
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

265

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Routing and admission control issues for LSPs in MPLS Routing and admission control issues for LSPs in MPLS Routing and admission control issues for LSPs in MPLS Routing and admission control issues for LSPs in MPLS

networksnetworksnetworksnetworks

Afef Kotti
†
 and Rached Hamza

††,

Techtra Research Unit, Sup’Com, Tunisia.

Summary
Increasing demand for multimedia and distributed applications in
recent years has drawn renewed attention to Quality of Services
(QoS) routing in IP/MPLS network. This paper presents several
new algorithms to be implemented for that purpose. We look, in
a first part of the problem at organizing the mapping of Label
Switching Paths (LSPs) throughout the network such that we can
compromise between several Traffic Engineering (TE)
objectives: load balancing, avoiding network bottlenecks,
reducing routing cost and minimizing path hop count. In the
second part, to bring more and more QoS guarantees to high
speed multimedia applications, we have introduced
Differentiated Services. In this issue, we propose a new
admission control mechanisms based on bandwidth resources.
Preemption has been recognized as an important paradigm in our
research and it has been conducted into two dimensions:
preemption inter Class Type (CT) and preemption across a CT.
To achieve significant performance improvement for preemption
treatment, we propose two different algorithms: a bandwidth
preemption algorithm which selects amount of bandwidth to
preempt and an LSPs preemption algorithm which selects the
most appropriate LSPs to preempt on the basis on several
optimization criteria to avoid rerouting explosion. Simulations
studies have been carried out to compare the performance of our
approach against existing ones.
Key words:
Traffic Engineering, MPLS, Constrained based routing, Diffserv,

Preemption.

1. Introduction

Due to the rapid growth of the Internet and the
requirements for QoS of high speed multimedia
application, Internet Service Providers need to better
engineer their traffic. Traffic Engineering (TE) is defined
in [1] as mapping traffic flows onto an existing physical
network topology in the most effective way to accomplish
desired operational objectives.
Plain IP routing, based on the best effort service is not
enough to forward packets along a specific path. The need
of Constrained based routing has been imposed. Multi-
Protocol Label Switching (MPLS) was been developed to
overcome the limitation of conventional routing protocols.
MPLS allows the specification of explicit routes through
the network, so-called Label Switched Paths (LSPs). From
this arises the first motivation of our problem. In fact, we
have looked in the first part of our work on the problem of

organizing the mapping of paths in an optimal way
throughout the network so as to improve backbone
efficiency.

Diversity of multimedia and distributed applications has
drawn renewed attention to face heterogeneity in networks.
Without referring to different classes of services, existing
TE researches may be not optimal in a differentiated
service environment. To address this issue, the IETF
proposed the Diffserv aware MPLS TE (DS-TE) scheme,
which performs TE at a per class level. In this issue, traffic
flows toward a given destination can be transported on
separate LSPs on the basis of service classes and may
follow different paths. The TE class is introduced in DS-
TE as a pair of a Class Type (CT) and a preemption
priority allowed for That CT. In DS-TE, the IETF enforces
different Bandwidth Constraints (BCs) on different classes.
It specifies three Bandwidth Constraints Models (BCMs)
in use for DS-TE: Maximum Allocation Model (MAM)
[2], Russian Doll Model (RDM) [3], and Max Allocation
with Reservation bandwidth constraints model (MAR) [4].
A BCM provides the rules to support the allocation of
bandwidth to individual Class Types (CTs). The use of a
given BCM has significant impact on the capability of a
network to provide protection for different classes of
traffic, particularly under high load conditions.

Bandwidth preemption was recognized as an important
piece of DS-TE bandwidth management, but no
preemption strategy was proposed in the IETF models. In
this context, we propose a new preemption approach on
the basis of two algorithms. The first one is a bandwidth
preemption algorithm in which preemption is conducted in
two dimensions: CT and preemption level. This algorithm
would return the amount of bandwidth to preempt from CT
ct and priority p. Having this information, the second
algorithm, named LSPs preemption algorithm, selects the
most appropriate LSPs to be preempted from the set of
LSPs of Class Type ct and priority p.

The remainder of this paper is organized as follows:
Section 2 describes the general problem statements and
presents a brief overview of this paper’s contributions.
Section 3 is dedicated to the description of the Bandwidth
Constrained Routing Algorithm (called BCRA) that we

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

266

use for route computation. Section 4 presents the
admission control mechanism proposed for MPLS
networks. Section 5 has been dedicated to remind the main
rules of the BCM model we use. Section 6 and section 7
analyze respectively the pseudo-code of the bandwidth
preemption algorithm and the LSP preemption algorithm.
In section 8, simulations studies are carried out to evaluate
the performance of our preemption approach. Finally, the
work is concluded in section 9.

2. General problem statements and main

contributions

The paper presents a bandwidth management framework
supporting DS-TE in MPLS networks. Our bandwidth
management framework contains two major functions:
Route computation and bandwidth management. Although
many studies have been conducted on TE, most of them
focused on the route selection algorithms [6], [5], [7], [8],
[11] and have been put a little effort into DS-TE
bandwidth management techniques.

In DS-TE solution, traffic flows can be grouped into
classes, and different bandwidth constraints can be applied
to each class. By mapping a traffic trunk in a given class
on separate LSPs, DS-TE allows the traffic trunk to utilize
resources available to that class on both shortest and non
shortest paths, and follow path that meet the specific
constraints. Obviously, when TE is performed in a
Diffserv scenario, a bandwidth manager is indispensable
for every network node to enforce different bandwidth
constraints for each class, and to flood the network with
bandwidth availability information on a per class level. In
this context, admission control is imposed. Remind that
admission control is the set of actions taken by a network
during the service establishment phase to check whether
an LSP service request is to be admitted or rejected. A new
LSP request is admitted when the desired QoS for the new
service can be satisfied, without causing any QoS violation
to the already established LSP having higher priority. An
additional role of admission control is to optimize the use
of network resources.

Admission control should integrate preemption
mechanisms to improve efficiency under any offered
traffic conditions. In [9], admission control mechanisms
are highlighted but no preemption mechanism has been
proposed. For this reason, our proposed approach can be
considered as the most complete solution in TE. In our
present paper, a new preemption policy is proposed.
Preemption in our study is conducted in two dimensions:
CT and preemption level so that an LSP of CT ct and
priority p can not be preempted weather other LSP of
weaker precedence remains in the network. The

preemption policy we propose is both simple and robust,
combining the three main optimization criteria:

• Precedence level: preempt the connection that has
the least priority. The QoS of high priority traffic would be
better satisfied.

• Number of LSPs to preempt: the number of LSPs
that need to be rerouted would be lower to avoid rerouting
explosion.

• Amount of bandwidth to preempt: preempt the
least amount of bandwidth that still satisfies the request.
Resource utilization would be better.
To show how our approach proceeds in details, let us
define the network model and operations. We consider an
MPLS network where DS-TE is applied. The network is
modeled as a directed graph G(N,L) where N is a set of
nodes (routers), and L is a set of links between nodes. Each
link i ∈ L is characterized by its bandwidth capacity C(i)
and its residual bandwidth Resd_bw(i). Furthermore, each
LSP is classified into one CT and assigned with one
holding priority and one setup priority. Besides the source
and destination nodes, an LSP establishment request
contains four parameters (Bw,ct,hp,sp), indicating that Bw

amount of bandwidth is requested for establishment an
LSP of CT ct at holding priority hp and setup priority sp.
Note that LSPs in the same CT can have different
priorities so that they have different priorities to access and
retain the resources. We note Nr(lsp) the number of
components routers of the LSP (noted lsp) generated by
the route computation algorithm.

Figure 1 resumes the principle steps of our proposed
approach. Firstly, when the source node receives an LSP
request, it computes a route to the destination based on the
network topology, the requested LSP parameters (like the
requested bandwidth Bw), and some links parameters (like
the link residual bandwidth). More details on the route
computation technique will be presented in the next
section. Secondly, the source sends a request, with
parameter the LSP returned by the first step, to all the
routers along the path. Thirdly, each router on the path
exercises admission control and sends a positive reply to
the next router if its outgoing link i have enough free
bandwidth available to the new connection
(Resd_bw(i)≥Bw). Fourth, if there is not free bandwidth,
then the router would activate bandwidth preemption and
return positive reply if preemption is successful; otherwise,
it would return negative reply. If all routers along the path
return positive replies, then the LSP setup is successful
without exercising LSPs preemption, and they would
reserve the requested bandwidth on the output links. If one
or more routers of the returned path exercise bandwidth
preemption, PreemptLSP variable is set at true and in this
case of study, LSPs preemption should be activated before
establishing the new LSP.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

267

We present in next sections the principle algorithms we
have proposed to form a performing LSPs infrastructure
that supports differentiated services paradigm.

Fig. 1 Flowchart of the admission control procedure.

3. Route computation

3.1 General routing problem

In this section, we discuss routing algorithms for traffic
requiring bandwidth guarantees. The goal of the routing
algorithm is to find a feasible path if one exists, and to
select one that achieves efficient resource utilization if
more than one path is available. The most commonly used
algorithm for routing LSPs is the shortest path routing. In
the shortest path routing, the path with the least number of
links between ingress and egress nodes is chosen. The
routing algorithm keeps track of the current residual
capacity for each link and only those links that have
sufficient residual capacity for the new flows are
considered. The shortest path algorithm is very simple, but
it can also create bottleneck for future flows and lead to
severe network under-utilization. In the other hand, load
balancing algorithms generate too long paths to avoid
network bottlenecks. This fact also affect badly on the

network infrastructure since it sometimes augments
resource consumption. As we can see, it is difficult to
compromise between different TE objectives since
optimality criteria sometimes conflict. The motivation for
our routing problem arises from the needs of service
providers of an approach that can compromise between
several TE objectives for the usage efficiency of the
network infrastructure. In our approach, we have
considered the following objectives: Distributing network
load, minimizing path length and reducing path cost. The
algorithm has been presented with more details in [11] and
it has been compared with the most known existing one.
We present briefly, in next paragraph, its basic rules.

3.2 Route computation algorithm

We present the basis ideas of an algorithm for dynamic
routing of bandwidth guaranteed flows that we had
proposed in [11]. Traditional routing does not take
advantage of any knowledge about the traffic distribution
or ingress-egress pairs, and therefore can often lead to
severe network under-utilization. Algorithms of load
balancing, if they exist, they select paths with high number
of hops count to avoid network congestion. For this reason,
compromising between network load balancing and
reducing route hops count will be the most efficient
solution for the network infrastructure.

• Distributing network load: for distributing
network load, we define a link load parameter l_load(e)
for the link e as follow:

eonbandwidthreservabletotal

eonbandwidthreserved
eloadl =)(_ . (1)

To conserve load balancing we suppose that the TE metric
on each link e belonging to the graph G is defined as:

 () ()load(e)_lfeTEML e= . (2)

Where fe is a positive objective function that we will
formulate it later.

The TE metric for a path i, called TEMP(i), reflects the cost
of path i and it is defined as follow:

 () ()∑
∈

=
iEe

eTEMLiTEMP

I

. (3

• Reducing routing cost: we assume that network
usage cost is solely dependent on the cost of the paths
being used. Thus, the TE objective of minimizing network
cost is directly translated to the problem of minimizing path
cost. Path cost is a static metric and depends directly on its
component links costs. Static metrics help in maintaining
network stability under high load condition. We denote
Cost(e) the cost of link e. we define Cost(e) inversely
proportional to its bandwidth capacity.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

268

 ()
()ecapacityl

eCost
_

1
= . (4)

Where l_capacity (e) the bandwidth capacity of the link e.

We formulate now the function fe as:

 () EeeCosteloadlf e ∈∀×=)(_ . (5)

Therefore, TEML(e) is reformulated as follow:

 () () EeeCosteloadleTEML ∈∀×=)(_ . (6)

• Minimizing path length: to minimize path length,
CSPFHopCount assign a weight equal to 1 for each link.
We will exploit this fact to formulate our objective
function fe.

() EeeCosteloadlf e ∈∀+×= 1)(_ . (7)

3.3 Pseudo code of the route computation algorithm

We present in this section the pseudo code of the route
computation algorithm. The algorithm will return the path
taken by an LSP from the source to the destination
minimizing the objective function. So, we use the well-
known Dijkstra scheme and adapt its formulation to our
need. Our route computation algorithm is detailed in
Figure 2.

1 Route-computation-algorithm procedure(G(N,L),r(B,ct,hp,sp))

2 {
3 Compute the link weight, TEML(e), for all e in L according

to equation 7.
4 Use Dijkstra algorithm to compute the shortest path in the

network using TEML(e) as weight of link.
5 Send the LSP establishment request to the admission

Control procedure as shown in figure 1.
6 }

Fig. 2 Pseudo-code of the route computation algorithm.

4. Admission control procedure

Admission control procedure is activated by a router when
an LSP establishment request (Bw,ct,hp,sp) is received.
The admission control decision must be made on the basis
of the incoming connection's requested bandwidth, class
type ct, priorities, and the available bandwidth of the CT.
The algorithm returns the decision of either accepting or
rejecting the new request. Admission control procedure, as
shown in Figure 3, is activated by all routers along the
path. The while loop will cross all these routers. For each
one, the requested bandwidth Bw is compared with the
available bandwidth of the routing outgoing link (line 6).
If Bw≤Resd_bw, then there is adequate free bandwidth
available to accommodate the new demand, and the
request is accepted for the considered router which allow
to pass on the following router (I++, line 6). Otherwise,

the free bandwidth is inadequate, the preemption is needed
and the bandwidth preemption algorithm is activated in
line 9. If the latter algorithm is activated at least by one
router, the Boolean variable, preemptLSP is set at true in
line 10.

If one router along the path returns negative reply when
bandwidth preemption is activated, the admission control
procedure rejects the request. Otherwise, if all the routers
along the path return positive reply (reply=true) and if
bandwidth preemption algorithm is activated at least for
one time (preemptLSP=true), then the LSP preemption
algorithm should be activated to select the most
appropriate LSPs for preemption.

1 Admission-control procedure(G(N,L),LSP(B,ct,hp,sp))

2 {
3 Integer I=0; reply=true;
4 while((I<Nr(LSP)-1) and (reply==true))
5 {
6 if(Resd_bw≥Bw) I++;
7 else
8 {
9 Call the Bandwidth Preemption algorithm(reply);
10 preemptLSP=true;
11 if (reply==true) I++;
12 }
13 }
14 if(reply==false) Reject the request;
15 elseif(preemptLSP==true)
16 Call LSP preemption algorithm;
17 }

Fig. 3 Pseudo-code of the admission control procedure.

We are interested now in presenting preemption
algorithms. Before doing this, we have to describe briefly
the BCM model we have use to be able to enforce different
bandwidths constraints for different classes of traffic.

5. Bandwidth Constraints Model

5.1 Definitions of some notations

Some variables need to be introduced to present the rules
defined by the BCM model. Firstly, we define maxCT
such that (maxCT+1) is the number of CTs. Secondly, for
a given CT ct, we define maxpriority(ct) such that
(maxpriority(ct)+1) is the number of preemption levels in
the CT ct. For a given CT ct (0 ≤ �� ≤maxCT), let us
define a vector R_ct[] such that its element R_ct[i] being
the bandwidth reservation on CT ct at setup priority i (0≤

i≤ maxpriority(ct)). A vector R[] is also used such that its
element R[ct] used to record the bandwidth reserved by all
the established LSPs of CT ct. Finally, a Bandwidth
Constraint vector BC[] is also defined so that the amount
of reserved bandwidth by all LSPs of CT ct should not

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

269

exceed the Bandwidth Constraint BC[ct]. We note C(i) the
capacity of the link i in term of bandwidth.

5.2 Bandwidth Allocation

We choose to use the MAM model [2] to enforce a
maximum allocation constraint for each CT. Briefly,
MAM has the following simple rules:

• The bandwidth reserved by all connections of CT
ct should not exceed BC[ct], the Bandwidth Constraint of
CT ct.

 ∑ �_��[
] ≤ �[��]
�����������(��)

��� . (8)

• The total reserved bandwidth should not exceed
the link capacity so that:

 ∑
=

≤
CT

i

CiR
max

0

.][(9)

• For improving bandwidth efficiency, the sum of
the bandwidth constraints is allowed to exceed the link
capacity.

 ∑
=

≥
CT

i

CiBC
max

0

.][(10)

The available bandwidth on a link l for the TE class is
computed as the following, where a TE class is associated
with a CT ct, and preemption priority sp.

.

R[i]-C(l)

,R_ct[i]-BC[ct]

Min=Resd_bw(l)
maxCT

0i

sp

0i

∑

∑

=

=
 (11)

6. Bandwidth Preemption

The Bandwidth Preemption Algorithm is activated by a
router when the requested bandwidth Bw in an incoming
request (Bw,ct,hp,sp) is larger than the unreserved
bandwidth of its outgoing link Resd_bw (Eq. 11). The
Bandwidth Preemption approach offers a new preemption
proceeding for the Maximal Allocation Model. The
resulting algorithm is called Bandwidth Preemption

Algorithm.
Let us now concentrate on how the algorithm proceeds.
The Bandwidth Preemption Algorithm returns a boolean
variable canpreempt, and three vectors having the same

size nb. The first one, vectpreempt_bw[] is used to record
the amount of bandwidth to be preempted, and both
vectors vectpreempt_ct[] and vectpreempt_pp[] record
respectively the CTs and the priority levels, from which
vectpreempt_bw of bandwidth is to be preempted. If
bandwidth preemption can occur, the Boolean parameter
canpreempt is set at true, otherwise, it is set at false.
Figure 4 describes the pseudo code of the Bandwidth

Preemption Algorithm. In Figure 4, line 6, we begin by
searching the possibility of preemption from the amount of
bandwith reserved by LSPs of CT ct (which is the same
CT of the requested LSP). So, we calculate in line 7 the
amount of bandwidth we need to preempt (preemptbw)
from CT ct. The while loop (lines 8-15) gathers bandwidth
for preemption from vector R_ct[] beginning with the
lowest priority (variable n initially equal to
maxpriority(ct)) until a preemptbw is located or we arrive
at the setup priority sp of the requested LSP (n=sp). We
update R_ct[] vector, vectpreempt_bw[],
vectpreempt_ct[], and vectpreempt_pp[] where
vectpreempt_bw[nb] is the amount of bandwidth to be
preempted from the LSPs of CT vectpreempt_ct[nb] at
priority level vectpreempt_pp[nb].

Line 17 verifies that Bw amount of bandwidth granted do
not exceed the bandwidth constraint BC[ct]. If so, we
should withdraw preemption within the CT ct and retry it
inter CTs. In some cases, we can be in front of the
following situations: preemption within the CT ct is not
possible, or after bandwidth preemptions within the CT ct,
preemptbw is still strictly positive. Facing to these two
cases, we should retry preemption across CTs having
evidently lower priority than ct (line 19).
In Figure 4, line 20, we compute the Resd_bw to identify
whether granting Bw to the new connection would cause
the total reservation exceeding the link capacity C. If so,
preemptbw amount of bandwidth needs to be preempted,
this is computed in line 20. The while loop in line 22
searches bandwidth for preemption beginning from the
lowest priority CT (i=maxCT in line 21) and the lowest
preemption level for each CT (n=maxpriority(i) in line 23).
In this way, lowest priority connections are preempted
before the high priority ones. At last, if preemptbw is still
strictly positive, the algorithm returns an acknowledgment
of preemption failure in lines 36-37 (the Boolean variable
canpreempt is set at false).

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

270

1Bandwidth preemption algorithm(Boolean canpreempt, int nb,
2float vectpreempt_bw[], int vectpreempt_ct[],
vectpreempt_pp[3]){
4 nb=0; preemptbw=1;R_ct’=R_ct;
5 Resd_bw=BC[ct]-∑ �_��[
]

��
��� ;

6 if (Bw>Resd_bw) then
7 n=maxpriority_ct ;preemptbw=Bw-Resd_bw ;
8 while((n>sp) and (preemptbw>0))
9 if (R_ct[n]>0) then
10 vectpreempt_ct[nb]=ct; vectpreempt_pp[nb]=pp;
11 vectpreemp_bw[nb]=Min{preemptbw, R_ct’};
12 preemptbw-=vectpreempt_bw[nb];
13 R_ct’-=vectpreempt_bw[nb]; nb++; n--;
14 endif
15 endwhile
16 endif

17 if ((Bw+∑ �_��� [�]
�����������(��)

���)>BC[ct]) then

18 R’=vect_preempt[ct]=null; nb=0;R_ct’=R_ct;
19 elseif (preemptbw>0) then
20 R’= ∑ �[
]��� !

��� ; Resd_bw=C-R’;preemptbw=Max(0,Bw-
21 Resd_bw); i=maxCT;
22 While((i>ct) and (preemptbw>0))
23 n=Maxpriority(i) ;//the lowest priority of CT i
24 Rin=Reserved Bandwidth on CT i at preemption level n;
25 while((n>0) and preemptbw>0))
26 if (Rin≠0) then
27 vectpreempt_ct[nb]=i; vectpreempt_pp[nb]=n;
28 vectpreemp_bw[nb]=Min{preemptbw, Rin};
29 preemptbw-=vectpreempt_bw[nb]; nb++;
30 endif
31 n--;
32 endwhile
33 i--;
34 endwhile
35 endif
36 if (preemptbw>0) then
37 canpreempt=false; plistvar=null;
38 endif
39}

Fig. 4 Pseudo-code of the Bandwidth preemption algorithm.

If preemption is accepted (canpreempt=true), the
Bandwidth Preemption Algorithm returns an LSP
preemption request with parameters canpreempt, nb,
vectpreempt_ct, vectpreempt_pp, and vectpreempt_bw.
This request is sent to LSPs Preemption Algorithm to
select LSPs for preemption.

7. LSP Preemption

Selection of preempted LSPs is tackled elegantly in this
paper to prevent the network from the aggressivity of
rerouting process. Figure 5 describes the pseudo code of
the LSPs preemption algorithm. In this algorithm, the
preempted LSPs are chosen on the basis of three criteria:

the number of LSPs to preempt, the excess of bandwidth to
gain, and the most important aspect of precedence level.
Remember that R_ct[] is a vector of link state
summarizing the amount of reserved bandwidth per
preemption level in the CT ct. For each link, we define two
vectors tab_lsp[], and tab_bw[] gathering respectively all
LSPs belonging to the same preemption level and the same
CT, and their corresponding bandwidths. These LSPs must
be kept ordered by decreasing their bandwidth reservations
such that tab_lsp[0] is the greediest LSP. The while loop,
(in figure 5, lines 7-27), searches LSPs for preemption by
crossing vectpreempt_ct, vectpreempt_pp, and
vectpreempt_bw vectors. We define in line 8 a new
variable needbw. If needbw is larger than the amount of
bandwidth reserved by all LSPs of CT vectpreempt_ct and
priority vectpreempt_pp, we go to add all these LSPs into
the list of LSPs to be cast out, plistvar. Otherwise (line 12),
we compute the index (called place) would have the LSP
if its bandwidth reservation were inserted in the vector
tab_bw[]. Variable place is set at zero if the amount of
bandwidth to be preempted (needbw) is larger than the
bandwidth of the greediest LSP. In such case, we preempt
LSPs beginning from the greediest one until needbw
becomes null. If needbw is not larger than the bandwidth
of the greediest LSP (lines 17-25), we will preempt in this
case only one LSP defined by its index place in tab_lsp[].
Clearly, let us show how the LSPs preemption algorithm
proceeds using a small example. A new LSP requires
preempting 28 Mb of bandwidth among reserved
bandwidth by LSPs belonging to the set of LSPs of CT 2
and priority 2 which are ordered in tab_bw[] as follows :
tab_bw[0]=50, tab_bw[1]=40, tab_bw[2]=30,
tab_bw[3]=25 Mb. Our preemption scheme, like it was
presented above, will select one LSP to preempt which is
the third one (place=2) whereas other preemption
strategies preempt more than one LSP. For example, the
preemption procedure implemented in Totem Toolbox
[10] selects the tow lowest priority LSPs (having
respectively 25, and 30 Mb of bandwidth). So, it is clear
that with our scheme we gain not only on the number of
LSPs to cast out from the network but also the amount of
bandwidth to preempt.

8. Performance Analysis

8.1 Simulation context

Simulations studies have been carried out under a
TOolbox of Traffic Engineering Methods (TOTEM). In
order to address both traffic and resource performance
objectives, we consider in our comparison several
performance criteria. Firstly, we use the maximum link
utilization (u_max). This parameter should be minimized
since it gives an idea on maximum link load and then on

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

271

network bottleneck. Secondly, we analyze the mean link
utilization (u_mean), and the standard deviation of link
utilization (u_stdv). These two last parameters give an idea
on network load balancing. We compare the performance
of our algorithm with the Constrained Shortest Path First
(CSPF) routing algorithms. CSPF algorithms have the
ability to compute shortest paths according to IGP (Interior
Gateway Protocol) link metric. The routing algorithm
keeps track of the current residual capacity for each link,
and only those links that have sufficient residual capacity
for the new LSP are considered. When link metric is equal
to 1 for each link belonging to the network topology, the
CSPF algorithm is called CSPFHopCount. In this case, the
path with the least number of links between an ingress and
egress router is chosen. Although simple and efficient,
CSPF algorithms can create bottlenecks for future LSPs,
and may lead to network under-utilization.

Fig. 5 Pseudo-code of the LSP preemption algorithm.

We consider a simple network topology composed by 8
nodes as shown in Figure 6. All links are bidirectional. In
this topology, two ingress egress pairs are considered
which are (1,8) and (2,8).
In DS-TE approach, up to 8 CTs can be supported.
However, to simplify our simulations, we assume a

scenario where four CTs can exist simultaneously. The
four classes of traffic are denoted by CT0 (highest priority),
CT1, CT2 and CT3 (lowest priority). Each CT has two
possible priorities. Priority zero LSP has higher priority
and can preempt the priority one and priority two LSP.
Link capacity is considered equal to 200Mb/s and BC[0],
BC[1], BC[2] and BC[3] are set respectively at 100%,
75%, 50% and 25% of the link capacity.

Fig. 6 Simulation network topology.

8.2 Performance under normal load (without DS-TE
considerations)

Blocking and preemption probabilities for LSPs setup
requests under normal load conditions achieve low level.
For this reason, under normal load, we look only at the
performance of the routing algorithm without considering
DS-TE issues.
In a first time, we look at the performance of our approach,
called BCRA-DSTE, under normal load conditions. Hence,
we are interested essentially to evaluate the algorithm in
term of the maximal link utilization and the standard
deviation of link utilization. Each performance criteria is
shown separately for each CT.

Figures 7, 8, 9, and 10 show respectively the maximum
link utilization of CT0, CT1, CT2, and CT3 LSPs. As we
can see, in normal load conditions, the maximal link
utilization increases with the increasing of the number of
LSPs requests. This result is available for both algorithms
BCRA and CSPF. However, as illustrated in these figures
BCRA-DSTE achieves the lowest values in maximal
loaded link. This result indicates that, BCRA routing
algorithm is more performing than CSPF in eliminating
network bottlenecks and then increasing the network's
ability to honor increasing demands.
CSPF routing forwards packets along the shortest path.
Such an approach is sufficient for best effort traffic but
makes inefficient use of network resources as it forwards
packets along already congested shortest path while longer
uncongested path may never be utilized.

1 LSP preemption algorithm{
2 Call Bandwidth preemption algorithm(canpreempt, nb,
3 vectpreempt_bw[], vectpreempt_ct[], vectpreempt_pp[]);
4 if (canpreempt==false then plistvar=null;
5 else
6 i=0;
7 while(i<nb)
8 needbw=vect_preempt_bw[i];
9 if(need_bw≥ �_��[vectpreempt_pp[i] then
10 plistvar.add(all LSPs of priority vectpreempt_pp[i] and
11 CT vectpreempt_ct[i]);
12 elseif(needbw>tab_bw[0] then
13 m=0;place=0;ni=number of LSPs in tab_lsp;
14 while((m<ni) and (needbw>0))
15 plistvar.add((tab_lsp[m];needbw-=tab_bw[m];m++;
16 endwhile
17 else
18 place=1;
19 while(place<(ni-1))
20 if(tab_bw[place]≥needbw)
21 place++;
22 endif
23 endwhile
24 place- -;plistvar.add(tab_lsp[place];
25 endif
26 i++;
27 endwhile
28 endif
29 return plistvar;
30 }

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

272

Fig. 7 Maximal link utilization of LSPs of CT0 as function of
the number of LSPs requests.

Fig. 8 Maximal link utilization of LSPs of CT1 as function of
the number of LSPs requests.

Distribution network load is a difficult objective to meet
since it is a dynamic objective and depends on some
dynamic path metrics. However, we will see later the
efficiency of BCRA-DSTE toward this criterion.

Fig. 9 Maximal link utilization of LSPs of CT2 as function of the number
of LSPs requests.

Fig. 10 Maximal link utilization of LSPs of CT3 as function of
the number of LSPs requests.

Figures 11, 12, 13, and 14 present the comparison results
of stdv values for respectively LSPs of CT0, CT1, CT2,
and CT3. Requests are generated randomly for each
(source, destination) pairs and each algorithm tries to route
these requests through the network. We note that, in
normal load, BCRA minimizes the stdv values even when
the number of LSPs requests increases. So, BCRA is better
than CSPF by maintaining network load balancing.

8.3 Performance under normal load

• More than one CT is considered: Overload occurs
when the traffic on a system is greater than the traffic
capacity of the system. Figure 15 plots the number of
blocked LSPs as function of the number of LSPs requests.
Blocked and preempted LSPs are added together to yield a
combined blocked/preempted LSPs. As we can see in such
figure, CSPF does not find a route for the 128th request.
However, BCRA-DSTE preempts two LSPs to establish
the 148th LSP.

Fig. 11 Standard deviation of link utilization of LSPs of CT0 as
function of the number of LSPs requests.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

273

Fig. 12 Standard deviation of link utilization of LSPs of CT1 as
function of the number of LSPs requests.

Fig. 13 Standard deviation of link utilization of LSPs of CT2 as
function of the number of LSPs requests.

Fig. 14 Standard deviation of link utilization of LSPs of CT3 as
function of the number of LSPs requests.

This confirms that BCRA-DSTE accepts more LSP
request than CSPF which is due to the important issue of
load balancing. The later maximizes the network resource
utilization and minimizes the number of requests that

would be denied access due to insufficient resource
utilization.

Let's now show the importance of our bandwidth
preemption algorithm in admission control proceeding.
This algorithm brings an important contribution. It is for a
full support of DS-TE mechanisms since it supports
preemption not only within a CT but also inter CTS.
Remember that a TE mechanism, like CSPF, supports only
preemption within a same CT. No per class treatment is
allowed. Figures 16, 17, 18, and 19 show the main
drawbacks of the CSPF approach. The number of
blocked/preempted LSPs is varied separately for each CT
in these figures. Both figures 16 and 17 show that BCRA-
DSTE does not preempt CT0 LSPs requests and CT1 ones.
This justifies the increasing values of u_max in both
figures 7 and 8. Clearly, the u_max values given by
BCRA-DSTE for LSPs of CT0 and CT1 are increasing
with the increasing of CT0 and CT1 LSPs requests.
However, in the same conditions, CSPF blocks LSPs
without taking into account their CTs levels. As an
example, when generating 184 LSPs requests such that the
number of CT0 LSPs requests is equal to CT1 LSPs
requests, which is also equal to CT2 LSPs requests, CSPF
generate 11 blocked/preempted LSPs of CT0, and only 9
LSPs of CT3. In the other hand, BCRA-DSTE accepts all
LSPs requests of CT0 by preempting 36 LSPs of CT3 and
only one LSP of CT2. This justify the decreasing of CT2
stdv values and CT2 u_max values in figures 9 and 13
when more than 179 LSPs requests are addressed to
BCRA-DSTE approach.

Fig. 15 Number of blocked LSPs as function of the number of LSPs
requests.

In conclusion, our admission control mechanism
supporting DS-TE functionalities consists of two major
functions: route computation and bandwidth management.
The route computation algorithm that we have proposed
maximizes the efficient use of the network infrastructure.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

274

In fact, simulations results prove that our algorithm
performs well in reducing network bottlenecks and
distributing network load balancing. The bandwidth
management is conducted in two dimensions: CT and
priority level. Simulation shows in a first time that CSPF
does not provide the preemption fairness among CTs so
that CT0 LSPs requests can be rejected while LSPs of
weaker CTs remains in the network. Besides, without
considering the CT together with the priority, CSPF is not
feasible for a full support of DS-TE. In a second time,
simulation shows that using preemption across CT let's
BCRA-DSTE able to give some degree of immunity to
higher priority traffic. However, the danger of preemption
aggressivity by rerouting lower precedence LSPs is not
ignored. To reduce preemption inter CTs, we have choose
to use the Maximal Allocation Model (MAM). Unlike
RDM, authors in [9] proved that MAM gives a trade-off
between bandwidth sharing to achieve greater efficiency
under normal conditions, and to achieve robust class
protection/isolation under overload.

Now, an interesting question arises: Does our approach
protect the network against rerouting explosion when
preemption occurs within CTs?
Bandwidth preemption algorithm, proposed in this paper,
is complemented by an LSP preemption algorithm that
aims to minimize rerouting by reducing both the number
of preempted LSPs and the number of preempted
bandwidth. To simplify our experiments, we consider
other scenario where only one CT is considered.

• Only one CT is considered: under overload
conditions, we are interesting here to compare the
performance of our algorithm under overload conditions
where only one CT is considered. In the considered
scenario, overload occurs with CSPF when generating
more than 41 LSPs requests. However, BCRA-DSTE
activates preemption mechanisms after the establishment
of more than 66 LSPs in the network.

Figure 20 depicts the numerical values of the preempted
LSPs given by the different algorithms as function of the
number of requested LSPs. It is clear that our algorithm
performs better than CSPF in reducing the number of
preempted LSPs. Therefore, our algorithm can achieve a
kind of safeguard against rerouting explosion.

Figure 21 shows the amount of preempted bandwidth. As
we can see, CSPF generates in its solutions more
bandwidth to preempt to satisfy high priority LSPs. In the
other hand, BCRA-DSTE maximizes efficient bandwidth
usage and minimizes LSPs rerouting to gain more network
stability.
In summary, simulation study improves not only
bandwidth efficiency of our proposed routing algorithm,

but also robustness and fairness. Besides, the admission
control proceedings based on preemption algorithms
achieves significant performance improvement for the
well-behaving traffic classes, in term of both bandwidth
blocking and LSPs reject. Bandwidth preemption
algorithm and LSPs preemption one support greater
efficiency in both bandwidth and LSPs protection against
QoS degradation under overload conditions.

9. Conclusion

In this paper, we have presented a bandwidth management
framework for the support of Diffserv aware MPLS
Traffic Engineering. We have essentially developed
preemption algorithms for admission control procedur.

Simulations study proved the performance of the route
computation algorithm in normal load and overload
conditions in terms of reducing network bottlenecks and
distributing network load.

To support the high diversity of network applications and
to provide available and reliable services to high priority
applications, the route computation algorithm is
complemented by a rigid admission control mechanism. In
fact, our admission control is based on preemption in
which the link bandwidth is managed in two dimensions:
Class Type and preemption priority. Preemption is
classified into two algorithms: Bandwidth preemption
algorithm and LSPs preemption one. The bandwidth
preemption algorithm is suitable for the Maximum
Allocation Model. Our choice of MAM model is justified
by the fact that it achieves a robust class
protection/isolation under overload conditions.
Simulation study has been carried out to show the
performance of the admission control mechanism
especially under overload conditions. First, simulation
results show that using preemption across CTs and within
CTs gives some degree of immunity to higher priority
traffic. Moreover, the danger of the preemption
aggressivity by rerouting LSPs with lower precedence has
been treated elegantly in this paper. In fact, preemption
policy combines the three main optimization criteria:
number of LSPs to be preempted, the amount of
bandwidth to be preempted, and evidently the precedence
level.

Our bandwidth management framework performs much
better than the standard approach of CSPF in terms of both
route computation and admission control policy. It
achieves significant performance improvement for the well
behaving traffic classes in terms of bandwidth utilization,
bandwidth blocking, and preemption availability.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

275

Fig. 16 Number of blocked LSPs of CT0 as function of the number of
LSPs requests.

Fig. 17 Number of blocked LSPs of CT1 as function of the
number of LSPs requests.

Fig. 18 Number of blocked LSPs of CT2 as function of the number of
LSPs requests.

Fig. 19Number of blocked LSPs of CT3 as function of the number of
LSPs requests.

Fig. 20 Number of preempted LSP as function of the number of LSPs
requests.

Fig. 21 Amount of preempted bandwidth as function of the number of
LSPs requests.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

276

References
[1] Awduche, A. Chiu, A. Elwalid, tains I. Widjaja, and X. Xiao,

"Overview and principles of Internet Engineering", RFC
3272, Internet Engineering Task Force, May 2002.

[2] F. Le Faucheur, and W. Lai, "Maximum allocation
bandwidth constraints model for diffserv-aware MPLS
traffic engineering", Internet Engineering Task Force, 2004.

[3] F. Le Faucheur, and W. Lai, "Russian dolls bandwidth
constraints model for diffserv-aware MPLS traffic
engineering", Internet Engineering Task Force, 2004.

[4] J. Ash, "Max allocation with reservation bandwidth
constraints model for diffserv-aware MPLS traffic
engineering and performance comparison", Internet
Engineering Task Force, January 2004.

[5] Z. Wang, and J. Crowcroft, "Bandwidth-delay routing
algorithm", IEEE GLOBECOM, vol.3, pp.2129—2133,
November 1955.

[6] F. Blanchy, L. Melon, and G. Leduc, "An efficient
decentralized on-line traffic engineering algorithm for
MPLS networks", Proceedings of 18th ITC, vol. 5a, pp.
451—460, September 2003.

[7] M. Kodialam, and T.V. Lakshman,''Minimum interference
routing with applications to MPLS traffic engineering'',
IEEE INFOCOM, vol. 2, pp. 884—893, Mars 2000.

[8] B. Wang, X. Su,and C.L. Philip Chen,''A new Bandwidth
Guaranteed Routing Algorithm for MPLS Traffic
Engineering'', IEEE ICC, vol. 2, pp. 1001--1005 , April
2002.

[9] W.Lai,''Bandwidth Constraints Models for Differentiated
Services (Diffserv)-aware MPLS Traffic Engineering:
Performance Evaluation'', Internet Engineering Task Force ,
June 2002.

[10] G. Leduc, H. Abrahamsson, S. Balon, S. Bessler, M.
D'Arienzo, O. Delcourt, J. Domingo-Pascal, S. Cerav-Erbas,
I. Gojmerac, X. Masip, A. Pescaph, B. Quoitin, S.F Romano,
E. Salvatori, F. Skivée, H.T. Tran, S. Uhlig, and H. Ûmit, ''
An open source traffic engineering toolbox'', Computer
Communications, vol. 29, pp. 593—610, March 2006.

[11] A. Kotti, R. Hamza, and K. Bouleimen, ''Bandwidth
Constrained Routing Algorithm for MPLS Traffic
Engineering'', ICNS, June 2007.

[12] A. Kotti, R. Hamza, and K. Bouleimen, "New preemption
algorithm supporting differentiated services aware traffic
engineering", ICSNC, 2008.

 Afef KOTTI was born in Sfax, Tunisia. She
received his engineer diploma in Computer
Engineering and Master degree in new
technologies in computer systems from the
Ecole Nationale d’Ingénieurs de Sfax (ENIS)
in 2003, and 2004 respectively. She received
his Ph.D in information and
telecommunication technologies in 2011. He
was been an assistant professor at University

of sciences of Monastir (FSM) in 2010. His interests include traffic
engineering and quality of services in IP/MPLS networks and mobile
networks.

Rached Hamza was born in Korba, Tunisia.
He received his engineer diploma in
Electrical Engineering and Master degree in
telecommunication from the Ecole Nationale
d’Ingénieurs de Tunis (ENIT) in 1991, and
1994 respectively. He received his Ph.D in
telecommunication in 2001. He was been a
professor at Ecole Supérieure des
Communications de Tunis (Sup’Com) in

2002 and General Manager of Telecommunications Research and Studies
Center in 2011. His interests include traffic engineering and quality of
services in IP/MPLS networks and mobile networks.

