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Summary 
Compared to other public key cryptography counterparts like 
Diffie-Hellman (DH) and Rivest Shamir Adleman (RSA), Elliptic 
Curve Cryptography (ECC) is known to provide equivalent level 
of security with lower number of bits used. Reduced bit usage 
implies less power and logic area are required to implement this 
cryptographic scheme. This is particularly important in wireless 
networks, where a high level of security is required, but with low 
power consumption. This paper presents the implementation of 
Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol 
over GF (2163). The implementation is targeted to Spartan 3AN 
Field Programmable Gate Array (FPGA) from Xilinx. The results 
show that ECDH scalar multiplication can be computed in 1.34 
milliseconds, using 4725 of 5888 FPGA slices available in 
Spartan 3AN. These results confirm the utility of Picoblaze in 
Elliptic Curve Cryptography.     
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1. Introduction 

In this information age, the need to securely transmit 
information over an insecure channel is more pronounced 
than ever. Cryptography is the science of securely 
transmitting and retrieving information using an insecure 
channel [1], [2]. It involves two processes, namely 
encryption and decryption. Encryption is the process in 
which the sender (normally called Alice) transforms 
information into an unintelligible string of characters 
(known as ciphertext) for transmission over the 
transmission channel, so that an eavesdropper (normally 
called Eve) could not know the information. Decryption is 
a reverse of encryption; where the receiver (normally 
called Bob) transforms Alice’s ciphertext into an 
intelligible message (known as plaintext).  
In modern cryptography, the mode of distributing a key 
among communicating parties plays a critical role. Key 
distribution can be achieved either through private key 
cryptography or through public key cryptography [3], [4]. 
In private key cryptography (also known as symmetric key 
cryptography), a single key is used for both encryption and 
decryption of the message, while on the other hand, public 
key cryptography (also called asymmetric key 

cryptography) uses a pair of keys, one for encryption, and 
the other for decryption. Additionally, public key 
cryptography relies on the existence of one-way function 
[1], [4].  
Diffie-Helmann (DH) key exchange protocol is the first 
public key cryptography scheme, and it was proposed by 
Witfield Diffie and Martin Hellman in 1976 [5]. This 
protocol uses a pair of keys (secret and private keys), since 
it is a public key cryptographic scheme. If Alice wants to 
communicate with Bob, she encrypts her message with her 
private key and Bob’s public key. On the receiving end, 
Bob decrypts the message using his private key and Alice’s 
public key [1]. DH key exchange protocol is based on the 
difficulty of computing logarithmic functions of prime 
exponents, and this is known as Discrete Logarithm 
Problem (DLP) [6].  
Elliptic Curve Cryptography (ECC) was independently 
proposed by koblitz [7] and Miller [8] in the late 1980s. 
ECC is a public key cryptographic scheme that uses the 
properties of Elliptic Curves in mathematics to develop 
cryptographic algorithms. Security of ECC is based on the 
intractability of Elliptic Curve Discrete Logarithm 
Problem (ECDLP) [9]. Elliptic Curve Cryptography is 
defined by Elliptic Curve domain parameters given by:  
            

h)n,G,c,b,a,FR,(q,=T        (1)  
 
Where; q: the prime p or 2m that defines the curve’s form, 
FR: the field representation, a, b: curve coefficients, G: the 
base point (Gx, Gy), n: the order of G, which must be a 
large prime, and h: the cofactor co-efficient. 
A soft-core is a flexible Hardware Description Language 
(HDL) architecture of a specific processor that can be 
customized for a given application and be synthesized for 
either Application Specific Integrated Circuit (ASIC) or 
Field Programmable Gate Array (FPGA) target [10], [11]. 
Picoblaze is a compact 8-bit microcontroller with Harvard 
Reduced Instruction Set Computer (RISC) architecture. It 
is a Xilinx product and is optimized for the Spartan-3, 
Virtex II and Virtex II Pro families of FPGAs [10].  
The remainder of this paper is divided into five sections. 
Section 2 provides a background information concerning 
Elliptic Curve Cryptography (ECC), Elliptic Curve 
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Diffie-Hellman (ECDH) and picoblaze soft-core. Section 3 
discusses the related work of this research area. In Section 
4, implementation of ECDH in picoblaze soft-core is 
discussed. This is followed by a section which provides 
results obtained and analysis of such results. Finally, 
conclusions are drawn, and future work is recommended, 
in Section 6. 

2. Background Information  

2.1 Elliptic Curve Cryptography 
 
Ever since its invention in the 1980s, ECC has gained a 
huge popularity due to the fact that compared to other 
public key cryptography systems, it (ECC) can provide 
same level of security with smaller key sizes [12], [13], 
[14], [15], [16]. Thus, compared to their public key 
cryptography counterparts, Elliptic Curve Cryptosystems 
are computationally more efficient, and offer better 
security with smaller key sizes [12]. This makes ECC an 
appropriate cryptographic scheme for constrained 
environments such as smart cards and wireless networks, 
where power, processing time and memory resources are 
limited. Additional details on the theory behind ECC can 
be found in [7], [8], [17], [18], [19], [20] and [21].  
ECC relies on efficient algorithms for finite field 
arithmetic operations such as inversion, multiplication and 
addition [12]. This public key cryptography scheme can be 
defined over two popularly used fields, namely; prime 
Galois Field, GF (p), or over binary extension Galois Field, 
GF (2m). In GF (p), the equation of Elliptic Curve is given 
by:   

Y2 mod p = x3 +ax +b mod p     (2) 
Where:     

            4a3 + 27b2 mod p ≠ 0                
(3) 

with elements of GF (p) as integers between 0 and 
p-1 [23].  
 
In GF (2m), the equation of Elliptic Curve is given 
by: 

          y2+ xy = x2 +ax2 +b                   
(4) 

 where:              
          b ≠ 0                                          

(5) 
 
Over GF (2m), algebraic rules for point addition and 
point doubling could be implemented [7], [8], [13], 
[14], [15], [23].  
 
2.2 Elliptic Curve Diffie-Hellman Key 
Exchange Protocol  
 

Elliptic Curve Diffie-Hellman (ECDH) is a public 
key agreement protocol which allows two parties; 
Alice and Bob, to establish a shared secret key for 
use in symmetric key algorithms [23]. It enables the 
implementation of Diffie-Hellman key exchange 
algorithm using a group of points on an Elliptic 
Curve over a Galois Field GF (2m) [14], [24], [25]. 
In order to generate a shared key between Alice and 
Bob using ECDH key exchange protocol, both Alice 
and Bob should agree beforehand to use the same 
Elliptic Curve domain parameters [23], [25]. An 
algorithm for computing a shared key using ECDH 
is given below: 
 

• Alice computes key k = (xK, yK) = dAlice* 
QBob, where dAlice is Alice’s private key and 
QBob is Bob’s public key 

• Bob computes key l = (xL,yL) = dBob * QAlice, 
where dBob is Bob’s private key, and QAlice is 
Alice’s public key 

• Since dAlice* QBob = dAlice dBob G = dBob dAlice 
G = dBob * QAlice, then k = l, hence xK = xL 

• Hence the shared key is xK . 
 

 
2.3 Picoblaze 
 
Picoblaze is a compact 8-bit soft-core for Xilinx 
FPGA devices, which is provided as a free cell-level 
HDL and can be synthesized along with other logic 
[26], [27]. It is optimized for efficiency and low 
deployment cost [28], [29]. Picoblaze has the 
following features [30]: 8-bit data width; 8-bit 
Arithmetic Logic Unit (ALU) with carry and zero 
flags; 16 8-bit general purpose registers; 64-byte 
data memory; 18-bit instruction width; 10-bit 
instruction address, which supports a program of up 
to 1024 instructions; 31-word call/return stack; 256 
input and output ports; 2 clock cycles per 
instruction; and 5 clock cycles for interrupt 
handling.  
 
Picoblaze processor is shown in Fig. 1, while its 
top-level design is shown in Fig. 2.  
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Fig. 1: Picoblaze processor 

 

 
Fig. 2: Picoblaze's top-level diagram 

3.0 Related Work 

In ECC, only algorithms based on software-based 
processors or reconfigurable logic are implemented. 
Algorithms based on discrete circuitry are never 
implemented. This is due to the fact that designs based on 
discrete components are inflexible; and so this presents a 
huge problem for their applicability in cryptographic 
algorithms. In [19], [24], [25], [31] and [32], software 
implementation of ECC over extension binary field is 
discussed. Implementation of ECC over binary field using 
reconfigurable logic is discussed in [33], [34], [35], [36], 
[37] and [38]. However, of the references provided above, 
it is only in [37] and [38] where picoblaze was used to 
realize ECC algorithms. Furthermore, even though [37] 
and [38] use picoblaze soft-core, none of these two papers 
use picoblaze to compute scalar multiplications in ECDH.  
The contribution of this paper is the implementation of 
Elliptic Curve Diffie-Hellman key exchange protocol 
using Picoblaze soft-core processor.  

4.0 Implementation 

GF (2163) was implemented for this research project. 
Elliptic Curve domain parameters were chosen based on 
the National Institute of Standards and Technology’s 
(NIST’s) recommendations [39], [40] for Koblitz curves 
such that:  

• m, degree of a polynomial = 163 
• a and b = 1 
• cofactor coefficient, h = 1 and  
• irreducible polynomial p(x) = x163 +x7+x6+1. 

 
For scalar multiplication k*G, an algorithm described in 
[18] and [33] was used. This algorithm was then 
implemented using picoblaze, which has a word length of 
8-bits. Since GF (2163) uses 163-bits, then these 163 bits 
were divided into 21 8-bit words, with zeroes being 
appended on the most significant byte. Assembly language 
was used (using picoblaze soft-core) to compute scalar 
multiplication. This was followed by top-level Very High 
Speed Integrated Circuit HDL (VHDL) design, where 
picoblaze core was initiated and instantiated. Also, in a 
top-level VHDL module, k*G mod p(x) was computed, 
using the outputs from picoblaze microcontroller. Finally, 
the design was targeted to Spartan 3AN FPGA.  
 
Spartan 3AN FPGA is shown in Fig. 3. 
 

 
Fig. 3: Spartan 3AN development board from Xilinx [41]. 

5.0 Results 

The results for the paper are summarized in Table 1. 
Additionally, it took 1.34 ms to perform 163-bit scalar 
multiplication. These results are promising because from 
them, it could be observed that ECC algorithms could be 
implemented in relatively higher-performance 
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reconfigurable logic (compared to software-based 
processors) using easy programming language (as opposed 
to verbose HDLs).  

 
Table 1: Device utilization summary 

Logic 
Utilization 

 
Used  

 
Available  

Utilization 
(%) 

Slices 4725 5888 81 
Slice 
flip-flops 

 
6100 

 
11776 

 
52 

4-input 
LUTS 

 
6175 

 
11776 

 
53 

Bonded 
IOBS 

 
201 

 
372 

 
54 

Number of 
BRAMS 

 
1 

 
20 

 
5 

Number of 
Gclks 

 
1 

 
20

 
4 

 
Also, from the results, it can be observed that scalar 
multiplication is very costly in so far as computational 
resources are concerned. This is readily obvious on an 8-bit 
picoblaze microcontroller. This shows a need for 
enhancement of scalar multiplication algorithms, so they 
could be implemented in small cores. 

6.0 Conclusions 

In this paper, a 163-bit Elliptic Curve Diffie-Hellman key 
distribution protocol was implemented, and targeted to 
Spartan 3AN FPGA. The designed cryptosystem 
performed better than ECC cryptosystems using 
software-based processors. Even though this cryptosystem 
provided interesting results, a lot still needs to be done in 
order to create efficient Elliptic Curve scalar multiplication 
algorithms that could easily be implemented in small 
soft-cores.   
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