
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

289

Manuscript received May 5, 2011

Manuscript revised May 20, 2011

Transformation of Class Diagrams into Formal Specification

Nazir Ahmad Zafar and Fahad Alhumaidan
College of Computer Sciences and Information Technology

King Faisal University, Hofuf

SAUDI ARABIA

Abstract:
Requirements analysis and design specification is a serious issue

in software engineering because of semantics involved in the

transformation of real world problems to computational models.

Unified Modeling Language (UML) has been accepted as a

standard for design and development of object oriented systems.

Unfortunately, most of UML structures are based on graphical

notations and are prone to causing errors. That means UML has a

lack of notations for description of a complete functional system

and its semantics is still semi-formal allowing ambiguities at

design level. Formal methods have played a vital role,

particularly, at requirement analysis and design level but, for a

moment, are not fully welcomed because of involving much

mathematics. Therefore, a concrete linkage of UML and formal

methods is needed to overcome the above issues. In this paper, an

integration of UML and Z notation is defined for class diagrams

considering both the syntax and semantics at an abstract level of

specification. Four major kinds of relationships, i.e., association,

generalization, aggregation and composition are addressed. The

formal specification is analyzed and validated using Z/Eves tool.
Keywords:
UML, Class diagrams, Formal methods, Z notation, Integration,

Validation.

1. Introduction

In software engineering, requirements capturing, analysis

and design specification is a serious problem which is very

natural because transformation of real world problems to

mathematical computational models is not an easy task.

Specification of software systems has a vital role in the

area of software engineering. Formal specification of a

system is its mathematical description that may be used to

develop a system in a consistent and systematic way.

Formal specification describes about the system what it

does but it does not show how it does. If we have formal

specification of the system, it is easy to prove and

demonstrate correctness of it using formal verification

tools and techniques. The formal specification has an

obvious advantage over traditional approaches that

incorrect design of a system can be revised before its

implementation. Formal methods are mathematical

techniques based on discrete mathematics which can be

used to describe formal specification of a system. On the

other hand, formal methods are not much useful for

describing design of a system because of having

mathematical notations. Diagrams and graphical based

approaches are very helpful in capturing requirements and

presenting design of a system. The design of a complex

system, not only requires definition of a system but it also

needs to model its behavior and other dynamics.

Unified Modeling Language (UML) has been widely used

in software industry and accepted as the standard notation

for design and development of object oriented (OO)

systems despite the fact that its semantics is still semi-

formal and allows ambiguities [28], [24]. UML is a

proposed common OO modeling language which is more

useful if it has a maximum base to define semantic of the

system in a formal way [21]. Unfortunately, much of the

UML structures are based on graphical notations, having

informal and semi-formal definitions, very prone to

causing errors and can not be analyzed formally [2]. As a

result, there is need of formalizing UML structures and

diagrams to get full benefit of it at design level capturing

the maximum functionality of the system to be developed.

Z notation is an abstract formal specification language

used to describe and analyze the systems increasing

confidence. In this paper, we present the preliminary

results of our research on formalization of UML diagrams.

We show how the semantics of UML can be captured to

define the general principles and concepts.

There exists a few work linking UML and formal methods

presented in the next section. In this paper, class diagrams

are selected to formalize using Z notation. Instead of

defining only syntactical mapping between class diagram

and Z we have proposed the conceptual model by

capturing its semantics hidden under the diagrams. At first

we have formalized the class by taking its name, attributes

and operations at an abstract level of specification. Then

the same class was reused creating subclasses, whole and

part classes by a powerful concept of substation in Z

notation. In defining the mapping from class diagrams to Z

four major types of relationships namely, association,

generalization, aggregation and composition are

considered. After formalizing the classes and relations

mentioned above, it were synthesized to define the class

diagrams using Z schema structure. We mapped the

syntactical as well as semantical mapping among both

approaches. The major objectives of this research are: (1)

identifying, proposing and proving an integration of UML

and formal approaches to be useful in modeling of systems,

(2) providing a syntactic and semantic relationship

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Specification

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

290

between UML class diagrams and Z and (3) providing an

automated tool support to transform UML model to Z.

Rest of the paper is organized as follows.

In section 2, related work is discussed. An introduction to

formal methods is given in section 3. Formal relationship

of class diagrams and Z notation is described in section 4.

Finally, concluding remarks are presented in section 5.

2. Related Work

An integration of approaches is an important research

area because of an introduction of new technologies and

development of automated computer tools. Although

there exits a lot of work [4], [8], [9], [12], [16], [23],

[27] on integration of approaches but there does not

exists much work on linking UML with formal

techniques because of the hidden semantics under the

UML diagrams. Some of the closely related work is

listed in this section. For example, Jackson et al. [12],

have developed Alloy Constraint Analyzer (Alcoa) tool

which supports the description of systems whose state

involves complex relational structure. The tool makes it

possible to develop and analyze a model incrementally

by investigating the consequences of given constraints.

An approach is demonstrated using XML/XSL as a

transformation tool to visualize TCOZ models into

various UML diagrams to animate specifications with a

multi-paradigm programming language in [15]. In [3],

Shahreza et al. have described a way of creating tables

and SQL code for Z specifications according to UML

diagrams. A relationship is investigated between Petri-

nets and Z in [19]. An integration of B and UML is

presented in [10], [11]. In [21], formalization of the

UML is proposed by focusing on basic constructs of

class structures by taking simple case studies. A tool is

developed in [22] which takes UML class diagram in

the form of Rational Rose petal files and evaluates it

automatically and produces a list of comments on the

diagram. A comparison of fuzzy logic, Z, UML,

statecharts, petri nets, and finite state machines is

carried out by taking a simple case study on commerce

system in [25]. In [29], fuzzy theory is introduced at

certain levels of class diagrams of UML supporting the

fuzzy modeling of computerized systems.

3. Formal Methods

Formal methods are approaches based on mathematical

techniques used for describing and analyzing properties of

software systems. Formal methods may be classified in

terms of property oriented and model oriented methods

[18]. Property oriented methods are used to describe

software in terms of properties, constraints and invariants

whereas model oriented methods are used to construct a

model of a system [13]. Although there are various tools

and techniques available for formal notations but at the

current stage of their development, it needs an integration

of formal techniques and traditional approaches for the

complete design and description of a system.

Z notation is a model oriented specification language

based on set theory and first order predicate logic used

at an abstract level [14]. In this paper, Z is selected to

be linked with UML because of a natural relationship

which exists between these approaches. The Z is based

upon set theory including standard set operators,

comprehensions, Cartesian products and power sets. On

the other hand, the logic of Z is formulated using first

order predicate calculus. The Z is used in our research

because it allows organizing a system into its smaller

components known as schemas which are very helpful

at design level for managing the system. The schema

also defines a way in which the state of a system can be

described and hence can be used for modeling the

dynamics of a system as well. A promising aspect of Z

is its stepwise refinement that is verifiable and can be

used from an abstraction into an executable code.

4. Formal Specification of Class Diagrams

Although formal methods have well-defined syntax and

semantics but these are at the early stage of development

and hence need an integrated tool support for the complete

and consistent development of software systems. We are

working on a project for integration of UML and Z

notation some preliminary results of it are presented in this

paper. Initially, we have decided to transform semantically

class diagram to Z notation. UML class diagrams are

generally used to catch the static aspects of a system. The

class diagrams are selected for formalization because of

their common use in software development. Moreover,

there is a great similarity between Z notation and UML

class diagrams. For example, class diagrams are equipped

with variables and operations. Further, the pre and post

conditions can be defined as well in addition to class

invariants but that is all about less formal and more

graphical based. UML class diagrams can be used to

characterize both the static and dynamic aspects of a

system. On the other hand, Z has an important abstract

data type called schema which is used to define the

variables and constraints over it. The operations can also

be defined in terms of schemas to capture the behavioral

aspects of a system. Therefore a strong relationship exists

between UML class diagrams and Z notation which is

analyzed at an abstract level of specification.

We start with the definitions of variables used for defining

the class diagram. A class consists of three parts, i.e., name,

set of attributes and operations. For name variable an

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

291

identifier is used denoted by ID. Since attributes needs a

type which is denoted by Type in Z notation. Finally,

operation needs a set of attributes as input and produces a

new set of attributes as output. For this purpose a

Composite variable is used which is of type of finite power

set of Type denoted by Type.

 [ID]; [Type]; Composite Type

Class in UML can be used to create a set of objects which

share attributes, operations, relationships and other

semantics of the class. The schema in Z notation can be

used to create the objects which can share all the

operations and may contain the attributes. Therefore class

in UML is defined using the schema structure in Z and is

denoted by Class. The schema consists of two parts, the

first one is used to define variables, the second is for

invariants and other constrains.

In the first part of schema, class name in UML is defined

by identifier (ID) in Z. Only three type of attributes are

considered, i.e., public, private and protected of type

power set and denoted by Type. The other type is a

collection of operations which is in fact a relationship

between a set of attributes to another set of attributes

having the type Composite Composite, where composite is

collection of attributes of the class. The formal description

is given below along with invariants over the variables

defined in the second part of the schema.

Class

id: ID

attributes, public, private, protected: Type

operations: Composite Composite

attributes = public private protected

public private =

public protected =

private protected =

c1, c2: Composite c1 c2 operations c1 attributes

c2 attributes

Invariants: (i) The set of all attributes is equal to public,

private and protected attributes. (ii) The intersection of

public and private attribute is empty, i.e., an attribute can

be either private or protected but can not have the

properties of both. (iii) The public and protected attributes

are disjoint. (iv) The private and protected attributes are

also disjoint. (v) Any of the two attributes which are given

as input to any of the operation must be in the domain of

operation relation.

4.1 Association

Association relationship is used by UML class diagram in

order to capture the relations among the objects of the

classes. It is a relationship in which it is specified about

the objects how these are connected to other objects.

Mathematically, a relation is a link relating a set X to set Y

having information needed to be related. The elements of

set X is called domain and the element of set Y is called

range of the relationship. There are four kinds of

association relationships, i.e., many to many, many to one,

one to many and one to one. For example, think of class-

teacher relationship. As one teacher can teach many

classes and one class can be taught by many teachers,

hence, we can describe this relation as many to many.

Take another example of student-supervisor relationship.

If we suppose that one student can be supervised by only

one supervisor but on the other hand one supervisor can

supervise many student it will be a many to one

relationship. If we change the student-supervisor to

supervisor-student relationship it will become one to many.

If we take an example of a society where a man can marry

to one women and vice-versa, it will be the case of one to

one relationship. The association relationship is denoted

by Association and is described below. The schema

consists of six components, i.e., association, mtom,

onetoone, mtoone, onetom and classes. The first one

association represents to set of all possible associations,

the second one mtom represents to many to many

relationships, onetoone is used for one to one, mtoone

shows to many to one, onetom describes one to many

relationships and the last one variable classes represents to

set of all classes over which these relations are defined. All

of these components are put in the first part of the schema

and invariants defining their description in addition to all

possible relationship among these components are

presented in the second part of it.

Association

association: Class Class

mtom: Class Class

onetoone: Class Class

mtoone: Class Class

onetom: Class Class

classes: Class

association = mtom onetoone mtoone onetom

mtom onetoone = mtom mtoone =

mtom onetom = onetoone mtoone =

onetoone onetom = mtoone onetom =

c1, c2: Class c1 c2 mtom

 c1 c2 onetom c3, c4, c: Class c3 c mtom

c4 c mtom c3 = c4

c1, c2: Class c1 c2 mtom c1 c2 mtoone c,

c3, c4: Class c c3 mtom c c4 mtom c3 = c4

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

292

c1, c2: Class c1 c2 mtom

 c1 c2 onetoone c1, c2, c: Class c1 c mtom

 c2 c mtom c1 = c2

 c,c1,c2:Class c c1 mtom c c2 mtom c1 =

c2

dom association classes ran association classes

Invariants: (i) The association relationship is union of

many to many, one to one, many to one and one to

many relationships. (ii) The intersection of any two

types of relationships is empty. (iii) Many to many

relationship will be one to many if any element in the

range can not be repeated. (iv) Many to many

relationship will be many to one if any element in the

domain is not repeated. (v) Many to many relationship

will be one to one if neither an element in the domain

nor range is repeated. (vi) Domain and range of

association relation must be in the set of classes.

4.2 Generalization

In generalization relationship one object (child) is based

on another object (parent) in the UML class diagram. In

the relationship, the child receives all the attributes,

operations and relationships that are defined in the parent.

The objects involved in the generalization relationship are

of same type for complying with the semantics of UML.

The generalization relationships are modeled to capture the

attributes, operations and relationships introduced in

parent classes and are reused in any number of child

classes. In this way only additional attributes, operations

and relationships are defined in the child class and all

components of parent classes are reused. In the

generalization, the parent class can have more than one

children and any child class can have more than one

parents. Before defining the generalization relationship,

child class denoted by SubClass is introduced based on the

class by a powerful technique that is substitution of Z

notation. The relationship is described below in terms of

schema consisting of seven components. In the schema the

generalization, simple and multiple relationships and other

components needed for its description are encapsulated.

SubClass
Class[ids/id, attributess/attributes, publics/public, privates/

 private, protecteds/protected, operationss/operations]

Generalization

Class

SubClass

classes: Class

subclasses: SubClass

generalization: SubClass Class

simple: SubClass Class

multiple: SubClass Class

id ids

attributes attributess

public publics

private privates =

protected protecteds

dom generalization subclasses

ran generalization classes

generalization = simple multiple

s: SubClass; c1, c2: Class s c1 simple s c2

simple c1 = c2

Invariants: (i) The identifiers of child and parent

classes must be different. (ii) Attributes of parent class

are included in the child class. (iii) The public attributes

of parent class are visible to child class. (iv) Private

attributes of child and parent class are disjoint. (v)

Protected attributes of parent class are included in the

child class. (vi) Domain of generalization relationship is

in the set of child classes. (vii) Range of generalization

relationship is in the set of parent classes. (viii)

Generalization relationship is union of simple and

multiple relationships. (ix) The relationship is simple if

a child class can not have more than one parent.

4.3 Aggregation

In association relationship various types of objects are

related to link, study and analyze their characteristics

whereas in case of aggregation relationship objects are

assembled together to create a more complex object. An

aggregation describes a group of objects and their way of

interaction with each other, in this way aggregation

relationship is a special type of association. For example, a

department can have an aggregation relationship with a

college showing that the department is a part of college.

To define an aggregation relationship in Z, two types of

classes, i.e., whole and part are created based on class and

are denoted by WholeClass and PartClass respectively. The

aggregation relationship is defined by Aggregation schema

which consists of aggregation, whole and parts.

WholeClass
Class[id/id, attributes/attributes, public/public, private/private,

 protected/protected, operations/operations]

PartClass
Class[id/id, attributes/attributes, public/public, private/private,

 protected/protected, operations/operations]

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

293

Aggregation

aggregation: WholeClass PartClass

whole: WholeClass

parts: PartClass

dom aggregation whole

ran aggregation parts

c1, c2 : WholeClass; c: PartClass c1 c aggregation

c2 c aggregation c1 = c2

Invariants: (i) The domain of aggregation relationship

is a subset of set of whole classes. (ii) The range of

aggregation relationship is a subset of set of parts

classes. (iii) A part class can not be a part of two

different whole classes.

4.4 Composition

In UML, composition relationship is a special type of

aggregation. The relationship in composition is stronger

than aggregation. In aggregation if a whole is destroyed

the part may exist whereas in case of composition this is

not the case, i.e., part class cannot exist without the whole

class. For example, if we were going to model a car, we

know wheels are part of the car. The lifetime of the wheels

is managed by the car. That is when car is destroyed the

wheels will be destroyed. Hence this relationship must be

modeled by the composition. The composition relationship

is defined by Composition schema consisting of three

components, i.e., composition, whole and parts defined in the

first part of the schema. The invariants are defined in the

second part of the schema: The domain of composition

relationship is equal to the whole set. (ii) The range of

composition relationship is equal to set of parts set. (iii)

A part class can not be a part of two different whole

classes as was the case of aggregation.

Composition

composition: WholeClass PartClass

whole: WholeClass

parts: PartClass

dom composition = whole

ran composition = parts

c1, c2 : WholeClass; c: PartClass c1 c composition

c2 c composition c1 = c2

4.5 Class Diagram

As we know class diagrams show all the possible classes

of the system, their interaction in terms of relationships,

operations and the attributes of the classes. Class diagrams

are used from domain modeling to detailed design of the

system. In the schema ClassDiagram given below, an

abstract view of the complete class diagram is presented

by defining all of its components which are needed for its

description. The schema includes all general types of

classes that are subclasses, parts and whole classes. Only

four major kinds of relationships are considered here, i.e.,

association, generalization, aggregation and composition.

All of these relationships are described above exclusively

and put in the schema defining class diagram. The well

defined-ness of the relationships among the classes is

checked in terms of properties in the second part of the

schema. The way of description of class diagram will

facilitate the transformation of syntax and semantics of

UML to Z specification.

ClassDiagram

ass: Association

gen: Generalization

agg: Aggregation

comp: Composition

classes: Class

subclasses: SubClass

parts: PartClass

whole: WholeClass

association: Class Class

generalization: SubClass Class

aggregation: WholeClass PartClass

composition: WholeClass PartClass

classes = ass . classes gen . classes

subclasses = gen . subclasses

whole = agg . whole comp . whole

c1, c2: Class c1 c2 ass . association c1 c2

association

c1, c2: Class c1 c2 association c1 c2 ass .

association

c3: SubClass; c4: Class c3 c4 gen . generalization

 c3 c4 generalization

c3: SubClass; c4: Class c3 c4 generalization

 c3 c4 gen . generalization

c5: WholeClass; c6: PartClass c5 c6 agg . aggregation

 c5 c6 aggregation

c5: WholeClass; c6: PartClass c5 c6 aggregation

 c5 c6 agg . aggregation

c7: WholeClass; c8: PartClass c7 c8 comp .

composition c7 c8 composition

c7: WholeClass; c8: PartClass c7 c8 composition

 c7 c8 comp . composition

In the predicate part, it is described that: (i) The set of

classes in the class diagram is equal to union of the classes

defined in the association and generalization relationships.

(ii) The set of subclasses in class diagram is same as the

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

294

subclasses in the generalization relationship. (iii) The set

of whole classes in the class diagram is equal to union of

the whole classes in the aggregation and composition

relationships. (iv) The association relation which exists in

the class diagram exists in the schema described for

association relationship. (v) The association relation which

is in the association schema is in the class diagram. (vi)

The generalization relation which exists in the class

diagram exists in the schema described for generalization

relationship. (vii) The generalization relation that is in the

generalization schema is in the class diagram. (viii) The

aggregation relation which exists in the class diagram

exists in the generalization relationship schema. (ix) The

generalization relation that is in the generalization schema

is in the class diagram as well. (x) The composition

relation which exists in the class diagram exists in the

composition relationship schema. (xi) The composition

relation that is in the generalization schema is in the class

diagram as well.

5. Conclusion

Unified Modeling Language (UML) and Formal Methods

are both useful for requirement analysis and design

specification. UML is usually used at initial phase because

of having much support of graphs and diagrams while

formal methods are used at the later stage to describe

logical model because of having rigorous mathematical

tool support. Therefore, an integration of UML and formal

methods is needed for systematic development of

computer systems. For this purpose, an automatic

generation of specification from diagrams will be much

useful to capture the hidden semantics under the UML

notations. In this paper, UML class diagram are linked

with Z notation to achieve the above objective.

In this research, an approach is developed by linking UML

to Z notation which defines a relationship among

fundamentals of these techniques. Some important

relationships, i.e., associations, generalization, aggregation

and composition of class diagram are chosen at this level

of integration. This linkage will be useful in the systems

development and construction of automated tools for

generating specification from the UML diagrams. For

linking UML with Z notation most abstract view of the

diagrams was perceived to define the generic formal

models independent of a system which will be equally

useful for any kind of domain problem. At first, we have

described the class diagram and its variants then formal

description of relationships among classes is presented.

An exhaustive survey of existing work was done before

initiating this research. Some interesting work [1], [6],

[7], [17], [20], [26], was found but our work and

approach are different because of conceptual and

abstract level integration of UML and Z notation. In the

most relevant existing work either examples are taken

to make integration or only syntactical mappings are

defined. But in our proposed integration, we have

defined both the syntax as well as semantic analysis of

both approaches. The classes are transformed to

schemas in Z notation where more syntax is involved

while relationships are formalized focusing much on the

semantics of the UML diagram.

Z is used in this research because every object is

assigned a unique type providing useful programming

practice. Several type checking tools exist to support

the specification. The Z/Eves is a powerful tool to prove

and analyze the specification which was used in this

research. The rich mathematical notations made it

possible to reason about behavior of a specified system

more rigorously and effectively.

References

[1] A. Hall, Correctness by Construction: Integrating Formality

into a Commercial Development Process, Praxis Critical

Systems Limited, Springer, vol. 2391, pp. 139-157, 2002.

[2] A. M. Mostafa, M. A. Ismail, H. El-Bolok and E. M. Saad,

Eighth ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and

Parallel/Distributed Computing, pp. 694-701, 2007.

[3] A. Moeini and R. O. Mesbah, Specification and

Development of Database Applications based on Z and SQL,

Proceedings of 2009 International Conference on

Information Management and Engineering, 2009.

[4] B. Akbarpour and S. Tahar and A. Dekdouk, Formalization

of Cadence SPW Fixed-Point Arithmetic in HOL, Integrated

Formal Methods, Springer, vol. 2335, pp. 185-204, 2002.

[5] D. Jackson, I. Schechter and I. Shlyakhter, Alcoa: The Alloy

Constraint Analyzer, International Conference on Software

Engineering, 2000.

[6] D. K. Kaynar and N. Lynchn, The Theory of Timed I/O

Automata, Morgan & Claypool Publishers, 2006.

[7] D. P. Tuan, Computing with Words in Formal Methods,

University of Canberra, Australia, 2000.

[8] F. Gervais, M. Frappier and R. Laleau, Synthesizing B

Specifications from EB3 Attribute Definitions, Integrated

Formal Methods, Springer, vol. 3771, pp. 207-226, 2005.

[9] H. Beek, A. Fantechi, S. Gnesi and F. Mazzanti,

State/Event-Based Software Model Checking, Integrated

Formal Methods, Springer, vol. 2999, pp. 128-147, 2004.

[10] H. Leading and J. Souquieres, Integration of UML and B

Specification Techniques: Systematic Transformation from

OCL Expressions into B, Asia-Pacific Software Engineering

Conference, 2002.

[11] H. Leading and J. Souquieres, Integration of UML Views

using B Notation, Proceedings of Workshop on Integration

and Transformation of UML Models, 2002.

[12] J. Derrick and G. Smith, Structural Refinement of Object-

Z/CSP Specifications, Integrated Formal Methods, Springer,

vol. 1945, 2000.

[13] J. M. Spivey, The Z Notation: A Reference Manual,

Englewood Cliffs, NJ, Prentice-Hall, 1989.

http://portal.acm.org/author_page.cfm?id=81440601894&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://portal.acm.org/author_page.cfm?id=81440623647&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://www.itee.uq.edu.au/~smith/ifm2000-2.pdf
http://www.itee.uq.edu.au/~smith/ifm2000-2.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.5, May 2011

295

[14] J. M. Wing, A Specifier, Introduction to Formal Methods,

IEEE Computer, vol.23(9), pp.8-24, 1990.

[15] J. Sun, J. S. Dong, J. Liu and H. Wang, A XML/XSL

Approach to Visualize and Animate TCOZ, Eighth Asia-

Pacific Software Engineering Conference, pp. 453-60, 2001.

[16] K. Araki, A. Galloway and K. Taguchi, Integrated Formal

Methods, Proceedings of the 1st International Conference on

Integrated Formal Methods, Springer 1999.

[17] M. Barjaktarovic, The State-of-the-Art in Formal Methods,

AFOSR Summer Research Technical Report for Rome

Research Site, Formal Methods Framework, Report F30602-

99-C-0166, WetStone Technologies, 1998.

[18] M. Brendan and J. S. Dong, Blending Object-Z and Timed

CSP: An Introduction to TCOZ, Proceedings of

International Conference on Software Engineering, 1998.

[19] M. Heiner and M. Heisel, Modeling Safety Critical Systems

with Z and Petri-nets, International Conference on

Computer Safety, Reliability and Security, Springer, pp.

361–374, 1999.

[20] M. L. Shahreza, Gwandu B. A. L. and D. J. Creasey,

Importance of Formal Specification in the Design of

Hardware Systems, School of Electron & Electrical

Engineering, Birmingham University, 1994.

[21] M. Shroff, and R. B. France, Towards a Formalization of

UML Class Structures in Z, 21st International Computer

Software and Applications Conference, pp. 646-51, 1997.

[22] N. H. Ali, Z. Shukur and S. Idris, A Design of an

Assessment System for UML Class Diagram, International

Conference on Computational Science and its Applications,

pp. 539–546, 2007.

[23] O. Hasan and S. Tahar, Verification of Probabilistic

Properties in the HOL Theorem Prover, Integrated Formal

Methods, Springer, vol. 4591, pp. 333-352, 2007.

[24] R. Borges and A. Mota, Integrating UML and Formal

Methods, Electronic Notes in Theoretical Computer Science,

184, pp. 97-112, 2003.

[25] S. A. Ehikioya and B. Ola, A Comparison of Formalisms

For Electronic Commerce Systems, IEEE International

Conference on Computational Cybernetics, 2004.

[26] S. A. Vilkomir and J.P. Bowen, Formalization of Software

Testing Criterion, South Bank University, London, 2001.

[27] T. B. Raymond, Integrating Formal Methods by Unifying

Abstractions, Springer, vol. 2999, 2004.

[28] X. He, Formalizing UML Class Diagrams: A Hierarchical

Predicate Transition Net Approach, Twenty-Fourth Annual

International Computer Software and Applications

Conference, 2000.

[29] Z. M. Ma, Fuzzy Conceptual Information Modeling in UML

Data Model, International Symposium on Computer Science

and Computational Technology, pp. 331-334, 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7784
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5475
http://portal.acm.org/author_page.cfm?id=81440607339&coll=DL&dl=ACM&trk=0&cfid=16978897&cftoken=72815154
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4301108
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4301108
http://hvg.ece.concordia.ca/Publications/Confrences/IFM%2707.pdf
http://hvg.ece.concordia.ca/Publications/Confrences/IFM%2707.pdf

