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Summary 
The security of cryptosystems depends on the hardness and 

difficulty of solving the discrete log problem. One of the well 

known algorithms to solve the discrete log problem is the 

Baby-Step Giant-Step Algorithm. This algorithm has √n  space 
and time complexities in the cyclic multiplicative group	Z�∗ . In 
this paper, a modified algorithm is proposed to reduce the space 

complexity by 50%; the algorithm uses properties of φ function 
in order to decide what elements are useless for the algorithm. 

The proposed algorithm of the Baby-Step Giant-Step 

Algorithm has √n  time complexity and  √n/2  space 

complexity to find a solution for the discrete log problem in the 

cyclic multiplicative group		Z�∗ .  The proposed algorithm can 

find a solution with time complexity of √n/2 if it runs with a 
space complexity of √n meaning it will run twice as fast as the 

conventional algorithm with the same space complexity. 
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1. Introduction 

Information is becoming an asset to everyone as the 

world is evolving into information technology age. 

Controlling access to data is of high importance as 

network systems are booming rapidly around the world. 

In order to achieve a high level of secrecy for data 

exchanged across insecure channels, several methods in 

cryptography are to be used as it offers a great deal of 

information secrecy. Several encryption schemes are 

built on the knowledge discovered in a branch of 

mathematics called group theory; the discrete log 

problem is one of the major problems in group theory 

that provide a solid base for several public key 

cryptosystems [1-2]. In public key cryptosystems, two 

keys are chosen for a particular cyclic multiplicative 

group in order to perform exchange of encrypted 

information; the two keys are known as the private key 

and the public key [1]. Public keys are exposed to the 

public while private keys are kept as secretes. For a 

message to be sent secretly, a sender encrypts data with a 

public key while the receiver uses the private to decrypt 

as shown in figure 1 [1]. 

 

 

Fig.1 Public key cryptosystems. 

The security of public key cryptosystems depends on the 

hardness and difficulty of solving the discrete log 

problem [1-2]. Given a cyclic multiplicative group Z�∗  
where n	 ∈ Z� and β ∈ Z�∗ 	. The discrete log problem is 

defined as: 

Given	
, � and	�, 	� ≡ log� 	� mod	n                     (1) 
Where g  is a generator in the cyclic multiplicative 

group 	Z�∗  [3]. Finding a solution to the discrete log 
problem attracted the attention of researchers around the 

word especially after the remarkable work of Whitfeld 

Diffe and Martin Hellman in 1976 [3]. They came up 

with Diffie-Hellman key exchange scheme which is 

presumed to be unbreakable unless the discrete log 

problem is solved [3]. The trivial approach to finding a 

solution for the discrete log problem is by doing 

exhaustive searching testing for all possible powers of 

the generator; this way is only possible for small integers 

because it is impossible for exhaustive searching to find 

a solution of the problem when the integers in the 

problem are large [4].One of the well known discrete log 

problem algorithms is the Baby-Step Giant-Step 

Algorithm. This algorithm was purposed by Daniel 

Shanks in 1971 [5] and is able to solve the discrete log in 

√n  iterations with a space complexity of √n  [6]. This 
paper provides a modified version of the Baby-Step 

Giant-Step Algorithm such that the space complexity of 

the algorithm is reduced by %50. The algorithm runs as 

fast as the Baby-Step Giant-Step Algorithm with a space 

complexity of		√�
�
	. 
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2. Mathematical Approach 

2.1 Baby-Step Giant-Step Algorithm 

The Baby-Step Giant-Step Algorithm is one of the 

algorithms to find a solution to the discrete log problem. 

It can solve the discrete log problem for any cyclic 

multiplicative group [5]. Let us assume that we have a 

cyclic multiplicative group Z�∗  that has a generator 

called 	g . Generators in a multiplicative group produce 

every element in the group, i.e., every element x	 ∈ Z�∗  
can be expressed as: 

� ≡ 
� 		���	�   (2) 

Where y is an integer such that  0 ≤ y < #(�) [7]. The 
function φ(n) is defined as the number of x elements in 

Z�∗  that have  x < �  and	gcd(n, x) = 1 [7]. This would 
imply that the function φ(n)  gives the number of 

elements in a cyclic multiplicative group	Z�∗ . Therefore, 
since every element x  within the cyclic multiplicative 

group  Z�∗  can be expressed in terms of a power of the 

generator 	g  [7], the cyclic subgroup < 
 >	   has φ(n) 
elements and can be expressed as the following: 

{	
+, 
,, …			 , 
� , 
��,, 
���, … , 
.(/)0,} 
The Baby-Step Giant-Step Algorithm has two steps. First, 

the baby step calculates the values of g2  for 0 ≤ y <
	3√n4 and stores the values into a table. After that, the 
giant step would be able to reach g2	5673√�4	in at most 

8√n9  iterations where g2	5673√�4  would be within the 

table of the baby step since y	mod	3√n4 < 	 3√n4  [1,5]. 
Therefore, the algorithm needs	3√n4 entries in the table 
of the baby step and at most 8√n9 iterations to reach an 
entry in the baby step table [6]. If we have a cyclic 

multiplicative group Z�∗  with a generator g and we have 
the discrete log problem 	x	 ≡ 	 log� β . The following 
illustrates how the Baby-Step Giant-Step Algorithm 

solves for	x. 
Set 	�	 → 3√�4 ; 

For 	0 ≤ ; < � 

       Calculate g<  and Store (;, 
=)  in the baby step 
table; 

End for 

 

Calculate 
0>	and Set ? ← 
0>	���	�; 
 

For A = 0,1,2,3, …. do 
 

       D ← �?E 	���	�; 
      If D ≡ 	
=  (for any ; in the baby table)  

Return  A� + ;; 
End for 

Alg.1 Baby-Step Giant-Step Algorithm [5]. 

In order to visualize the operation of the algorithm then 

let us put all 	gG5 where 	A� < #(�) on a line. 

  
+							
>								
�>     
H>   
I>																			
E>			
(E�,)>				
.(/)0,       

values stored in 

Baby step table 

 

Fig.2 Baby step table values. 

Figure 2 shows the values as elements in the cyclic 

subgroup < 
 > . The baby step computes the values 


J 	 in the subgroup < 
 >  where � < 	� = 3√�4  and 
stores both the power and the element generated in the 

baby table [4]. If we take any random	� ≡ 
J, then the 

giant step would behave as shown in figure 3 below. 

 

  
+							
>								
�>     
H>      
I>																		
K>			
(K�,)>				
.(L)0,       

  

     
J0E>                         
J0�>    
J0>         
J  

 

Fig.3 Giant step iterations. 

Figure 3 shows how the giant step aims to move β ≡ gM 
backward towards a value that is less in the power than 

g5 , i.e., gM0G5  where x − im < � [6,8]. The giant step 

moves gM  backward towards the baby step table by 
reducing its power every iteration by a factor of	(–m) 

[6,8]; this ensures that for every value of x, gM0G5	will 
eventually hit a value in the baby step table [5], a hit 

occurs when gM0G5 ≡ g< , which means that j = x − im. 

Therefore, the algorithm returns the value 		im + j =
	im + (x − im) = x . The Baby-Step Giant-Step 

Algorithm lacks the intelligence of where the algorithm 

can be modified in a way where the input problem is 

altered to reduce space or computational complexities [9]. 

2.2 Modified Baby-Step Giant-Step Algorithm 

The proposed Modified Baby-Step Giant-Step Algorithm 

relies on the fact that the function φ always produces 

even integers. To prove φ	  always produces even 

integers, assume we have a composite integer 	n , 

then	φ(n) can be expressed as: 
 

#(�) = #RS,
JT ∗ S�

JU ∗ …∗ S/
JVW 

= S,(S, − 1)JT0, 	 ∗ 	S�(S� − 1)JU0, 	 ∗ 	… ∗

S�S�−1��−1                  (3) 
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Where S,, S�, …. , 	S/  are the prime factors of �  and 

�,, ��, …,	�/	 ∈ X [7].  # is even because 

#(�) = 	S,(S, − 1)JT0, ∗ S�(S� − 1)JU0, ∗ …

∗ S/(S/ − 1)JV0, 

= (S, − 1) ∗ [S,(S, − 1)JT0� ∗ S�(S� − 1)JU0, ∗ … ∗

S/(S/ − 1)JV0,]																						                      (4) 

For any prime 	S , 
[�(S, �) = 1	 for any 	� < S  [10]. 

Therefore, we can say that for 	� = 2,  		
[�(S, 2) = 1 
meaning S = 2� + 1 for some �	\	X. 
And this means that	2	|	S − 1 because: 

S − 1 = 2� + 1 − 1 = 2�	           (5) 

Therefore, S − 1	is even for every prime	S. Back to (4), 
we can apply the finding in (5) to the prime factor	S, 
expressing 

 S, − 1 = 2� for some	�	\	X          (6) 

Since S, is a prime factor of �. #(�) can be expressed as  

#(�) = (S, − 1) ∗ [S,(S, − 1)JT0� ∗ S�(S� − 1)JU0,

∗ …	∗ S/(S/ − 1)JV0,] 

Applying equation (6) we get 

#(�) = 2� ∗ [S,(S, − 1)JT0� ∗ S�(S� − 1)JU0, ∗ … ∗

S/(S/ − 1)JV0,]              (7) 

Equation (7) shows that #(�)	is always a multiple of 2 

which implies:  

#(�)	is even ∀� ∈ X.                          (8) 

If we know that for a cyclic multiplicative group	X/∗  , 
with a generator	
, where #(�) is even as shown in (8), 
then we can reduce the size of the baby step table by 

50%. Assume we want to find � in the following discrete 
log problem: 

� ≡ 	 `�
a �               (9) 

The modified algorithm will initially square �  in the 

following equation 	�	 ≡ 	 `�
a � then solve the problem 

of: 

2� ≡ 	 `�
a ��				 	 	 	 					  (10) 

When solving for 2x in congruence (10), we know that 
β� ≡ g�M , and therefore when generating the baby step 
table, we do not need to store any entry where the power 

is odd, i.e., gG ≡ g�b�, where s ∈ Z because we know β� 
is of  an even power 2x to the base g. Ensuring the power 
is even can help us reduce the baby step table as shown 

in the following modified algorithm. 

Set 	�	 → 3√�4 ; 
If (�	���	2 ≡ 1)  
					� = � − 1; m has to be even 

 

For 	0 ≤ ; < �/2 
Calculate 
�=  and Store (;, 
�=) in the baby step table; 
End for 

 

Calculate 
0>	and Set  ? ← 
0>	���	e; 
 

Set f ≡ �� 

For A = 0,1,2,3, …. do 
 

Set	D ← f?E 	���	�; 
If D ≡ 	
�=  (for any j in the baby table) meaning we hit 

a value 

 

If (� ≡ 
E>��=) 
Return (A� + 2;); 
Else 

 Return (A� + 2;) + (#/2); 
 End if 

 End if     

End for 

Alg.2 Modified Baby-Step-Giant-Step algorithm. 

It is mandatory that #  produces an even integer as 

proven in (8). Otherwise, ��	can be of an odd power in 
terms of		
	which makes the modified algorithm unable 

to find the power of		
. We can prove that ��	is always 
of an even power in terms of	
	by expressing it as:  

�� ≡ (
J	)� ≡ 
�J	>gh	.	 = 
�J0i.  for some j, k	 ∈ X 
where 2� − k#	 < 	#          (11) 
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By the finding in (8) we know that φ	is always even 
meaning # = 2A for some A ∈ X. The power 2� − k# can 
then be expressed as: 

 2� − k# = 2� − k(2A) = 	2(� − kA)	        (12) 

Which implies: 

	�� ≡ 
�(J0iE)  where 2(� − kA) < #              (13)  

proving	β� is always of an even power in terms of	g. The 
key to reducing space complexity in the baby step table 

is the prior knowledge of the nature of the power 2x in 
β� ≡ g�M. Squaring the power makes the power even and 

will help us create a smaller baby step table. In order to 

apply the purposed algorithm, let us consider ZI,∗  where 

g = 6  and β = 12  then we can write the discrete log 
problem as: 

�	 ≡ 	 `�
m 12          (14) 

By using our modified algorithm, equation (14) can be 

solved as: 

�	 → 3√414 = 6  
>

�
= 3 meaning we will create a baby table of 3 entries. 

 

Table.1 baby table of the modified algorithm. 

; 0 1 2 

g�< 1 36 25 

 

f ≡ �� ≡ 12�	���	41 ≡ 21  
this step makes sure the power is even as shown in (13). 

? ≡ 
0> ≡ 60m���	41 ≡ 20 the obtained value is used 
to reduce the power by (−�) per iteration. 

Table.2 The giant step iterations. 

A 0 1 2 

f?E ≡ �� ∗ 
0E> 21 10 36 

From table 2, we can see that on the third iteration in the 

giant step, i.e.,	i = 2, the value of t ≡ ∂vG ≡ 36 which is 
the same value found in table 1 where j = 1. This implies 

that 	β� ∗ g0G5 ≡	g�<	 . Hence, the solution of the 

algorithm will become as follows: 

� = [(E>��=)

�
+ 	(#/2) ] = [(�∗m��∗,)

�
+ 	(40/2)]  as (� ≠


(E>��=)) . 

The returned value of  � = 27. The correct answer is 
proved by computing	6�s���	41	 ≡ 12. 

2.3 Analysis of the Modified Algorithm 

To show how the modification of the algorithm reduces 

the size of the baby table of Shank’s Algorithm, let us 

consider: 

�t 	≡ 	 `�
m �  in XI,∗          (15) 

where 	(g = 6 ) is a generator in ZI,∗ . To show the 

difference between the conventional algorithm 1 and our 

modified algorithm 2, the plot of all solutions to 

congruence (15) is shown in figure 4. 

 

 

Fig.4 Scatter plot of 	x	 ≡ logm β 

Figure 4 shows all the possible solutions	(β, x), for the 
congruence (15). For instance, for any point (β, x) on the 
plane, we have 

	6J ≡ �	���	�           (16) 

The conventional Baby-Step Giant-Step Algorithm stores 

all the values of 
J ≡ 	6J where � < 	 3√414, i.e., all the 
pairs	(�, 6J)  located inside the rectangle in figure 5 are 
the entries of the conventional baby step table. 
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This	rectangle	contains	all		
entries	of	baby	step	table			

Fig.5 Scatter plot of 	x versus 6Mmod	41 

The modified Baby-Step Giant-Step Algorithm stores 

half of the values inside the rectangle shown on figure 5. 

This is because β� is known to hit a pair (x, 6�M) on the 
plane where the power is even meaning we can discard 

all the pairs	(x, 6M) where x is odd. The plot of the values 
of 6�M in the modified algorithm is shown in figure 6. 

 

  
This	rectangle	contains	all		
entries	of	baby	step	table			

Fig.6 Scatter plot of 	x versus 6�Mmod	41 

The pairs (x, 6M) inside the rectangle on figure 6 are the 
pairs that are going to be stored in the baby step table of 

the modified algorithm. We can see that half of the 

values stored in figure 5 were useless to the algorithm 

when squaring		β ≡ gM}.  

2.4 Speeding Up the Modified Algorithm 

In this paper, we also examine speeding up our modified 

algorithm 2. The modified Baby-Step Giant-Step 

Algorithm can run twice as fast as the conventional 

Baby-Step Giant-Step Algorithm with a space 

complexity of 	√n  . Algorithm 1 would need 2	3√n4 
entries in the baby table to run as fast as our faster 

modified algorithm 2. The modified algorithm mainly 

changes the giant step to reduce the power of gM	by a 
factor of (−2m)	in every iteration rather than (–m). It is 

important to take into consideration that there is a trade 

off relation between space complexity and time 

complexity. The following is the Faster Modified Baby-

Step Giant-Step Algorithm where we can find a solution 

with time complexity of 	√n/2. 
 

Set 	�	 → 3√�4 ; 

If (�	���	2 ≡ 1)  
					� = � − 1; m has to be even 

 

For 	0 ≤ ; < � 

Calculate 
�=  and Store (;, 
�=)  in the baby step 
table; 

End for 

 

Calculate 
0�>	and Set ? ← 
0�>	���	�; 
 

Set f ≡ �� 

For A = 0,1,2,3, …. do 
 

Set	D ← f?E 	���	�; 
If D ≡ 	
=  (for any j in the baby table)  meaning we hit a 

value 

 

If R� ≡ 
(E(�>)��=)W 
Return (A(2�) + 2;); 

Else 

 Return (A(2�) + 2;) +	(#/2); 
 End if 

 End if     

End for 

Alg.3 Faster Modified Baby-Step Giant-Step Algorithm. 

By enlarging the baby step table to be of size	3√n4, we 
are certain that gM0G5 would hit an entry in the baby step 
table in 	8√n/29   steps. This is valid because we are 
reducing the power of 	g�M in multiples of 	(−2m)		rather 
than	(–m). We are certain that 	gM0G5 would hit a value 
in the baby step table for some value 		i < 		 8√n/29 , 
where i represents the number of iterations the algorithm 

needs to iterate to reach a hit in the baby table. To prove 
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that i  is less than 	8√n/29  let us solve for the largest 
possible power value which is	φ − 1	. Then, the discrete 
log problem becomes as follows: 

� ≡ 	 loga 
.0,          (17) 

Equation (17) implies that the algorithm will return the 

value of φ− 1 as 

# − 1 = 2A� + 2;          (18) 

It is possible to have # − 1 as: 

# − 1 = 2A� + 2; +	(#/2)         (19) 

 Since we know that 2� = 	23√�4, then the number of 

iterations	A		in (18) is: 

A =
# − 2; − 1 − (#/2)

	2�
<
# − 2; − 1

	2�
 

<
# − 2; − 1

2	3√�4
<

# − 2;

2	3√�4 + 1
≤
# − 2;

2	√�
 

<	 8√�/29           (20) 

While the value of A in (19) is 

A = .0�=0,0(./�)

�	>
< .0�=0,

	�>
<	 8√�/29       (21) 

Therefore, when �  is largest , 
J  would take less than 

8√�/29 iterations to hit an entry in the baby step table as 
proven in (20) and (21). 

3. Conclusion 

One of the famous algorithms to find a solution to the 

discrete log problem is the Baby-Step Giant-Step 

Algorithm. We have shown how Baby-Step Giant-Step 

Algorithm can be modified to perform better in terms of 

space complexity or time complexity. The space 

complexity was reduced by 50%. We have shown an 

important trade off relationship between space 

complexity and time complexity in the Baby-Step Giant-

Step Algorithm. Furthermore, we have shown how the 

modified algorithm can run twice as fast as the 

conventional algorithm with a space complexity of 	√n 
where the conventional algorithm uses 	√n  space 

complexity too. Our modified algorithm can find the 

solution to the discrete log problem with time complexity 

of √n/2 when it runs with a space complexity of	√n.  

This does not solve the discrete log problem but rather 

modifies the Baby-Step Giant-Step Algorithm by the use 

of φ function properties in order to decide what elements 

are useless for the algorithm. Finally yet importantly we 

have proven that it is possible to improve the Baby-Step 

Giant-Step Algorithm by means of altering the inputs to 

the algorithm to reduce either space or time complexities. 
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