
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

152

Manuscript received June 5, 2011
Manuscript revised June 20, 2011

Multi Structural Query Engine on a Large Database using Vector
Space Approach

C.Subramanian1, Dr. T.Bhuvaneswari2 and Dr.S.P.Rajagopalan 3

1Research scholar, Dr.MGR Educational & Research Institute University, Chennai.

2,3Professor and Head, Department of Computer Applications , Dr.MGR Educational & Research Institute University,
Chennai

Summary
The Multi-structure query engine is a new data framework to
support efficient analysis of large and complex data sets. This
approach consists of a set of data objects, together with a schema
that specifies segmentations of the set of data objects according
to multiple distinct criteria. It develops a rich set of analytical
operations and assists in the design of highly efficient algorithms
for these operations and allows the user to analyze the
underlying data in terms of the allowed segmentations. The
contribution is a framework for expressing and computing the
highlights of a large and complex data set. This includes a data
model that is rich enough to represent the kinds of structures
found in real applications. Finally, it provides efficient
algorithms that give approximately optimal solutions for three
important classes of objective functions.
Keywords:
DBMS, Large Database, Data abstraction, Query Vector.

1. Introduction

A software system is considered as a database system, (a
selective view on the history of databases) and the success
of relational database management systems in the business
domain can be attributed to the different kind of databases.
A database management system (DBMS) is a general
purpose software system that facilitates the processes of
defining, constructing and manipulating databases for
various applications. The main objective of a DBMS is to
treat data as a manageable corporate resource so as to
increase data utilization and to integrate smoothly the data
access and processing function with the rest of the
organization. It should also enhance data security and
provide data integrity. A DBMS provides to evolve by
emphasizing data independence programs that access data
maintained in the DBMS. To handling data using a
DBMS provides an alternative for traditional file
processing. In this approach, each user defines and
implements the files needed for a specific application.
The following three characteristics distinguish the
database approach from file processing:
(i) data abstraction
(ii) a database is self-contained
(iii) Program-data independence and program-operation

independence.

2. The Relational Data Model

A relational database management system (RDBMS) is a
DBMS based on the relational data model. The relational
data model helps to protect users of large data banks from
having to know how the data is organized in the machine.
Although the idea of RDBMS is perceived too theoretical
by the majority of practitioners, prototype relational
systems have proved that an implementation could be
reasonably efficient. The nonrelational database systems
are not provided much data independence. Application
programs stop working after the representation changed,
because they referenced nonexistent files. The formal
model abstracts from ordering, indexing, and access paths.
Since, data is only accessed through the model, changing
the aspects cannot affect the correctness of applications
any longer.

2.1 Database design with the relational model

The modeling of data with the relational data model can
be explained by considering the disc example, which is
shown in Figure 1.

 Figure 1 The Universe of Discourse (UoD) of a disc database

It defines the domains: titles (T), performing artists (A),
music titles (M) and owner names (O). The collection of
discs can be represented as a relation R(T,A,M,O) that
relation is just a single value, one of all possible
collections of compact discs that can be constructed in this
UoD. In a database system, a relation variable ‘C’ of
(relational) type R(T,A,M,O). A design based on one
relation R(T,A,M,O) is not the only possible relational
model of the UoD. It is important that neither of these

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

153

alternatives determines how the data is physically stored.
Although the second alternative had less redundancy, this
redundancy is at the conceptual level, and is not
necessarily reflected at the physical level.

2.2 The Three Schema Architecture

The database systems proposed the three schema
architecture as a framework for the design of DBMSs.
This architecture of database management systems is
shown in Figure 2.

Figure 2 The three schema architecture

Its goal is to separate the user applications and the
physical database by emphasizing data independence,
which insulates a user from the adverse effects of the
evolution of the database environment. The threeschema
architecture is developed for database systems that operate
in the business domain. Although the data independence
can extend to emerging domains like digital libraries,
whether DBMSs that operates in such emerging domains
can be implemented according to the architecture is shown
in Figure 2. The three schema architecture recognizes the
following three levels in a database system:

(i) The internal level has an internal schema, which
describes the physical storage structure of the
database. It is oriented towards the most efficient
use of the computing facility.

(ii) The conceptual level has a conceptual schema,
which describes the structure of the database for
its user community, but hides the storage details.
The conceptual schema describes a model of the
UoD, maintained for all applications of the
enterprise.

(iii) The external level includes a number of external
schemas or user views. The external schemas are
simplified models of the UoD.

A DBMS based on the three schema architecture
maintains several descriptions and mappings between the
levels that are not known before hand and can change over
time. Therefore, a DBMS provides a variety of languages

for the specification of schemas and the manipulation of
data at different levels of the architecture. Most notable
are:

(i) DDL(Data Definition Language), which is used
to specify the database schema, and

(ii) DML(Data Manipulation Language), used to
manipulate the stored database. Typical
manipulations include retrieval, insertion,
deletion, and modification of the data.

(iii) DCL(Data Control Language) is used for
managing transactions, access rights, and the
creation and deletion of access structures.

(iv) SDL(Storage Definition Language) is used to
specify the internal schema.

(v) VDL(View Definition Language) is to specify
user views and their mappings to the conceptual
schema.

2.3 Efficient Query Evaluation

The role of data abstraction in the database approach, data
manipulation can described at the abstract level of the
data model, where it makes no sense to talk about
efficiency: database query languages are high-level
declarative languages that can only express what data
should be affected. Thus, the efficient evaluation of
expressions in a query language is the responsibility of the
database system as shown in Figure 3.

Figure 3 Query evaluation in databases

The techniques applied in the implementation of database
systems that enable efficient query evaluation is shown in
Figure 3. Database query languages are usually based on
settheory and applied predicate logic. Most end-user
languages, including SQL and relational calculus are
based on the following structure, known as the
setcomprehension expression is given in eqn. [1]

{f(x) | x ε X ^ p(x)} … (1)
Query processing bridges the gap between the

database query language and the file system. It transforms
requests specified in the database query language into the
query plan, a sequence of operations in the physical access
language. Query optimization attempts to determine the
optimal query plan. However, the search space consisting
of all query plans that implement the user’s original
request is too large to be searched exhaustively. As a
result, the selected query plan is often only suboptimal. In

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

154

any implementation of a database system, the task of the
query optimizer is more to avoid very inefficient query
plans, than to select the one very best option.

3. Large Database Architecture

The Large Database architecture is an alternative design
for database systems in which the design of a Large
Database has a layered architecture, with a central role for
data abstraction. The unique, distinguishing aspect of the
architecture is that the conceptual data model used by its
endusers is mapped to a physical implementation using
different data models at different levels of the database
architecture. The implementation is separated in three
layers:

(i) conceptual
(ii) logical and
(iii) physical layer

The Large database architecture is shown in Figure 4,
takes up the gauntlet. It concerns the definition of
interfaces between components and not a complete
instruction for implementation.
In this work, instead of transforming complex object
queries directly into operations in a physical algebra, as in
most database architectures, query evaluation in a Large
Database takes place in several phases. Both the logical
and the physical layer can be extended with domain
specific data types and operators. Each of these layers can
be viewed as implementing complete three-schema
architecture with its own data model and query languages
as shown in Figure 5.

Figure 4 Large database architecture

Figure 5 The Large Database architecture to the extended relational
model

4. Multi-structural query engine

The query engine implements the basic (f, o) dynamic
programming algorithm for hierarchical and numerical
dimensions, and provides a framework for computing
sequential and factored Pairwise-Disjoint Collection
(PDCs) for arbitrary collections of dimensions. It also
implements more efficient algorithms for min-monotone
PDCs, and for sum-additive PDCs. A simple optimizer
selects the appropriate algorithm at each step. Finally, the
system includes implementations of the query types
described in Section 4.1. The query engine should be
viewed as a reference implementation to compute multi-
structural queries. It has not been optimized for
performance. A system can produce responses to complex
multi-structural queries in times measured in seconds or
tens of seconds, rather than hours. There are many future
modifications that could provide further improvements
and so the timing numbers should be viewed as upper
bounds.

4.1 Algorithm:

1. Parse the query.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

155

2. Convert words into wordIDs.
3. Seek to the start of the doclist in the short barrel for

every word.
4. Scan through the doclists until there is a document

that matches all the search terms.
5. Compute the rank of that document for the query.
6. If in the short barrels and at the end of any doclist,

seek to the start of the doclist in the full barrel for
every word and go to step 4.

7. If not at the end of any doclist go to step 4. Sort the
documents that have matched by rank and return the
top k.

5. Vector Space Model

A vector is like an array of floating point which has
direction and magnitude. Each vector holds a place for
every term in the collection, therefore, most of the vectors
are sparse. Documents are represented as “group of
words” represented as vectors when used computationally.

5.1Document Vectors

In this vector, one location for each word is shown in
Figure 6, where all keywords occur with different times in
text A.

Figure 6 keywords occur with different times in text

The vector scheme detects inconsistencies when copies of
a document are independently updated. This scheme
allows copies of a document to be stored at multiple hosts.
Although it uses the term document, the scheme can be
applied to any other data items such as tuples of a relation.
The vector scheme is initially designed to deal with failure
in distributed file systems. The scheme gained importance
because mobile computers often store copies of files that
are also present in the server system, in effect constituting
a distributed file system that is often disconnected.
Another application of the scheme is in groupware system,
where hosts are connected periodically, rather than
continuously and must exchange updated documents. The
vector scheme also has applications in replicated
databases.
In Figure 7 shows, Plot the vectors that are “close” in
space, which is similar.

Figure 7 Plots of the vector

5.2 Vector Space Model

In vector space model, the Documents (D) are represented
as vectors in term of space, these terms are usually stems.
Documents represented by binary vectors of terms. The
queries represented the same as documents. A vector
distance measure between the query and documents is
used to rank retrieved the documents. Query and
Document similarity is based on length and direction of
their vectors, in which vector operations is to capture
boolean query.

5.2.1 Vector Space Documents and Queries
In the Figure 8, three different terms, in which t1 and t2
has common numbers are D5 and D6. Compare between
t2 and t3 shows common numbers are D3, D5 and D10
and compare between t3 and t1 shows common numbers
are D1 and D5 common number between all terms is D5.

Figure 8 Boolean Term Combinations

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

156

Figure 9 Q is a query – also represented as a vector

wik = tfik * log (N / nk) … (2)

Tk = term k in document Di
tfik = frequency of term Tk in document Di
idik = inverse document frequency of term Tk in C
N = total number of documents in the collection C
nk = the number of documents in C that contain Tk
idfk

5.2.2 Vector Space with Term Weights and Cosine
Matching
Figure 10 shows,

Figure 10 Different matching of Vector space

5.2.3 Problems with Vector Space

(i) There is no real theoretical basis for the
assumption of a term space, it is more for
visualization than having any real basis.

(ii) Terms are not really orthogonal dimensions and
not independent of all other terms.

The main idea to this work that modify the existing query
based on relevance decision, then extract terms from
relevant documents and add them to the query. The
AND/OR re-weight the terms already in the Query. There
are many variations to exist the query approach.

(i) Usually positive weights for terms from relevant
docs,

(ii) Sometimes negative weights for terms from non-
relevant docs.

 … (4)
where,
Q0 = the vector for the initial query
Ri = the vector for the relevant document i
Si = the vector for the non-relevant document i
n1 = the number of relevant documents chosen
n2 = the number of non-relevant documents chosen
α, β and γ tune the importance of relevant and nonrelevant
terms
5.2.4 Vector Illustration

Figure 11 Vector Illustration

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

157

6. Experimental Results

Each query requires heavy processing and is run either
once or twice for each sample of three sample sizes: 100,
1,000, and 5,000 documents. The index timings are higher
than in the warm cache case, but the overall end-to-end
latencies are not significantly larger. Figure 12(a) shows
the histogram of the number of seconds spent in the
backend generating all necessary data. Figure 12(b) shows,
the same results for end-to-end processing time.

Figure 12(a) Histogram of the processing with necessary data

Figure 12(b) Histogram of the end-to-end processing

The bytes of data and metadata exploration are being
returned by these queries. Figure 13 shows a histogram of
the cached size for sample sizes of 1,000 documents and
10,000 documents. Several queries at the 10,000
document size return in excess of 100M of data, which is
marshaled, transferred over the network, unmarshaled and
written to disk in the client cache. The left frame Figure
13(a) shows the results for 1,000 document samples and
the right frame Figure 13(b) shows the results for 10,000
document samples.

Figure 13(a) Sizes in megabytes for data returned per query for left
frame

Figure 13(b) Sizes in megabytes for data returned per query for right
frame

6.1 Multi-structural query engine performance

In the query engine, the average time to compute a multi-
structural query is, broken by sample size and size ‘k’ of
the resulting PDC. The size of the resulting PDC is a
much less significant contributor to the overall time than
the sample size. Certain query types are quadratic in the
sample size and hence, show significant growth with
sample size. An average time in seconds to solve multi-
structural query, after all data and metadata has been
loaded from the backend, over 28 benchmark queries for
various sample sizes and PDC sizes ‘k’, is analyzed.
Figure 14 shows the results for PDCs of various different
sample sizes. From Figure 14(a) and Figure 14(b), it is
clear that certain query types have significantly higher
processing times than others. These queries have more
compute-intensive ‘f’ functions, which dominate the
runtime of the queries that take more than one minute.
Average query engine timing over all queries within a

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

158

query family for sample sizes of 100, 1,000 and 5,000
documents, after all backend activity has completed.
Results for k = 5 are shown in Figure 14(a), and for k = 10
Figure 14(b).

Figure 14(a) Average query engine timing over all queries

Figure 14(b) Aggregate end-to-end timings of overall system timings

7. Conclusion

In this paper, a database management system is proposed
(general-purpose software system) that facilitates the
processes of defining, constructing, and manipulating
databases for various applications. The main characteristic
of the ‘database approach’ is that it increases the value of
data by its emphasis on data independence. The main
problem of multimedia data management is providing
access to the stored objects. The content structure of
administrative data is easily represented in alphanumeric
values. Thus, database technology has primarily focused
on handling the objects’ logical structure. In the
multimedia data, representation of content is far from

trivial though, and not supported by current database
management systems.
Retrieval systems based on these ideas are typically
standalone systems that have been developed for very
specific applications. There is not much consensus on the
integration of these techniques in general-purpose DBMSs.
This leaves to the user the burdens of both query
formulation and the combination of results for each single
representation into a final judgment. Also, this leads to
inefficient query processing for queries involving several
content representations. Like any DBMS, a MMDBMS is
a general-purpose software system that supports various
applications; but, the support is targeted to applications in
the specific domain of digital libraries. Four new
requirements have been identified for this domain: (i)
multimedia objects can be active objects, (ii) querying is
an interaction process, (iii) query processing uses multiple
representations, and (iv) query formulation provides
content independence. Recognizing the strong relationship
with IR query processing, the network retrieval model is
adapted for multimedia retrieval.

References
[1] A.P. de Vries, “Mirror: Multimedia query processing in

extensible databases”, In Proceedings of the fourteenth
Twente workshop on language technology (TWLT14):
Language Technology in Multimedia Information Retrieval,
pages 37–48, Enschede, The Netherlands, December 1998.

[2] A.P. de Vries and H.M. Blanken. Database technology and
the management of multimedia data in Mirror. In
Multimedia Storage and Archiving Systems III, volume
3527 of Proceedings of SPIE, pages 443–455, Boston MA,
November 1998.

[3] A.P. de Vries and H.M. Blanken. The relationship between
IR and multimedia databases. In The 20th IRSG
colloquium: discovering new worlds of IR, Grenoble,
France, March 1998.

[4] A. Hampapur and R. Jain. Multimedia data management.
Using metadata to integrate and apply digital media,
chapter Video data management systems: metadata and
architecture, pages 245–286. In Sheth and Klas [SK98],
1998.

[5] E. Remias, G. Sheikholeslami, and A. Zhang.
Blockoriented image decomposition and retrieval in image
database systems. In The 1996 International Workshop on
Multimedia Database Management Systems, Blue
Mountain Lake, New York, August 1996.

[6] I. Mani, D. House, M. Maybury, and M. Green. Intelligent
multimedia information retrieval, chapter Towards
contentbased browsing of broadcast news video, pages
241–258. AAAI Press/MIT Press, 1997.

[7] Nita Goyal, Charles Hoch, Ravi Krishnamurthy, Brian
Meckler, and Michael Suckow. Is gui programming a
database research problem? In H. V. Jagadish and Inderpal
Singh Mumick, editors, Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 46, 1996, pages 517–528.
ACM Press, 1996

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

159

[8] P.A. Boncz, S. Manegold, and M.L. Kersten. Database
architecture optimized for the new bottleneck: Memory
access. In Proceedings of 25th International Conference on
Very Large Databases (VLDB ’99), Edinburgh, Scotland,
UK, September 1999.

[9] S. Boll,W. Klas, and A. Sheth. Multimedia data
management. Using metadata to integrate and apply digital
media, chapter Overview on using metadata to manage
multimedia data, pages 1–24. In Sheth and Klas [SK98],
1998.

[10] Thomas V. Papathomas, Tiffany E. Conway, Ingemar J.
Cox, Joumana Ghosn, Matt L. Miller, Thomas P. Minka, ,
and Peter N. Yianilos. Psychophysical studies of the
performance of an image database retrieval system. In Proc.
SPIE, 1998.

[11] W. Greiff, W.B. Croft, and H. Turtle. PIC matrices: A
computationally tractable class of probabilistic query
operators. Technical Report IR132, The Center for
Intelligent Information Retrieval, 1998. submitted to ACM
TOIS.

[12] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman,
D. Petkovic, P. Yanker, and C. Faloutsos. The QBIC
project: querying images by content using color, texture and
shape. Technical Report RJ 9203, IBM Research Division,
1993.

[13] Haizhou Li, Bin Ma, and Chin-Hui Lee, “A Vector Space
Modeling Approach to Spoken Language Identification”, in
IEEE Transactions on Audio, speech, and Language
processing vol. 15, No. 1, January 2007.

[14] M. Basavaraju and Dr. R. Prabhakar, “A Novel Method of
Spam Mail Detection using Text Based Clustering
Approach”, in International Journal of Computer
Applications (0975 – 8887), Vol.5– No.4, August 2010.

[15] Christian Bockermann, Martin Apel, and Michael Meier,
“Learning SQL for Database Intrusion Detection Using
Context-Sensitive Modelling (Extended Abstract)”, in U.
Flegel and D. Bruschi (Eds.): DIMVA, LNCS 5587, pp. 196–
205, 2009.

[16] N. Fuhr and K. Großjohann, “XIRQL: A Query Language
for Information Retrieval in XML Documents”, in
proceedings of the 24th Annual ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
172–180. ACM Press, 2001.

[17] Ronald Fagin R. Guha Ravi Kumar Jasmine Novak D.
Sivakumar Andrew Tomkins, “MultiStructural Databases”,
in PODS June 13–15, Baltimore, MD, 2005.

[18] R. Fagin, Ph. Kolaitis, R. Kumar, J. Novak, D. Sivakumar,
A. Tomkins, “Efficient Implementation of Large-Scale
Multi-Structural Databases”, Proceedings of the 31st VLDB
Conference, Trondheim, Norway, 2005.

[19] R. Fagin, R. Guha, R. Kumar, J. Novak, D. Sivakumar, and
A. Tomkins, “Multi-structural databases. In Proceeding
24th ACM Symposium on Principles of Database Systems,
2005.

