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Summary 
Procedural content generation is becoming an increasingly 
popular research area as a means of algorithmically generating 
scene content for virtual environments. The automated 
generation of such content avoids the manual labour typically 
associated with creating scene content, and is extremely useful in 
application areas such as computer graphics, movie production 
and video games. While virtual 3D caves are commonly featured 
in these virtual environment applications, procedural cave 
generation is not an area that has received much attention among 
researchers to date. This paper presents a procedural approach to 
generating 3D cave structures. Other than the development of a 
method to effectively automate the generation of visually 
believable 3D cave models, this paper also investigates how to 
efficiently construct and store this spatial information using a 
voxel-based octree data structure. In addition, the proposed 
approach demonstrates that caves with different characteristics 
can be generated by adjusting certain parameters in order to 
facilitate the creation of diverse cave structures. 
Key words: 
Procedural Content Generation, Caves, Voxel, Octree. 

1. Introduction 

Procedural content generation, or procedural modelling, 
has received much attention especially in areas like 
computer graphics, virtual environments, movie 
production and video games, as a method of 
algorithmically generating scene content for applications 
in these areas. The growth, in terms of size, detail and 
visual realism, of the synthetic 3D virtual environments 
represented in these application areas, means a constant 
demand for increasing the amount of content to fill up 
these virtual worlds [1]. This increase in visual complexity 
and detail makes manual content creation extremely 
laborious and time consuming, thus, potentially increasing 
the production time and costs required to create these 
virtual worlds. 
 
This makes content creation via procedural techniques 
particularly attractive, as it allows for the automated 

generation of scene content by a computer. The 
widespread development of procedural techniques over 
the last decade has been due in part to the increase in 
computational power, which has provided researchers with 
the opportunity to explore methods previously infeasible 
[2]. To date, researchers and practitioners have developed 
procedural content generation techniques in a variety of 
areas, for example, in terrain and landscape generation [3, 
4], plant and tree models [5], buildings [6], cities [7], 
roads [8], etc. In addition, procedural techniques are 
particularly suitable for creating the randomness present in 
naturally occurring phenomena like fire [9], water and 
waves [10], and smoke [11], which have additional 
animation characteristics. 
 
Virtual 3D caves often appear in movies and video games 
[12]. However, despite being commonly featured in movie 
and video game environments, the procedural creation of   
caves has remained relatively unexplored [13, 14]. This 
paper investigates the use of procedural techniques to 
synthetically generate 3D cave structures. The usefulness 
of procedurally generating 3D caves is not solely limited 
to the entertainment industry, since virtual 3D cave 
environments can also be used in the development of 
training simulations for cave explorers, and possibly for 
training search-and-rescue personnel [13].  
 
Terrain generation is a particularly successful area in 
procedural content generation, and is very much related to 
cave generation. The success of procedural terrain 
generation has led to the development of a variety of 
physically-based generation techniques for the synthesis of 
virtual terrains which display advanced visual features like 
hydraulic erosion, etc. [3, 15]. The purpose of the 
approach present in this paper is not to simulate 
physically-based cave formations, but rather to generate 
visually believable 3D cave structures. 
 
The task of procedurally generating 3D cave models 
presents a number of challenges. In particular, this 
involves developing a method of effectively automating 
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the generation of the 3D structure, as well as efficient 
storage and rendering. Terrain generation techniques 
typically use the 2D height map approach for storing 
height field information, due to its simplicity and efficient 
memory storage requirements. However, height maps have 
the limitation of only being able to represent a single 
height value for each position on the horizontal plane, and 
as such cannot be used to represent features like overhangs, 
arches or caves [3, 4]. 
 
The method adopted in this paper is to use a voxel-based 
approach, as voxels (volumetric elements) have the 
capability of representing 3D spatial data. One of the 
drawbacks of using voxels is its large memory storage 
requirements. Therefore, an octree data structure will be 
used to store the voxel data. A 3D noise function will be 
used to procedurally construct the voxel-based 3D cave 
model. However, using a noise function by itself gives rise 
to the problem of ‘floating islands’ and ‘air pockets’ in the 
resulting structure. Thus, this paper also presents a method 
to process and remove these problem areas, along with the 
approach used for constructing the data structure. 
Furthermore, this work shows that the appearance of the 
generated cave structure can be varied by simply adjusting 
certain parameters of the noise function. 
 
The rest of the paper is organised as follows. Section 2 
describes related work in 3D cave models and octree 
construction techniques. A detailed description of our 
approach is given in section 3. Experimental results are 
demonstrated and discussed in section 4. Finally, the paper 
is concluded and future work is outlined in section 5. 

2. Related Work 

2.1 3D Cave Models 

Existing efforts in the construction and visualisation of 3D 
cave structures include the use of scanning hardware to 
obtain accurate spatial data about actual cave structures 
[16]. The scanned spatial data can then be used to 
reconstruct a virtual representation of the real cave that 
can be visualised on a computer display. However, the 3D 
mapping of caves using this physical approach is an 
extremely painstaking and time consuming process. 
Schuchardt and Bowman [17] investigated whether the 
visualisation of complex 3D cave structures using 
immersive virtual reality provided a higher level of spatial 
understanding of such structures, which cannot be 
mentally visualised using traditional means such as 2D 
cave maps. The cave model used for their system was 
constructed from cave survey and measurement data 

obtained from an actual cave, and converting this 
information into a 3D cave model. 
 
The procedural creation of synthetic 3D cave models has 
previously been investigated by Boggus and Crawfis [13, 
14, 18]. Their work focuses on the procedural generation 
of solution caves, which are caves formed by rock being 
dissolved by acidic water. In their research, they apply 
knowledge about the formation of solution caves in order 
to create cave models for virtual environments. Their 
proposed method involved approximating water transport 
to create a coarse level of detail model for a cave passage. 
They also demonstrated methods of generating 3D cave 
models using cave patterns, and proposed that surface 
detail could be added using techniques like bump mapping 
and displacement mapping. 
 
Johnson, et al. [19] examined an approach of using a 
cellular automata-based algorithm for the real-time 
generation of 2D infinite cave maps, for the purposes of 
representing cave levels in video games. However, the 
generation of 3D caves maps using this approach was left 
for future work. Peytavie, et al. [4] presented a framework 
for representing complex terrains, which includes caves, 
using a volumetric discrete data-structure. In addition, 
they proposed a procedural rock generation technique to 
automatically generate complex rocky scenes with piles of 
rocks. Their aim was to generate and display physically 
plausible scenes without the computational demand of 
physically-based simulations. Their approach mainly 
focused on using their unique data-structure for efficient 
interactive sculpting, editing and reconstruction using high 
level terrain authoring tools, as opposed to a purely 
procedurally driven approach. 

2.2 Octrees 

Voxels have traditionally been used to store volumetric 
data for applications like MRI scans [22]. In general, the 
use of voxels consumes huge amounts of memory when 
used for truly volumetric 3D data. However, Laine and 
Karras [22] have shown that memory usage drops 
significantly when used to encode surfaces in sparse voxel 
octrees. In their work, they analysed the efficient use of 
sparse voxel octrees in conjunction with GPUs for ray 
casting. 
 
Octrees, like quadtrees, are hierarchical data structures 
based on the decomposition of space [23]. To date, much 
research has been done on efficient construction and 
traversal of octrees. Octrees have been used for a variety 
of purposes including for accelerating rendering, for 
collision detection and for operations such as locating 
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neighbours. The typical approach to building an octree is 
to take a top-down approach, where one starts with a 
volume that encompasses the entire scene and recursively 
subdivides space into octants until a certain maximum 
depth or termination criterion is reached. Some researchers 
have also proposed methods for bottom-up octree 
construction. However, most methods of building octrees 
rely on knowledge of the scene to be known a priori, 
before subdivision can take place. This paper presents an 
approach to building an octree from procedural data that is 
not known a priori, and nodes are created and inserted 
from bottom-up as required. 

3. Our Approach 

3.1 Generating the Cave Structure 

The fundamental idea behind this approach to generating 
the cave structure is to be able to separate air from stone in 
a given 3D spatial area. The 3D area in question will form 
the foundation of the cave structure as it will provide the 
overall cave shape. For simplicity, basic volumetric 3D 
shapes like spheres, ellipses, cuboids, cylinders, cones, etc. 
can be used as the cave foundation. These basic shapes 
can easily be connected and composited to form entire 
cave systems, with passages, crevices, caverns, etc. Voxels 
are used to store the 3D spatial data, with each voxel 
representing an area of 3D space. Thus, for each voxel 
position in the given 3D area, a binary operation needs to 
be defined that will return the value of 1 for air and 0 for 
stone. 
 
To produce the randomness which is a key feature of cave 
structures, a 3D noise function will be used to create the 
overall distribution of air and stone. A 3D Perlin noise 
function was employed for this work. Note that other 3D 
noise functions can also be used which will result in 
different distributions and may potentially give rise to 
different cave structures. Nonetheless, this was left as a 
topic for future work. Perlin noise is a type of gradient 
noise that gives a pseudo-random appearance and has the 
property of generating a smooth continuous noise 
distribution [20]. In addition, a bias function proposed by 
Perlin and Heffort [21], was used in conjunction with 3D 
Perlin noise to control and facilitate the smooth separation 
between air and stone at the walls of the cave. Thus, 
different cave structures result from adjusting the bias 
parameter, b. The bias was defined as the following power 
function [21]: 

( )
( )5.0ln

ln b

t      (1) 

Figure 1 gives a 2D cross-section depiction of the overall 
process described above, note that the actual approach is 
in 3D. Figure 1a shows an example of a basic shape (a 
sphere in this case) used as the cave foundation, with 
black representing stone and white representing air. A 
depiction of Perlin noise is given in Figure 1b. Figure 1c 
shows the result of applying the bias function (with b = 
0.05), to the cave foundation (Figure 1a) in order to 
smoothen the separation between stone and air. Finally, 
Figure 1d presents the cave structure obtained after the 
combination of Perlin noise (Figure 1b) with the biased 
cave foundation (Figure 1c). This was done by comparing 
the Perlin noise value with the biased cave foundation 
value for each voxel. If the Perlin noise value was less 
than the biased cave foundation value for a particular 
voxel position, that voxel would be assigned to contain 
stone, otherwise it would contain air. One can see small 
‘floating islands’ in the resulting cave structure in Figure 
1d, which will have to be removed. Additionally, there are 
also small ‘air pockets’ in the stone which are redundant to 
the final cave’s display and should therefore be removed. 
 

(a) (b) 

(c) (d) 

Fig. 1  2D cross-section depiction of the process used to form the cave 
structure. (a) Cave foundation; (b) Perlin noise; (c) Cave foundation after 

bias function, with b = 0.05; (d) Cave structure resulting from the 
combination of (b) and (c). 

3.2 Building the Voxel-based Octree 

While it is possible to first generate the cave structure and 
store this in a 3D voxel lattice, then utilise this data to 
build an octree, this would mean that the voxels would 
initially have to be stored in memory. A better approach 
would be to bypass storing the 3D voxel lattice and to 
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construct the voxel octree by inserting nodes into the 
octree on the fly as required. Therefore, a specialised 
bottom-up octree construction approach was designed for 
this purpose. 
 
A quadtree will be used to describe the approach here as it 
will simplify the explanation; nonetheless, extending this 
to an octree is trivial. All nodes are assigned a unique 
numerical index based on the node’s depth and its child 
number. The number of digits in a node’s index is equal to 
its depth, and each digit represents the child node’s 
number. Since a parent node in a quadtree can have a 
maximum of 4 children, the child node’s number ranges 
from 0 to 3, whereas for an octree this would be from 0 to 
7. Figure 2 (a) to (c) illustrate an example of the node 
indices at different depths for a quadtree. From the figure, 
it can be seen that the child nodes are number in a ‘Z’ 
order (i.e. top left = 0, top right = 1, bottom left = 2 and 
bottom right = 3). 
 

 

 
(a) 

 

(b) 

 
(c) 

Fig. 2  Unique node indices for quadtree. (a) Depth of 1; (b) Depth of 2; 
(c) Depth of 3. 

The tree construction approach is described as a bottom-up 
approach as the leaves of the tree data structure are 
inserted one after another. As such, the maximum tree 
depth has to be defined from the start. Voxels form the 
leaves of the tree and encompass areas of either stone or 
air. Parent nodes for the child nodes are created whenever 

necessary. To check what material a voxel contains, the 
procedural cave structure generation method previously 
described in section 3.1 is used. If the voxel contains stone 
and is not already in the tree, it is created and inserted into 
the tree. Once the tree is fully built, all remaining leaf 
nodes are created and assigned as voxels containing air. 
 
The node insertion algorithm follows a scan-line fill 
algorithm. The scan-line fill algorithm is commonly used 
in computer graphics for filling connected pixels in a 
polygon with a colour along scan-lines. In this case, the 
algorithm is used to insert connected voxels containing 
stone material into the tree. After a node is inserted, a test 
is performed to check whether the sibling nodes all 
contain the same material (i.e. stone). If so, a merge 
operation is performed where the parent node is assigned 
that material and the child nodes are removed from the 
tree. This reduces memory storage requirements. Figure 3 
gives an example which illustrates the overall process.  
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

  
(e) 

Fig. 3  Example of building the quadtree. (a) Actual composition of air 
and stone for the cave structure; (b) Insertion along scan-lines; (c) 

Example of a merge operation; (d) All connected stone voxels inserted; 
(e) Material of remaining leaves assigned as air. 
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Figure 3a shows the composition of stone and air that 
would be obtained from the procedural cave structure 
generation algorithm, ‘S’ represents stone and ‘A’ 
represents air. Figure 3b depicts quadtree state after the 
first scan-line and moving to the second scan-line, ‘N’ 
represents null (i.e. nodes not yet created). In Figure 3c, a 
merge operation was just performed and the children for 
that node were deleted. Figure 3d shows the state of the 
quadtree after insertion of all connected stone voxels. In 
Figure 3e, the material for all the remaining leaf nodes are 
assigned as air. In comparing Figure 3a with 3e, one can 
see that the stones in the middle that are not connected to 
the walls of the cave have been removed. This quadtree 
example can be seen as a slice or cross-section of an 
octree. To build the octree with the cave structure, simply 
repeat the process for all the slices. It can be seen that all 
unconnected ‘floating islands’ are ignored when building 
the tree. 

3.3 Determining the Cave Boundary Surfaces 

This next stage deals with the removal of small ‘air 
pockets’ from the stone (previously highlighted in Figure 
1d, and represented in Figure 3e as node 002). At the same 
time, the boundary surfaces that separate stone from air 
(i.e. the internal walls of the 3D cave) are determined. The 
approach adopted is based on the flood-fill algorithm (also 
known as seed-fill), traditionally used in computer 
graphics to fill connected neighbouring pixels with the 
same colour.  
 
The important property of the flood-fill algorithm 
exploited in this approach is that it can be used to find 
neighbouring voxels in 3D. However, when used in the 
context of voxel-based octrees, a complication arises when 
neighbouring voxels are of different sizes and at different 
depths in the octree. In view of the fact that all nodes were 
assigned a unique index based on their depth and child 
number (refer to Figure 2), the problem can be overcome 
by referring to the neighbouring voxels’ indices. Figure 4 
depicts how this was done in a quadtree scenario. Figure 
4a shows the initial seed voxel, ‘S’. In Figure 4b, 
neighbouring nodes ‘N1’ to ‘N4’, of the same depth are 
found. If a neighbouring node has children, the child 
nodes that are adjacent to the seed node should be 
considered instead. This is depicted in Figure 4c, where 
the children of ‘N3’ and ‘N4’ are considered, and the child 
nodes adjacent to the seed node are selected. Figure 4d 
shows all the connected neighbours that were found. 
 
The initial seed voxel must be a voxel containing air that 
is located somewhere inside the cave. The algorithm will 
recursively search for neighbouring air voxels until it hits 

a stone voxel. That means that on completion of the flood-
fill process, any ‘air pockets’ in the stone will be removed 
as only the boundary voxels that separate air from stone 
will remain in the octree. Figure 5a illustrates the quadtree 
after the flood-fill process. From this, the cave boundary 
surfaces can be determined by selecting the smaller of 
adjacent stone-air voxels (i.e. nodes with larger depth), as 
depicted in Figure 5b. Then the polygonal surfaces of the 
cave wall can be computed, as shown in Figure 5c. 
 

(a) 
 

(b) 

 
(c) (d) 

Fig. 4  Finding neighbouring voxels at different depths. (a) Initial seed 
voxel; (b) Neighbours of the same depth; (c) Child nodes found where 

necessary; (d) All connected neighbours. 

 
(a) (b) 

 
(c) 
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Fig. 5  (a) Boundary voxels; (b) Selecting the smaller of adjacent stone-
air voxels; (c) Polygonal surfaces of the cave walls. 

4. Results and Discussion 

A number of experiments were conducted to evaluate the 
procedural cave generation and voxel-based octree 
building method proposed in this research. The proposed 
techniques were implemented in an application program 
that was written in C# on an Intel dual-core 3.33GHz PC, 
and the XNA framework was used for displaying the 
resulting 3D cave model. 

Table 1: Comparison between the number of voxels, vertices and 
triangles for different octree depths. 

Octree 
Depth 

Boundary Voxels Vertices TrianglesStone  Air Total 
5 250 172 422 674 1296 
6 1012 606 1618 2693 5196 
7 4235 2284 6519 11135 21376 
8 17858 9501 27359 47756 90760 
9 73760 43766 117526 207836 388084 

 
Table 1 shows the complexity of a typical octree resulting 
from the 3D cave model that was built using the proposed 
approach. The cave model was constructed using a 
spherical foundation with a bias value of 0.05. The table 
gives a comparison between the total number of boundary 
voxels in the octree, along with the breakdown of 
boundary voxels containing stone and air. Without using 
an octree, the total number of voxels that would have to be 
stored in memory would equal 2depth×2depth×2depth. It can be 
seen that the total number of octree voxels significantly 
reduced memory requirements. In addition, the total 
number of vertices and triangles that form the surface of 
the cave walls are also provided in Table 1.  
 
Experiments were also conducted to compare two 
common octree construction approaches with the 
specialised approach that was developed in this research. 
The first approach that was used to build the octree 
followed a top-down sequence. In this approach, voxels in 
a node are sampled and if the node encompasses voxels of 
more than one type of material (both air and stone), the 
node is subdivided into eight child nodes. Then the 
scanline-fill process was performed to remove ‘floating 
islands’ from the octree. This was followed by the flood-
fill process for ‘air pocket’ removal. The second approach 
used was a bottom-up octree construction approach with 
each node visited in the traditional Morton order [24]. The 
‘floating island’ and ‘air pocket’ removal process was 
similar to the first approach described above. The third 
approach was the method detailed in section 3. To provide 

a basis for comparisons, all three approaches were built 
using the same procedural 3D cave model.  
 
For comparison, the three different approaches were 
evaluated based on the total number of required material 
checks, i.e. whether a given voxel’s material was air or 
stone. Table 2 shows the total number of material checks 
that were done when building the octrees. Table 3 in turn 
shows the total number of material checks performed on 
the already constructed octree in order to obtain the 
resulting cave boundary voxels. It can be seen that in both 
comparisons, the third approach required less material 
checks as opposed to the other two approaches. This 
means that the specialised approach developed in this 
paper successfully reduced the overall computational 
requirements. 

Table 2: Total number of voxel material checks required in the 
construction of the octree. 

Octree
Depth Approach 1 Approach 2 Approach 3 

5 6211 4096 3992 
6 106212 32768 29642 
7 414810 262144 225313 
8 3329425 2097152 1799992 
9 26616879 16777216 14187327 

Table 3: Total number of octree node material checks required to obtain 
the cave boundary voxels. 

Octree
Depth Approach 1 Approach 2 Approach 3 

5 7706 7706 3357 
6 39154 39154 17109 
7 236444 236444 90318 
8 1588910 1588910 678910 
9 10026594 10026594 4860953 

 
Table 4 and 5 demonstrate how diverse cave models can 
be generated by adjusting certain parameters to give rise to 
different cave characteristics. These tables show 2D cross-
sections of the cave structure produced by varying the bias 
value and the Perlin noise frequency. The cave models 
shown in Table 4 were generated using a spherical cave 
foundation, whereas the cave models in Table 5 were 
created from a cubic foundation. It can be seen that larger 
bias values give rise to caves with rough walls, while 
smaller bias values result in cave models that closely 
follow the cave foundation shape. In addition, Perlin noise 
frequencies with smaller values leads to cave models with 
smoother surfaces as opposed to when larger values are 
used. 
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Table 4: 2D cave structure cross-sections resulting from a spherical 
foundation with different bias values and Perlin noise frequency. 
 Perlin noise frequency 
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Table 5: 2D cave structure cross-sections resulting from a cubic 
foundation with different bias values and Perlin noise frequency. 
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(a) 

(b) 

(c) 

Fig. 6  Screenshots of a 3D cave model. (a) Voxels; (b) Wireframe 
depiction of the polygonal surfaces; (c) After smoothening. 
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There are a number of methods for displaying voxel 
octrees, including ray casting, splatting and iso-surface 
construction. For real-time rendering, the approach used in 
this research was to render the polygonal surfaces of the 
cave walls. Screenshots showing components of an 
example procedurally generated cave model are shown in 
Figure 6. In Figure 6a, individual voxels were rendered to 
highlight the voxel-based cave model. Figure 6b shows the 
triangles that were form from these voxels. From the 
wireframe rendering, one can see that some voxels are 
larger than others. Figure 6c in turn shows the results of 
the 3D cave model after a smoothening function was 
applied to the polygons. The cave model was rendered 
with directional lighting only, without any texturing. 

5. Conclusion and Future Work 

The automated generation of synthetic 3D cave 
environments is an important but largely unexplored area 
of research. This paper presents an approach to 
procedurally generating diverse cave structures using 3D 
noise functions by adjusting parameters such as the bias 
value, overall cave foundation shape and sampling. An 
efficient method of storing the resulting 3D spatial cave 
data using voxel-based octrees was also presented along 
with a specialised bottom-up octree construction approach. 
Furthermore, techniques to remove ‘floating islands’ and 
‘air pockets’ from the resulting octree were detailed along 
with how to determine the boundary surfaces of the cave. 
 
In order to increase the realism of the 3D cave model, real 
caves have speleothems such as stalactites and stalagmites. 
Future work will investigate the generation of cave 
features like stalactites and stalagmites, as well as how to 
incorporate these into the resulting cave structure. The use 
of different 3D noise functions to create different cave 
models will also be examined, along with the parameters 
required to control the look and feel of the cave structure. 
In addition, the procedural generation of realistic cave 
textures is also an important topic for future work. 
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