
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

277

Manuscript received May 5, 2011
Manuscript revised May 20, 2011

Design and Implementation of an Encrypted Mobile Objects
Protocol (EMOP) for J2ME, J2SE and J2EE Applications

Sehlabaka Qhobosheanea, Mokakatlela Mokakatlelaa, Makhamisa Senekaneb

a Department of Mathematics and Computer Science, National University of Lesotho, Maseru, Lesotho

b Department of Electrical and Electronic Engineering, University of Cape Town, Western Cape, South Africa

Summary
The current trend in telecommunications is the movement
towards mobility of devices, and as more mobile devices are
being invented together with their associated applications,
growing interest is on defining secure ways of communication
for such applications. This paper describes the Encrypted Mobile
Objects Protocol (EMOP), an object-oriented communications
protocol designed to allow communication of objects between
Java 2 Micro Edition (J2ME), Java 2 Standard Edition (J2SE),
and Java 2 Enterprise Edition (J2EE) applications. The report
discusses the theory behind the protocol, from the Mobile
optimized object Description and Serialization (MooDS)
protocol - also an object-oriented protocol dedicated to J2ME
based phones, to the Secure Sockets Layer (SSL) protocol, and
how EMOP was build from them. Moreover, the paper compares
EMOP with MooDS in two J2SE applications. The results show
that for objects less than 50 000 in number, MooDS transmission
is an order of magnitude faster than that of EMOP because of
extra encoding done by EMOP on objects for security purposes,
but EMOP obtains best results in terms of reducing the
application code size to sizes unattainable by MooDS, and
consequently reducing the time-to-market of applications.
Key words:
Encryption, Mobile object, Communication Protocol, Object
serialization.

1. Introduction

Most of the protocols used in mobile-device networks,
such as the Mobile optimized object Description and
Serialization (MooDS) protocol, an object-oriented
protocol dedicated to Java 2 Micro Edition based devices,
do not enforce security mechanisms on the transmitted
data. The common approach for most of these protocols is
to simply send the data over the Hyper Text Transfer
Protocol (HTTP), but this only secures the transmitted
data at the network level and avoids addressing the bigger
issue of securing contents [17]. Also, MooDS does not
allow the interaction of mobile objects between other Java
technologies such as the Java 2 Standard and Enterprise
Editions. The Encrypted Mobile Objects Protocol then
comes into play to address the limitations of the
aforementioned protocols for mobile device networks, and

provide a step closer to a next generation network protocol
of tomorrow.
The Encrypted Mobile Objects Protocol was engineered to
address the following: manage communication of objects
between J2ME, J2SE and J2EE applications; minimizing
the binarization of message objects during communication
between the sender and the receiver; address the lack of
object serialization support in J2ME MIDP profiles;
provide encryption and decryption of message objects; and
encoding and decoding of message objects. All the above
objectives were met except for the first objective which is
only partially fulfilled. EMOP currently allows
communication of J2SE and J2EE objects but does not
support J2ME objects because of the SSL API
(Application Programming Interface) used in EMOP
which is not supported by the restrictive J2ME
environment. Suggestions on attaining this objective are
presented in the recommendations and future work
subsection of the conclusion. This paper is organized as
follows. Section 2 provides a basic explanation of EMOP's
predecessor, the Mobile optimized object Description and
Serialization (MooDS), explaining its purpose and
functionality, as well as its shortcomings. The section then
ends by discussing the Secure Sockets Layer protocol
(SSL). Section 3 is about the entire development of the
EMOP protocol, from the methodology followed to how it
was implemented. Section 4 follows thereafter and
provides a performance comparison between EMOP and
MooDS in two example applications. Section 5 concludes
the paper with general observations on EMOP and
MooDS, ending with recommendations for future work on
EMOP.

2. Overview of MooDS and SSL

2.1. MooDS

MooDS (Mobile Optimized Objects Description and
Serialization) is an Object-Oriented Communication
protocol dedicated to Java 2 Micro Edition (J2ME)
multiplayer games [16]. It is used in GASP, an open

 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

278

source middleware enabling J2ME multiplayer gaming
interactions. MooDS takes care of the specific constraints
imposed by J2ME devices over second generation (2G),
2.5G, or the third generation (3G) cellular phone networks.

MooDS uses a basic XML Schema syntax to describe
message types to be used [16]. Thus, in order to use
MooDS, the developer has to describe the messaging data
structures chosen for his/her multiplayer game using
MooDS description syntax. In other words, the message
ought to be in XML schema format.

There are three distinct steps in the MooDS approach: [16]

• Firstly data messages are specified in a
description file (XML format).

• The stub/skeleton code (java classes) is generated
upon compilation of the description file.

• The generated code (java classes) is embedded in
the wireless application package. Message
objects to be sent are encoded over the network
using the static encoder/decoder methods. The
receiver decodes the binary streams and gets an
object copy of the original message object.

2.1.1. Strengths of MooDS

• Minimizing the binarization of message objects
during communication between the sender and
the receiver.

• Addressing the lack of object serialization
support in J2ME Mobile Information Device
profiles (J2ME MIDP).

2.1.2. Weaknesses of MooDS
• Limited security, hence there is no data

encryption or decryption.
• Oriented to games (GASP Platform), thus

MooDS can only work in a J2ME environment.
• MooDS does not allow the interaction of mobile

objects between other Java technologies such as
the Java 2 Standard and Enterprise Editions.

2.2. Secure Sockets Layer (SSL)

The SSL Handshake Protocol was developed by Netscape
Communications Corporation to provide security and
privacy over the Internet [17]. It is an important piece of
the overall puzzle of system security, providing the much
needed network security. Other protocols also exist but
none has achieved the same level of adoption. It is also an
excellent example of using basic cryptography and Public
Key Infrastructure (PKI) to meet higher level system
security needs [8]. Equally important, SSL supports server
and client authentication, and it is application independent,

allowing protocols like HTTP (Hyper Text Transfer
Protocol), FTP (File Transfer Protocol), and Telnet to be
layered on top of it transparently. The SSL protocol is able
to negotiate encryption keys as well as authenticate the
server before data is exchanged by the higher-level
application. In a nutshell, SSL protocol maintains security
and integrity of the transmission channel by using
encryption, authentication and message authentication
codes. SSL is widely adopted and has become the de-facto
mechanism to secure the exchange of sensitive
information over the Internet [1, 8, 9].

2.2.1. Strengths of SSL

• Application independence: The SSL protocol is
application independent, allowing many protocols
like HTTP (Hyper Text Transfer Protocol), FTP
(File Transfer Protocol), and Telnet to be layered
on top of it [17].

• Encryption Keys: The SSL protocol is able to
negotiate encryption keys as well as authenticate
the server before data is exchanged by the higher-
level application. It uses both the public and
secret key encryption algorithms for
authentication and data integrity [5].

2.2.1. Weaknesses of SSL
• Security depends on key generation: The

randomness used in the process of generating a
key decides the strength of the resulting key [2].
Creating truly random numbers on a deterministic
device such as a computer is impossible. In order
to get some strong source of randomness, access
to hardware sources is required. For example,
strong sources of randomness in a computer may
include thermal noise and some radioactive decay
source.

• Limited security in J2ME: Creating good random
numbers in a constrained environment such as a
cellular phone is truly a challenge, hence why the
traditional SSL implementation is not supported
in J2ME devices.

3. System Design and Implementation

3.1. Protocol Description

EMOP is intended to manage communication of objects
between J2ME, J2SE and J2EE applications. The
motivation behind the development of the protocol is the
same as the development of the open source MooDS
protocol, which is; minimizing the binarization of message
objects during communication between the sender and the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

279

receiver, and the lack of object serialization support in
J2ME MIDP profiles. However, EMOP is intended to
have additional features of security by encryption and
decryption of message objects, and to allow cross platform
communication of java objects. In order to use EMOP the
same principle as in MooDS is followed, the developer has
to describe the messaging data structures in XML Schema
and then the descriptions are parsed by the EMOP
generator in conjunction with Java Architecture for XML
Binding (JAXB) to obtain a serialization class version of
the data structure. The message objects are sent by value,
thus authorizing only Java primitive type fields (Boolean,
byte, short, int, long, String and array).

3.2. Methodology

The eXtreme Programming (XP) agile software
development methodology was followed when
implementing EMOP, because of XP’s focal values of:

i. Individuals and interactions over processes and
tools.

ii. Working software over comprehensive
documentation.

iii. Customer collaboration over contract negotiation.
iv. Responding to change over following a plan.

Following XP, EMOP’s development went through the
lifecycle as depicted in figure 1.

Figure 1: EMOP’s Lifecycle

3.3. System Design

3.3.1 Architectural Design
Since EMOP is a network protocol and its central feature
is security, the architectural design that was adopted when
designing it is the layered architectural approach. In the
layered model, a system is organized into layers, each of
which provides a set of services [18]. As can be seen from
Figure 2, security is implemented in the innermost layer
(the SSL layer) while the EMOP layer provides the
parsing of user messaging data-structures into a
serialization class version, and the basic network functions
(socket communications) are handled in the TCP/IP layer.
The layered approach was also followed because it
supports the incremental development of systems inherent
in XP, and thus, it can be viewed as an agile architecture.
Besides the complexity and difficulty of structuring
systems in the layered manner, another disadvantage of the
layered approach is the issue of performance. If there are
many layers, a service request from a top layer will have
to be interpreted several times in different layers before
being processed, thus reducing the system’s performance.
However, since security was of highest priority and
EMOP was designed not to have many layers, it was
decided to adopt the layered model and compromise a bit
on performance. Statistical details of how exactly
performance was compromised are presented in section 4
on EMOP versus MooDS.

Figure 2: Architectural Design

After the design of an overall system organization, the
subsystems were then decomposed into modules as
discussed in the following subsection on module
interactions.

 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

280

3.3.2. Module Interactions
In the object-oriented approach, Sommerville (Software
Engineering 8e, 2007) describes modules as objects with
private states and defined operations on those states, and
may be implemented as sequential components or as
processes. Figure 3 follows this description and depicts
major classes of EMOP as modules which interact in the
manner as illustrated.

Figure 3: Module Interactions

The EMOP Generator is the entire logic of EMOP and it
transforms the developer’s messaging data structure into a
serialization class version and a CustomTypes class which
defines the communication methods of the serialization
objects, in accordance with Java Architecture for XML
Binding (JAXB), the Class Maker, and the SSL engine for
security. JAXB decodes the XML schema of the data
structure into java objects (with associated attributes) and
together with the Class Maker module, through the
coordination of EMOP Generator, produce the Java
serialization and CustomTypes classes.

3.4. Implementation

3.4.1. Programming Platform
Being an open-source project, EMOP was developed on a
Fedora Core 8 Linux box, and was also tested on Red Hat
Enterprise and on Windows XP. The programming was
done using the Eclipse Ganymede Integrated Development
Environment (IDE) because of its usability and familiarity
to the EMOP team, and because of its support for the ANT
build tool. ANT was chosen as the preferred build tool
over Make because of its simplicity and XML format

which make it portable and also easy to integrate with Java.
On the other hand, makefiles are basically a list of shell
commands, and as a result, it is next to impossible to write
portable makefiles. It is also very difficult to integrate
makefiles with Java as compared to integrating build.xml
with Java. JDK 6 updates 6 to 12 are the Java Virtual
Machines (JVM’s) that EMOP was compiled under.

3.4.2. Class Interactions
From the protocol description in section 3.1, it can be seen
that, like MooDS, the overall essence of EMOP is to parse
the developer’s messaging data structures coded in XML
schema and to generate serialization class versions of
those data structures, but with embedded security, and
between different Java technologies. Thus, instead of re-
inventing the wheel, EMOP developers stood on the
shoulders of giants like Romain Pellerin and Lim Chanty
(MooDS developers) and transformed MooDS into EMOP
according to the design considerations in section 3.3.1.
MooDS source code (latest version then, v2.0.1) was
downloaded from
http://download.forge.objectweb.org/gasp/MooDSv201.zip
and imported as a Java project into Eclipse IDE. It was
then converted into EMOP with java class interactions as
depicted in Figure 4.

Figure 4: Class Interactions

Project.properties is a file containing all the initialization
information of the project, such as the location of EMOP
home directory, the location of the messaging data

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

281

structures’ XML schema file, JDK directory, and SSL
parameters. This information acts as input to the build.xml
ANT file.

Figure 5: Project.properties file

Build.xml is an ANT file consisting of all targets
necessary to build, compile, run, and manage the project.
It takes input from the project.properties file and the
developer’s schema, and it then runs the EMOP engine
(Generator.java) with the necessary arguments. It also
prepares for security by generating relevant keys from the
project.properties’ SSL information using the keytool
utility

The EMOP engine, Generator.java, is the project’s main
class. It is the one which controls the entire logic of
EMOP protocol. It parses the developer’s XML schema in
accordance with JAXB thus creating a secure serialization
class version of the data structure through the
LanguageTranslator, ClassMaker and
CustomTypesGenerator classes. Two types of classes are
generated, the object class specific to the messaging data
structure, e.g. for a book data structure, a book object with
private attributes such as author, publisher, etc, and the
public setter and getter methods which act as interfaces to
the object attributes. The second type of classes is the
client and server CustomTypes classes which contain
methods for communicating the object classes. The root
methods of the CustomTypes classes are the
sslEncodeEncryptObject and the sslDecodeDecryptObject
methods (whereby Object stands for the name of the data
structure being sent). The sslEncodeEncryptObject method
takes as arguments, a hash table of objects to be
communicated, the IP Address of the server as a string
value, and an integer port number of the specific server
service being used. It then encodes the hashtable objects
and transmits them to the receiver/server through the
Secure Sockets Layer (thus applying encryption and
authentication). On the receiver side, the
sslDecodeDecryptObject method takes as inputs, the name
of the server key store, the keystore password, and the port
number of the server service being processed, and it then
receives the sent secure bytes, authenticates (through
SSL and the keystore name and password) and decrypts
them, and finally decodes the binary streams into the
specific objects sent. It returns a hashtable of the objects to
its calling environment.

4. EMOP versus MooDS

To complete the EMOP engineering process, the
performance and capabilities of EMOP were compared to
those of the mother protocol, MooDS, through a couple of
example applications. In the first example, the messaging
data structure being transformed was that of a book object.

4.1. Book Messaging Data Structure

In this simplified analysis example, a client application
communicates book objects to the server and a record of
total bytes sent, together with the time taken by each
protocol, is made. A book object consists of the title,
author, publisher, ISBN, and totalPages attributes, all of
which are string values except for the totalPages attribute
which is an integer. The client and server applications
were on two different workstations but in the same subnet
so as to test the efficiencies of both protocols under real
network conditions. Firstly, for each protocol, one book

 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

282

object was sent over the network five times and the results
were recorded. The average of the recorded results (i.e.
total bytes sent, and time taken) was then taken as the final
results obtained for each protocol. The same procedure
was repeated for 200, 2000 and 50 000 book objects, and
their results were also recorded in a similar manner. The
fivetimes approach was followed so as to eliminate
network effects which might hamper the results. The Java
technology that was thus being worked on is the J2SE
(Standard Edition). Figures 6 and 7 illustrate the recorded
results.

Figure 6: Book Objects – Bytes Sent

Figure 7: Book Objects – Time Taken

Book Object Discussion
In the bytes sent figure, Figure 6, it can be seen that, for
the same number of book objects, EMOP sends relatively
more bytes than MooDS. This is due to the fact that
EMOP adds an extra layer of security (the Secure Sockets
layer) to the objects thus increasing the number of bytes
for each object. MooDS, on the other hand, does not do
this, hence the reduced number of bytes for objects using
MooDS. Technically, this increase in bytes by objects
communicating in EMOP means that EMOP does more
encoding to the objects than MooDS in order to provide

for the desired security. In like manner, this result leads to
a prediction that EMOP should take a bit more time to
communicate the objects than should MooDS and this is
precisely what happens as depicted in figure 7. There is,
however, another interesting observation from figure 9,
which is that as more objects are communicated, EMOP
tends to outperform MooDS in the amount of time each
takes for the transmission.

4.2. Student Messaging Data Structure

In this example, a client application now communicates
student objects to the server and as in section 4.1 above, a
record of total bytes sent, together with the time taken by
each protocol, was made. A student object consists of the
name, surname, faculty, department, and program
attributes, all of which are string values. The same setting
and procedure as in the book object example was followed
and figures 8 and 9 illustrate the recorded results.

Figure 8: Student Object – Bytes Sent

Figure 9: Student Object – Time Taken

Student Object Discussion

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

283

In the bytes sent figure, the same observations that were
made in the book objects example also apply to the student
objects example, namely, the fact that EMOP adds more
encoding to the objects than MooDS, due to the added
security feature. The second observation is even more
interesting as it refines the discussion made in the book
example. Instead of EMOP outperforming MooDS when
transmitting many (50 000) objects as was expected from
the book example discussions, EMOP’s performance
seems rather not to be influenced much by the number of
objects sent as MooDS clearly is. The observation here is
that in the graph of objects sent versus time taken, MooDS
has a far steeper slope than EMOP thus making EMOP a
preferred protocol especially when very many objects are
to be communicated.

4.3. Client-Code Size

Figure 10: Client Code Size

Another crucial comparison between EMOP and MooDS
is that of the client-code size. Both protocols were
designed to simplify developers’ lives by reducing the
time-to-market of the developers’ applications since they
require the developer to only provide a description of the
messaging structure he/she wishes to communicate and
leave the rest to the protocols, which are produced after a
click of a button. The developer need only know basic
XML and the protocols generate the somewhat involved
custom types in Java. However, the developer also has to
write the client and server applications which will
communicate the data, and EMOP has outperformed
MooDS in this regard since it requires developers to write
less client (and server) code for the applications. This is
due to the fact that EMOP includes almost all of the
communication information in the generation of the
custom types while MooDS does not (thus leaving the
developer with the tedious task of socket programming).
The sizes of the client applications for the book and
student objects, for both protocols, were recorded and the
results are illustrated in figure 10.

5. Conclusion

5.1. Observations

• Objects transmitted by EMOP become generally
larger in size than when encoded with MooDS. This is
because EMOP has an added layer of security which
adds SSL parameters to the objects, thus increasing
the total number of bytes for the transmitted objects.

• The increase in size of objects transmitted through
EMOP makes EMOP perform less than MooDS in
terms of total time taken for objects transmission,
especially when few objects are being transmitted
simultaneously.

• Also, EMOP has been designed to reduce the size of
the client code to sizes unattainable by MooDS by
including socket programming details into EMOP and
relieving the developer of that hassle. This invariably
reduces the time-to-market of the developer’s
application, and introduces another approach to rapid
application development.

5.2. Recommendations and Future Work

The work presented in this study on EMOP is not
complete. The SSL API (Application Programming
Interface) used is that of the Standard Edition (J2SE), and
it functions equally well for the Enterprise Edition (J2EE)
but poses problems for the Micro Edition because of
J2ME’s restrictive environment. The next step in EMOP
enhancement would be to replace the SSL API with one
compatible with J2ME but without impacting on the
security currently afforded by EMOP. Fortunately, EMOP
has been designed in such a way that corrective
maintenance and scalability are easy to achieve, thus
modifying a few lines of code and replacing the API
should suffice. The following task would then be to
enhance EMOP’s security by adjusting it to support
mutual (client and server) authentication with central
authority signed certificates, unlike now where it supports
sever authentication with self-signed certificate. The
probably most important work that can also be done on
EMOP, after the above recommendations, would be to
enforce real-time constraints on EMOP thus transforming
it into a Real-Time Encrypted Mobile Objects Protocol
(RT-EMOP). This would, undoubtedly, require the
development platform to be a real-time operating system
(RTOS), and would require much emphasis and analysis
on network traffic algorithms for improved timing
responses. The choice of programming language used
would also be of crucial importance since high level
languages like Java currently have no standard ways of
accessing the system hardware, and most do not allow for

 IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

284

detailed run-time space and processor analysis as
compared to low level languages like C. Java, however,
has a real-time version; the J2ME, but unfortunately J2ME
has a disadvantage on features a system can have due to its
restrictive nature (of limited resources), and is mostly
intended for hand-held devices.

Acknowledgments

The authors would like to thank their mentor and
supervisor, Mr. Motlatsi Seotsanyana, for his expert
advice and guidance on how best to conduct a software
development project. Many thanks also extend to Romain
Pellerin and Lim Chanty, the MooDS development team,
on whose shoulders the authors had to stand for EMOP to
be realized. Finally, the authors are indebted to the
Department of Mathematics and Computer Science
(MACS) at the National University of Lesotho for
providing them with all resources necessary for the
successful completion of this work.

References
[1] S. J. Rees Adel Aneiba, Mobile agents technology and

mobility, 2004.
[2] Developer Works, J2me: Step by step. IBM, IBM, p36.
[3] Sabastian Fischmeister, Building secure mobile agents: The

supervisor-worker framework. Information Systems,
Technische Universitat Wien, February 2000.

[4] Elliotte Rusty Harold, Xml 1.1 bible, 3rd ed. Wiley, 2004.
[5] Vebjrn Moen Kent Inge Simonsen and Kjell Jrgen Hole,

Attack on sun’s midp reference implementation of ssl. 2005,
p12.

[6] Jack Koftikian, Simple object access protocol(SOAP).
Information and communication technology, Technische
Universitat Hamburg-Hamburg, November 2001.

[7] James F. Kusose and keith W. Ross, Computer networking:
a top-down approach featuring the internet. Wiley
Publishing, Inc, 2000.

[8] RSA Laboratories, Laboratories’ frequently asked questions
about today’s cryptography, version 4.1. May 2000.

[9] Danny B. Lange, Mobile objects and mobile agents: The
future of distributed computing?, 1998, p12.

[10] David Lowery, Utilization of web services to improve
communication of operational information, Master’s thesis.
Naval Postgraduate School Monterey, September 2004.

[11] B. McLaughlin, Java and xml data binding. O’Reilly May
2002.

[12] Brett McLaughlin, Java and xml, 2nd ed. O’Reilly,
September 2001.

[13] Sun Microsystems, The java ee5 tutorial. Sun Microsystems,
Inc, September 2007.

[14] Parixit Dilip Parekh, Java applet based database
management interface. Computer science, The Florida State
University College of Arts and Science, 2006.

[15] Jussi Ronkainen Pekka Abrahamsson, Outi Salo and Juhani
Warsta, Agile software development methods, review and
analysis. VTT, 2002.

[16] Romain Pellerin, The moods protocol :a j2me object-
oriented communication protocol. 2007, p8.

[17] Eric Rescorla, Ssl and tls: designing and building secure
systems, ch. 6. Eddison- Wesley Professional, October 2000,
p528.

[18] Ian Sommerville, Software engineering 8,eigth ed. Eddison-
Wesley, 2006.

[19] Brain Suda, Soap web services. Computer science,
University of Edinburgh, School of Informatics, 2003.

[20] Dreamtech Software Team, Cracking the code, wireless
programming with j2me. Hungry Minds, Inc., 2002.

[21] Kim Topley, J2me in a nutshell, a desktop quick reference.
O’Reilly, March 2002.

[22] Tom Karygiannis Wayne Jansen, Nist special publication
800-19 mobile agent security. National Institute of
Standards and Technology (NIST) Special Publications (800
Series) (1999), no. 800-19, p42.

[23] Madeleine Wright, A detailed investigation of
interoperability for web services, Master’s thesis. Rhodes
University, December 2005.

Sehlabaka Qhobosheane received the
B.Eng. degree in Computer Systems and
Networks Engineering from National
University of Lesotho in 2009. He is now
completing his thesis in MSc.Eng
Biomedical Electronics at Stellenbosch
University and is expected to graduate in
December 2011. He currently works as a
Software Engineer at iThemba LABS

Medical Radiation in Cape Town South Africa.

Mokakatlela Mokakatlela received the B.Eng. degree in
Computer Systems and Networks Engineering from National
University of Lesotho in 2009. He now works as a Software
Engineer at Computer Business Solutions (CBS) in Maseru
Lesotho.

Makhamisa Senekane received the
B.Eng. degree in Electronics and
MSc.Eng degree in Electrical
Engineering from National University of
Lesotho and University of Cape Town in
2007 and 2011 respectively. He now
plans on pursuing a PhD in Quantum
Cryptography at the University of
Kwazulu Natal in South Africa.

