet must be protected. Therefore, there is a need
to consider simpler, cost effective method that can be used
to realize the deployment of XCAST6 in the real-world as
we escalate research on how it will be incorporated into
the future routers. It is on this premise that we propose an
out-of-the-box solution we call an “XCAST6 Routing
Engine” that can be used to realize gradual deployment of
XCAST6 in the real-world and then investigate further
optimizations that could be done to help embed XCAST
into the future routers.

3.2 XCAST6 Routing Engine

The XCAST6 Routing Engine is an XCAST6-aware node
connected to the core router. Its purpose is to process
XCAST6 packets as had been outlined earlier then send
back the processed XCAST6 packets to the core router for
further onward delivery. It is connected side-by-side to the
core router as shown in the figure 5 and acts as a
“software-router” for XCAST6 packets. As in figure 5,
inbound packets in step 1 are examined by the core router
and non-XCAST traffic is handled by the core-router’s
forwarding engine while XCAST6 traffic is deflected to
the XCAST6 Routing Engine in step 2 for processing. The

XCAST6 packet is partitioned accordingly and sent back
to the core router in step 3 where they are delivered to
their final destinations as shown in step 4 above.

Fig. 5 XCAST6 Routing Engine Concept

3.3 Factors to consider in the design

In order to realize this design, we investigate factors
that need to be considered namely:

i. How to identify and filter XCAST6 packets
inbound to the core router.

ii. How to process the XCAST6 packets in the
routing

iii. engine and still realize the same next hops as if
processing was done in the core router.

iv. How to forward XCAST6 packets correctly from
the XCAST6 Routing Engine.

3.4 Identifying and Filtering XCAST6 packets

At the core router, only XCAST6 traffic is re-directed to
the XCAST6 Routing Engine. The usual traffic remains to
be processed within the core router itself. This
requirement can be realized using policy routing
framework. With this framework, we can implement a set
of rules defining the relationship between the router and
the external world in terms of the route information
exchange and protocol interaction. We can define the list
of routes that the router will accept from its peers, the list
of routes the router can propagate to its peers and also
determine the redistribution of routes between protocols
and interfaces defined in the router. To identify XCAST6
packets, we implemented a policy-based bit-matching
utilizing the traffic class of IPv6 packets. On the core
router, the policy matches the traffic class “010111” to
XCAST6 and all IPv6 stream with that traffic class are
forwarded to the XCAST6 Routing Engine. The policy,
which can be implemented as a filter in the core router is
associated with all inbound interfaces except the one onto
which the XCAST6 Routing Engine is connected. This
ensures that traffic inbound to router from all segments are
handled appropriately. Below is an excerpt using Juniper’s

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

203

JUNOS syntax to show how we implemented the
XCAST6 packet filter on a Juniper router.

Listing 1. XCAST6 Policy routing on Juniper JUNOS
For incoming packets, the policy, implemented as a filter-
based firewall, “FBF-Nxt-hdr” on IPv6 traffic (inet6)
matches the 6 bit part of the IPv6 traffic class used for
Differentiated Service Code Point. It counts the matching
packets and assigns them to a specific routing table also
called “FBF-Nxt-hdr” for the purpose of simplicity.

Listing 2. Routing instance for XCAST6 packets
In the listing above, the routing instance “FBFNxt-Hdr”,
specifies the option type as ‘forwarding’ and the option is
associated with the routing information base assigned a
static route specifying XCAST6 Routing Engine as the
next-hop. All matching packets are therefore forwarded to
the XCAST6 Routing Engine. Once in the XCAST6
Routing Engine, the packets are processed then sent back
to the core router for effective onward delivery to their
respective destinations.

3.5 Synchronizing Routing tables

In this architecture, both the core router and the XCAST6
Routing Engine are network nodes, each with its own
distinct routing table. However the existence of an

XCAST6 Routing Engine is transparent to all other nodes
in the network. Therefore XCAST6 packets need to be
processed as if the processing was done by the core router
performing a lookup on its own routing table. We thus
seek to have a mechanism by which the routing table of
the XCAST6 Routing Engine and that of the core router
can be synchronized. We identified two methods by which
this synchronization can be realized:

i. Using Simple Network Management Protocol
ii. Using Network Configuration Protocol.

3.5.1 Routing Table Synchronization using SNMP

SNMP is configured on both XCAST6 Routing Engine
and the core router. A program running on the XCAST6
Engine then invokes SNMP commands to get the core
router’s routing table. In order to parse the IPv6 routing
table in IPv6 MIB tree, we need to know the IPv6 routing
table’s Object Identifier (OID). The OID is used to invoke
either GetNextRequest or Get BulkRequest commands of
SNMPv1 and SNMPv2 respectively [9]. The program then
parses the dumped routing table to extract each
“destination” and their corresponding “next hops” which
together form a single route entry in the routing table. The
new routes are compared against the route entries in the
local routing table of the XCAST6 Routing Engine and
any new route identified is updated on the local routing
table. The program on the XCAST6 Routing Engine polls
the core router to ensure the changes if exist, are updated
on a regular interval.
The challenge is that using GetNextRequest in SNMPv1 to
traverse the MIB can require a large sequence of request-
response exchanges between the core router and the
XCAST6 Engine especially in the real-world where core
network routers usually have huge routing tables. This can
introduce unwanted latencies or CPU load owing that most
routers use simple processors. GetBulkRequest in
SNMPv2 solves this problem since it reduces the number
of protocol exchanges required to retrieve a large amount
of MIB data by returning a series of variable bindings in a
single response. However, the command generator
(XCAST6 Routing Engine in this case) is required to
specify a “max-repetitions” count so that the
responder(core router) can fill in as many variable
bindings as it can without exceeding either this count, or
the maximum message size. The challenge however is that
it is not possible to know the number of rows in the
routing table before-hand. Therefore we cannot possibly
set the ‘max-repetitions’ to an optimum value. With these
limitations, SNMP operations in fetching huge data like
the routing table of a core router can be highly processor
intensive hence it is not a favoured approach.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

204

3.5.2 Synchronization using NETCONF
NETCONF protocol is enabled in both the core router and
the XCAST6 Routing Engine. Additionally, SSH is
required by the two nodes [8]. A client application running
on the XCAST6 Routing Engine (we implemented a Perl
program for this) embeds Remote Procedure Calls in XML
(XML-RPC) and issues them to the core router over a
secure channel via SSH. The XML embedded RPC
request can be customized to request for information
relating only to a specified table in the IPv6 Routing table
hierarchy. The advantage of NETCONF over SNMP is
that NETCONF operates in a transactional manner thereby
manipulating semantically related data efficiently.
Whereas SNMP modifies or retrieves the value of a single
data at a time, NETCONF modifies or retrieves all or
selected parameters in a single primitive operation. This
ensures it does not incur load on CPU usage. On Juniper
routers, the
command to get the routing table data via NETCONF is
<get-route-information>. The router’s response, also in
XML-RPC, is processed using a custom XSLT template
that extracts the various elements and zeroes in on
‘destination’ and ‘next hop’ items for every single route
entry in the table. The Perl program is set to poll the core
router periodically to check if new routes have been
defined in the core router. If a new route entry is found,
the local routing table of the XCAST6 Routing Engine is
updated accordingly. Otherwise no operation takes place if
the two routing tables are in synchrony.

3.6 Forwarding of processed XCAST6 packets

Routers usually have multiple interfaces, each connecting
to a different network segment thereby ensuring that
traffic meant for each subnet is routed properly.
Considering that XCAST6 packets are processed within
the XCAST6 Routing Engine, with a routing table that
nearly mirrors that of the core router, we need an interface
corresponding to each of the interfaces on the core router.
To implement multiple interfaces on the XCAST6 Routing
Engine, we use a simple approach for cloning interface as
shown in figure 6. For example, the core router in our
testbed has 4 Gigabit interfaces as shown below.

Fig. 6Virtual Interfaces

To have a matching number of interfaces on the XCAST6
Routing Engine, we clone a number of virtual interfaces
on it using VLAN tagging (IEEE 802.1Q) techniques.
Each of these interfaces is configured in its own subnet
and ultimately ensures that the processed XCAST6
packets are correctly forwarded to their next hops.

4. Implementation

We setup the testbed comprising of a Juniper router,
the XCAST6 Routing Engine and other XCAST-aware
nodes. The XCAST6 Routing Engine was implemented on
a PC running FreeBSD7.2 with Pentium (M), 1.60GHz
processor, 760 MB of RAM and 40GB hard disk. The low
specifications of this PC is conducive for testing since
most routers deployed today also run simpler CPUs and
have small capacity memory modules installed. We
installed our latest version of XCAST6 (version 2.0) onto
this PC while the other test nodes also had XCAST6
version 2.0 for their respective FreeBSD versions installed
in them. The core router in the testbed runs on Juniper
J2320 running JUNOS 9.3. It has 4 built-in Gigabit
Ethernet ports, 3 modular interface slots, 512 MB DRAM,
512MB compact flash and supports hardware encryption,
Unified Access Control and content filtering. All the
required configuration were done and the system
confirmed to be running well through a process we term as
testbed characterization.. Any unneeded protocols was
disabled both on the XCAST6 Routing Engine and the
core router to ensure that testing is not compromised so
much by other external factors. The Juniper router is also
additionally deployed onto the WIDE [17] network using
the WIDE connection at Nagoya University so as to
ensure it operates in a real Internet setting.

5. Performance Evaluation

Our aim was to evaluate the routing engine in a real
Internet environment. We therefore deployed the routing
engine in the WIDE [17] network at Nagoya University
and used a DV format based videoconferencing
application to evaluate its packet processing capability.
Digital Video (DV) format [DV ref] is a packet based
video/audio format with each format specifying a standard
digital interface media to exchange the digital stream data.
In our experiment, we receive the DV video from the
firewire (IEEE1394) interface connected to a camera on
one of the PCs in our testbed and receive the video
transported across the network using our application on
the other hosts in the network. Group management
functionality is handled by the Scalable Adaptive
Multicast Toolkit (SAMTK), a middleware for multipoint
communication we have developed in our laboratory [18].

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

205

DV format was chosen for this test because of the large
size of the DV Frames (120Kbytes and 144Kbytes for
NTSC and PAL respectively) and the high frame rate
required for DV frame transmission (29.97 frames per
second).

5.1 Bandwidth Utilization

Full DV stream consumes over 30Mbps when using
standard NTSC quality video at 525 lines and 29.97
picture frames per second. With four receivers placed in
different IPv6 network segments in the testbed, we could
therefore measure the inbound and outbound packets at
the XCAST6 routing engine to determine its processing
and also calculate the bandwidth utilization for both
inbound and outbound XCAST6 traffics. Varying DV
frame rates on the sender side also allowed us to determine
the processing capabilities of the routing engine with
varying number of packets transmitted per unit time. The
table below shows the varying results at each transmission
rate.

Table 1. Bandwidth utilization per frame rate

DV
Frame
Rate

Bandwidth
IN (Mbps)

Bandwidth
OUT (Mbps)

Expected
Bandwidth
OUT(Mbps
)

1/1 36.024 144.098 144.096
1/2 19.181 76.720 76.724
1/3 13.516 54.062 54.063
1/4 10.683 42.731 42.732
1/5 8.984 35.940 35.937

The XCAST6 Engine is observed to partition packets
appropriately and only an infinitesimal variance is noted
between the output and the expected values. We attribute
this to possible inclusion of the control and session
management packets between the nodes and the Group
Server in the network.

Fig. 7 Inbound and Outbound Bandwidth for Full frame rate to Frame
rate/3

The graphs in figure 7 and figure 8 show the variation of
the packet processing and bandwidth utilization with time
as observed during the processing. The graphs show
bandwidth utilization as reported on every 10 second
interval. While notable variations were observed in the
number of packets processed, the differences were very
minimal and a consistent packet processing and
partitioning is observed throughout the experiment period.
For visibility purposes, we have plotted the observations
in two graphs as shown in figure 7 and figure 8 below.

Fig. 8 Inbound and Outbound Bandwidth for Frame rate/4 and Frame
rate/5

5.2 Latency and Latency Distribution

To effectively measure latency and latency distribution,
we used the network performance analysis tool, Spirent
SmartBits 600B. The SmartBits 600B had 1 Gigabit card
(smartMetrics XD 2 port Gigabit Ethernet, LAN-3320A).
We defined five streams on each port based on custom
XCAST6 packet with two destinations embedded in the
header then measured the percentage utilization of the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

206

bandwidth as packet transmission rate (packetss per
second) is varied. A constant 136 bytes long payload was
used for all the streams. Each stream had an effective
length of 286 bytes excluding the signature bits added by
SmartBits.
For all packet rates, the average latency approaches the
maximum values observed. We attribute this to the
distribution of latencies which tend to be skewed towards
the maximum value recorded in each case. At 50,000
packets per second the latency values rise above 110
microseconds which we attribute to the bandwidth
utilization which was observed to hit above 50% at this
frame rate. From this rate, the Engine starts dropping
XCAST6 packets as observed from the log files. This is
attributed to replicated XCAST6 packets being too many
than the 1 Gigabit Ethernet adapter can transfer. Figure 9
shows the observations.
The large variation on the latency values observed
motivated us to investigate the latency distribution of these
values over the observed range. Since the observations
were made at different packet transmission rates and at
varying frequencies within each transmission rate, plotting
them on histograms would not only be cumbersome but
might also not be easy to interpret. We therefore applied
the Kernel density estimation techniques in order to
observe the percentage distribution of these values. Kernel
density estimation plots provide the probability density
estimates for a population using the measured data. This is
done by replacing each measurement with a location
(mean) of the measurement and a spread (deviation)
selected by a free bandwidth parameter. Then the entire
data set is summed and normalized by the number of
measurements included. Figure 10 shows this estimation.
We note that over 50% of the latency values observed are
slightly above 110 microseconds as shown below.

Fig. 9. Latency variation by packet transmission rate

Fig. 10 Kernel Density Estimate of the latency distribution

5.3 Packet loss

Packet loss measurement in this setup was done not at the
Interfaces of the routing engine but at the applications on
the receiving hosts. Only infinitesimal packet loss of
0.08% percent was detected at the hosts hence we deduce
that the XCAST routing engine did not incur a significant
packet loss while doing XCAST6 processing. This
situation however might change when there are many
receivers in the network transmitting many huge packets
because of the likelihood of the XCAST6 routing engine
replicating several packets when the next hop routers are
significantly different for the many receiving nodes.
However such situations in the real Internet are demmed
to be rare hence, in as much as the packet loss ratio is
expected to rise with the increase in the receivers, we still
expect an efficient performance by the XCAST6 routing
Engine.

5.4 Internal system behaviour

The aim of implementing XCAST6 Routing Engine is not
only to simplify the deployment of XCAST6 in the real
world but also to help in understanding the impact of
XCAST6 protocol processing on the internal behavior of
the routers especially with regards to system load level if
XCAST6 were deployed in commercial routers. With the
XCAST6 Routing Engine, we achieve this objective by
actively profiling the FreeBSD system onto which the
engine has been implemented when processing XCAST6
packets.

5.4.1 CPU Context Switch Counts due to bus I/O
XCAST6 runs at the kernel level therefore, the reported
observation is for “System level” and not “User level”
CPU utilization. We used FreeBSD’s PMC tools [19], to
investigate various internal activities of the system when
processing XCAST6 packets. Using the PMC tools, we

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

207

registered the counts of context switches related to data
read and data writes that the CPU makes when processing
XCAST6 packets. This was compared with the
observations made when the routing engine is not actively
engaged in XCAST6 processing and also to when the
engine is processing ICMP6 packets. Specifically the
PMC tool was run by monitoring the changes in the
behaviour of process that monitors software interrupts
made by the network process (swi net) in FreeBSD. The
results are presented as shown in figure 11 below.
We observe that processing of both XCAST6 and ICMP6
require almost equivalent counts of context switches due
to CPU bus I/O activities. This dispels the general feeling
that owing to its complex header structure, XCAST6 could
impact heavily on the router’s CPU load. However we also
note that ICMP6 registers fluctuations that on the lower
bound are almost equivalent to observations made when
the routing engine is not actively processing data packets.
XCAST6 related observations on the other hand do not
show this great fluctuation. This is expected considering
the structure of the XCAST6 header which embeds two
IPv6 packets.

Fig. 11. Comparative count of Context Switches due to I/O requests on
CPU bus

5.4.2 CPU Context Switch Counts due to memory access
We also investigated the number of context switches made
due to memory access requests while processing XCAST6
packets. Hyok Kim et al [20] have shown that these counts
are correlated with the number of completed memory
transactions and are important because they help in
determining the system level memory bandwidth
requirements. We therefore use them to help understand
such memory bandwidth requirements for processing
XCAST6 packets. The observations are shown in figure
12. The counts of “system” memory (not userland
memory) transactions for XCAST6 and ICMP6 processing
and also when no active packet processing is done show
clearly that XCAST6 processing registers higher counts
while ICMP6 maps nearly equally to the system idle state.

This is possibly attributed to the XCAST6 packet length
which is certainly longer than that of ICMP6.

Fig. 12 Comparative count of Context Switches due to memory
transaction requests

5.4.3 Impact of the embedded destinations on CPU and
Memory utilization.
We further investigated the impact of the embedded
destinations in the XCAST6 header on CPU and Memory
utilization. We used Spirent SmartBits 600B performance
analysis tool in this measurement. Five streams were
defined on each port based on custom XCAST6 packet,
varying the number of destinations each time and
subjecting the XCAST6 routing engine to the huge traffic
generated by SmartBits but maintaining the bandwidth
utilization at not more than 60% because the resulting
XCAST6 outbound traffic are also sent through the same
network interface and Vlan tagged interfaces that still
depend on the same physical interface. It is observed that
XCAST6 packets with fewer destinations consume more
CPU resources than those with several XCAST
destinations in the header as shown

Fig. 13. XCAST6 CPU Utilization

Packets with fewer XCAST6 destinations are shorter than
those with many destinations embedded in the header.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

208

Therefore several shorter packets are required to maintain
a constant bandwidth compared to those needed for longer
packets. With fewer destinations in the XCAST6 header,
the CPU processes more XCAST6 packets than it does
when the packet embeds several destinations hence the
near-inverse proportionality depicted by the graph above.

Despite the higher number of context switches related
to System level memory read observed earlier, we also
note that once a stable level is realized, XCAST6 does not
consume a lot of memory resources even if the number of
the headers in the XCAST6 packet is increased. Maximum
memory utilization varies only slightly irrespective of the
number of destinations as depicted in the figure below.
We attribute this to the fact that XCAST6 runs at the
kernel level therefore it launches no additional application
that requires any huge memory resources.

Fig. 14 XCAST6 Memory Utilization

5.4.4 XCAST6 packet fragmentation
We observed IP fragmentation when more than 70
XCAST6 destinations are embedded in an XCAST6
header. The MTU of the XCAST6 routing engine
therefore needs to be set to a value that accommodates
longer packets especially in deployment scenarios where
the group membership is envisaged to approach 100 nodes.
Enabling jumbo packets processing in the engine is
recommended. Overall, the XCAST6 Routing Engine
showed a very good performance within the acceptable
limits. While CPU utilization is higher with fewer
XCAST6 destinations, we note that XCAST6 is a group
communication protocol hence scenarios like two
destination can best work with peer-to-peer. Moreover, it
is highly unlikely that a communication scenario can arise
that imposes a requirement on maintaining a threshold on
bandwidth utilization that we did in our test, for stress
testing purposes only. Therefore when used with the right
number of destinations that warrant group communication,
XCAST6 is not CPU intensive. Should such a need a rise
then XCAST6 can be complemented with SICC[13].

6. Related Works

The SAMTK project[1] [18] provides interfaces for
XCAST, ALM and ALR network plugins. ALR
(Application Level Router) has some components that
overlap with the functions of our routing engine. It parses
UDP packets and does a lookup in its internal forwarding
table to duplicate and deliver the packets to multiple
destinations. In addition, it provides NAT traversal
function by using a singe UDP port both for session
registration and packet delivery. Many recent projects also
attempt to define architectures for large scale Internet
group services that can operate in the future Internet.
OASIS[3] proposes a generic approach to inter-domain
multicast, guided by an abstract, DHT-inspired overlay
that may operate on a future Internet architecture. It is
aimed at facilitating multipath multicast transport, offering
fault-tolerant routing, and arbitrary redundancy for packets
and paths. However, it is based on the assumptions of a
globally available end-to-end unicast routing. Simple
technologies such as the one we have presented here can
help ensure the end-to-end unicast routing that OASIS
assumes to always exist.
Multipoint communication research is also ongoing
in structured overlay and hybrid networks. In the
HAMCast project[2], Xuemin Shen et al review the key
concepts of multicast and broadcast data distribution. They
further perform an analysis examining different
distribution trees constructed on top of the key-based
routing layer. Finally, they compare the performance
characteristics of the various multicast approaches and
identify major internal differences. This way, they seek to
identify key areas that need optimization for application in
the future Internet.

7. Conclusion and Future work

We have described the XCAST6 Routing Engine, a
software routing component that simplifies gradual
deployment of XCAST6 in the real-world even if the
router is not XCAST-aware. We used a low cost PC with
modest specification to implement the XCAST6 Routing
Engine on both FreeBSD 6.2 and FreeBSD7.2, connecting
the PC to a Juniper J2320 router as the core router in the
testbed. To handle routing table synchronization issues,
we proposed and implemented two different approaches
using either SNMP or NETCONF.
Performance evaluation of the XCAST6 Routing Engine
has shown favorable results. XCAST6 Routing Engine has
also been deployed in the WIDE network at Nagoya
University and we are seeking to investigate O0S
implementation on XCAST6 protocol and avail the
information for other academic research.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

209

As future work, we shall be seeking to implement the
XCAST6 applications relying on the routing engine, that
can be used in the QoS research in multipoint
communication and also to investigate among other things,
security considerations for XCAST6.

Acknowledgments

We thank all members of the XCAST fans club for their
contribution in the XCAST6 research. We also thank the
WIDE project, Japan, that has offered venues for
consultation and sharing of ideas and experiment sessions
as we work on XCAST6 Routing Engine. Finally we
thank the SAMTK research team and many other people
who have given us feedback on many aspects of the
XCASt6 Routing Engine.
References
[1] Kawaguchi N., Nishiura S., Abade E.O, Kurosawa T.,
[2] Jinmei T., Muramoto E., ”NAT Free Open Source 3D
[3] Video Conferencing using SAMTK and Application Layer

Router”, IEEE, CCNC January 2009.
[4] Xuemin Shen, Heather Yu, John Buford, Mursalin

Akon,”Multicast Routing in Structured Overlays and Hybrid
Networks”,In: Handbook of Peer-to-Peer Networking,
Berlin Heidelberg:Springer Verlag, December 2009.

[5] MatthiasW., Thomas C. S., GeorgW.,”OASIS: An Overlay
Abstraction for Re-Architecting Large Scale Internet Group
Services”, Lecture Notes in Computer Science, Vol. 5630,
pp. 95–106, Berlin Heidelberg:Springer-Verlag, June 2009.

[6] S. Deering, R. Hinden, ”Internet Protocol, Version 6 (IPv6)
Specification”, RFC 2460, December 1998.

[7] B. Fenner, ”Experimental Values in IPv4, IPv6, ICMPv4,
ICMPv6, UDP, and TCP Headers”, RFC 4727, November
2006.

[8] K. Ramakrishnan et al, ”The Addition of Explicit
Congestion Notification (ECN) to IP”, RFC 3168,
September 2001.

[9] The case against Hop-by-Hop options, Internet Draft,
draftkrishnan-ipv6-hopbyhop-02.txt, February 2008, Work
in Progress.

[10] R. Enns, Ed, NETCONF Configuration Protocol, RFC4741,
Juniper Networks Inc, December 2006.

[11] D. Harrington, R. Presuhn, B. Wijnen, An Architecture for
Describing SNMP Management Frameworks, Cabletron
Systems Inc, April 1999.

[12] JUNOS Feature guide, Release 9.1, Juniper Networks Inc.
[13] R. Boivie, et al., ”Explicit Multicast (Xcast) Concepts and

Options”, RFC 5058, November 2007.
[14] XCAST6 (version 2.0) Protocol Specification, Internet

Draft, draft-ug-xcast20-protocol-spec-00.txt, February 2008,
Work in Progress.

[15] Yoneda T., Muramoto E., Chih-Chang H., Konishi K,
MatsumotoT, ”Evaluation of Congestion Control Method
using Multiple-Constant Bit Rate Streams over XCAST6”

[16] Y. Imai et al, BSD implementations of XCAST6, in
proceedings of ASiaBSDCon2008, March 2008.

[17] Lorenzo Aguilar, Datagram Routing For Internet
Multicasting, IGCOMM ’84, March 1984.

[18] A. Conta, S. Deering, Generic Packet Tunneling in IPv6
Specification,RFC2473, December 1998.

[19] Widely Integrated Distributed Environment (WIDE) project
(www.wide.ad.jp)

[20] Scalable Adaptive Multicast Toolkit (SAMTK) project
(www.samtk.org)

[21] The FreeBSD Project PMC tools
(http://wiki.freebsd.org/PmcTools)

[22] Hyok Kim et al, Peformance Analysis of the TCP/IP
Protocol Under Unix Operating System for High
Performance Computing and Communications, Dec 2002.

Odira Elisha Abade received Bsc in
Computer Science and Master of
Engineering in Information and
Communication Engineering degrees
from the University of Nairobi, Kenya
and Nagoya University, Japan in 2005
and 2010 respectively. During 2005-2006,
he worked with Huawei Technologies Co.
Ltd in Intelligent Networks division. He

later joined the University of Nairobi in Software technology
services. He is currently a PhD student at the Graduate school of
Engineering, Nagoya University. His research interests include
high availability networking, network security, mobile and
wireless networks, Mobile Ad Hoc networks and Mobile IP
communication and electronic money in e-commerce and m-
commerce.

Katsuhiko Kaji received the B.S, M.S.
and Ph.D degrees in Information Science
in 2002, 2004 and 2007 respectively from
Nagoya University. He was with NTT
Communication Science Laboratories,
Japan, as research associate from 2007 to
2010. From 2010, he has been an assistant
professor in Graduate School of
Engineering, Nagoya University

