
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

160

Manuscript received June 5, 2011
Manuscript revised June 20, 2011

A Voxel-based Octree Construction Approach for Procedural
Cave Generation

Juncheng Cui†, Yang-Wai Chow† and Minjie Zhang††,

School of Computer Science and Software Engineering, University of Wollongong, Australia
Advanced Multimedia Research Lab†

Intelligent Systems Research Lab††

Summary
Procedural content generation is becoming an increasingly
popular research area as a means of algorithmically generating
scene content for virtual environments. The automated
generation of such content avoids the manual labour typically
associated with creating scene content, and is extremely useful in
application areas such as computer graphics, movie production
and video games. While virtual 3D caves are commonly featured
in these virtual environment applications, procedural cave
generation is not an area that has received much attention among
researchers to date. This paper presents a procedural approach to
generating 3D cave structures. Other than the development of a
method to effectively automate the generation of visually
believable 3D cave models, this paper also investigates how to
efficiently construct and store this spatial information using a
voxel-based octree data structure. In addition, the proposed
approach demonstrates that caves with different characteristics
can be generated by adjusting certain parameters in order to
facilitate the creation of diverse cave structures.
Key words:
Procedural Content Generation, Caves, Voxel, Octree.

1. Introduction

Procedural content generation, or procedural modelling,
has received much attention especially in areas like
computer graphics, virtual environments, movie
production and video games, as a method of
algorithmically generating scene content for applications
in these areas. The growth, in terms of size, detail and
visual realism, of the synthetic 3D virtual environments
represented in these application areas, means a constant
demand for increasing the amount of content to fill up
these virtual worlds [1]. This increase in visual complexity
and detail makes manual content creation extremely
laborious and time consuming, thus, potentially increasing
the production time and costs required to create these
virtual worlds.

This makes content creation via procedural techniques
particularly attractive, as it allows for the automated

generation of scene content by a computer. The
widespread development of procedural techniques over
the last decade has been due in part to the increase in
computational power, which has provided researchers with
the opportunity to explore methods previously infeasible
[2]. To date, researchers and practitioners have developed
procedural content generation techniques in a variety of
areas, for example, in terrain and landscape generation [3,
4], plant and tree models [5], buildings [6], cities [7],
roads [8], etc. In addition, procedural techniques are
particularly suitable for creating the randomness present in
naturally occurring phenomena like fire [9], water and
waves [10], and smoke [11], which have additional
animation characteristics.

Virtual 3D caves often appear in movies and video games
[12]. However, despite being commonly featured in movie
and video game environments, the procedural creation of
caves has remained relatively unexplored [13, 14]. This
paper investigates the use of procedural techniques to
synthetically generate 3D cave structures. The usefulness
of procedurally generating 3D caves is not solely limited
to the entertainment industry, since virtual 3D cave
environments can also be used in the development of
training simulations for cave explorers, and possibly for
training search-and-rescue personnel [13].

Terrain generation is a particularly successful area in
procedural content generation, and is very much related to
cave generation. The success of procedural terrain
generation has led to the development of a variety of
physically-based generation techniques for the synthesis of
virtual terrains which display advanced visual features like
hydraulic erosion, etc. [3, 15]. The purpose of the
approach present in this paper is not to simulate
physically-based cave formations, but rather to generate
visually believable 3D cave structures.

The task of procedurally generating 3D cave models
presents a number of challenges. In particular, this
involves developing a method of effectively automating

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

161

the generation of the 3D structure, as well as efficient
storage and rendering. Terrain generation techniques
typically use the 2D height map approach for storing
height field information, due to its simplicity and efficient
memory storage requirements. However, height maps have
the limitation of only being able to represent a single
height value for each position on the horizontal plane, and
as such cannot be used to represent features like overhangs,
arches or caves [3, 4].

The method adopted in this paper is to use a voxel-based
approach, as voxels (volumetric elements) have the
capability of representing 3D spatial data. One of the
drawbacks of using voxels is its large memory storage
requirements. Therefore, an octree data structure will be
used to store the voxel data. A 3D noise function will be
used to procedurally construct the voxel-based 3D cave
model. However, using a noise function by itself gives rise
to the problem of ‘floating islands’ and ‘air pockets’ in the
resulting structure. Thus, this paper also presents a method
to process and remove these problem areas, along with the
approach used for constructing the data structure.
Furthermore, this work shows that the appearance of the
generated cave structure can be varied by simply adjusting
certain parameters of the noise function.

The rest of the paper is organised as follows. Section 2
describes related work in 3D cave models and octree
construction techniques. A detailed description of our
approach is given in section 3. Experimental results are
demonstrated and discussed in section 4. Finally, the paper
is concluded and future work is outlined in section 5.

2. Related Work

2.1 3D Cave Models

Existing efforts in the construction and visualisation of 3D
cave structures include the use of scanning hardware to
obtain accurate spatial data about actual cave structures
[16]. The scanned spatial data can then be used to
reconstruct a virtual representation of the real cave that
can be visualised on a computer display. However, the 3D
mapping of caves using this physical approach is an
extremely painstaking and time consuming process.
Schuchardt and Bowman [17] investigated whether the
visualisation of complex 3D cave structures using
immersive virtual reality provided a higher level of spatial
understanding of such structures, which cannot be
mentally visualised using traditional means such as 2D
cave maps. The cave model used for their system was
constructed from cave survey and measurement data

obtained from an actual cave, and converting this
information into a 3D cave model.

The procedural creation of synthetic 3D cave models has
previously been investigated by Boggus and Crawfis [13,
14, 18]. Their work focuses on the procedural generation
of solution caves, which are caves formed by rock being
dissolved by acidic water. In their research, they apply
knowledge about the formation of solution caves in order
to create cave models for virtual environments. Their
proposed method involved approximating water transport
to create a coarse level of detail model for a cave passage.
They also demonstrated methods of generating 3D cave
models using cave patterns, and proposed that surface
detail could be added using techniques like bump mapping
and displacement mapping.

Johnson, et al. [19] examined an approach of using a
cellular automata-based algorithm for the real-time
generation of 2D infinite cave maps, for the purposes of
representing cave levels in video games. However, the
generation of 3D caves maps using this approach was left
for future work. Peytavie, et al. [4] presented a framework
for representing complex terrains, which includes caves,
using a volumetric discrete data-structure. In addition,
they proposed a procedural rock generation technique to
automatically generate complex rocky scenes with piles of
rocks. Their aim was to generate and display physically
plausible scenes without the computational demand of
physically-based simulations. Their approach mainly
focused on using their unique data-structure for efficient
interactive sculpting, editing and reconstruction using high
level terrain authoring tools, as opposed to a purely
procedurally driven approach.

2.2 Octrees

Voxels have traditionally been used to store volumetric
data for applications like MRI scans [22]. In general, the
use of voxels consumes huge amounts of memory when
used for truly volumetric 3D data. However, Laine and
Karras [22] have shown that memory usage drops
significantly when used to encode surfaces in sparse voxel
octrees. In their work, they analysed the efficient use of
sparse voxel octrees in conjunction with GPUs for ray
casting.

Octrees, like quadtrees, are hierarchical data structures
based on the decomposition of space [23]. To date, much
research has been done on efficient construction and
traversal of octrees. Octrees have been used for a variety
of purposes including for accelerating rendering, for
collision detection and for operations such as locating

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

162

neighbours. The typical approach to building an octree is
to take a top-down approach, where one starts with a
volume that encompasses the entire scene and recursively
subdivides space into octants until a certain maximum
depth or termination criterion is reached. Some researchers
have also proposed methods for bottom-up octree
construction. However, most methods of building octrees
rely on knowledge of the scene to be known a priori,
before subdivision can take place. This paper presents an
approach to building an octree from procedural data that is
not known a priori, and nodes are created and inserted
from bottom-up as required.

3. Our Approach

3.1 Generating the Cave Structure

The fundamental idea behind this approach to generating
the cave structure is to be able to separate air from stone in
a given 3D spatial area. The 3D area in question will form
the foundation of the cave structure as it will provide the
overall cave shape. For simplicity, basic volumetric 3D
shapes like spheres, ellipses, cuboids, cylinders, cones, etc.
can be used as the cave foundation. These basic shapes
can easily be connected and composited to form entire
cave systems, with passages, crevices, caverns, etc. Voxels
are used to store the 3D spatial data, with each voxel
representing an area of 3D space. Thus, for each voxel
position in the given 3D area, a binary operation needs to
be defined that will return the value of 1 for air and 0 for
stone.

To produce the randomness which is a key feature of cave
structures, a 3D noise function will be used to create the
overall distribution of air and stone. A 3D Perlin noise
function was employed for this work. Note that other 3D
noise functions can also be used which will result in
different distributions and may potentially give rise to
different cave structures. Nonetheless, this was left as a
topic for future work. Perlin noise is a type of gradient
noise that gives a pseudo-random appearance and has the
property of generating a smooth continuous noise
distribution [20]. In addition, a bias function proposed by
Perlin and Heffort [21], was used in conjunction with 3D
Perlin noise to control and facilitate the smooth separation
between air and stone at the walls of the cave. Thus,
different cave structures result from adjusting the bias
parameter, b. The bias was defined as the following power
function [21]:

()
()5.0ln

ln b

t (1)

Figure 1 gives a 2D cross-section depiction of the overall
process described above, note that the actual approach is
in 3D. Figure 1a shows an example of a basic shape (a
sphere in this case) used as the cave foundation, with
black representing stone and white representing air. A
depiction of Perlin noise is given in Figure 1b. Figure 1c
shows the result of applying the bias function (with b =
0.05), to the cave foundation (Figure 1a) in order to
smoothen the separation between stone and air. Finally,
Figure 1d presents the cave structure obtained after the
combination of Perlin noise (Figure 1b) with the biased
cave foundation (Figure 1c). This was done by comparing
the Perlin noise value with the biased cave foundation
value for each voxel. If the Perlin noise value was less
than the biased cave foundation value for a particular
voxel position, that voxel would be assigned to contain
stone, otherwise it would contain air. One can see small
‘floating islands’ in the resulting cave structure in Figure
1d, which will have to be removed. Additionally, there are
also small ‘air pockets’ in the stone which are redundant to
the final cave’s display and should therefore be removed.

(a) (b)

(c) (d)

Fig. 1 2D cross-section depiction of the process used to form the cave
structure. (a) Cave foundation; (b) Perlin noise; (c) Cave foundation after

bias function, with b = 0.05; (d) Cave structure resulting from the
combination of (b) and (c).

3.2 Building the Voxel-based Octree

While it is possible to first generate the cave structure and
store this in a 3D voxel lattice, then utilise this data to
build an octree, this would mean that the voxels would
initially have to be stored in memory. A better approach
would be to bypass storing the 3D voxel lattice and to

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

163

construct the voxel octree by inserting nodes into the
octree on the fly as required. Therefore, a specialised
bottom-up octree construction approach was designed for
this purpose.

A quadtree will be used to describe the approach here as it
will simplify the explanation; nonetheless, extending this
to an octree is trivial. All nodes are assigned a unique
numerical index based on the node’s depth and its child
number. The number of digits in a node’s index is equal to
its depth, and each digit represents the child node’s
number. Since a parent node in a quadtree can have a
maximum of 4 children, the child node’s number ranges
from 0 to 3, whereas for an octree this would be from 0 to
7. Figure 2 (a) to (c) illustrate an example of the node
indices at different depths for a quadtree. From the figure,
it can be seen that the child nodes are number in a ‘Z’
order (i.e. top left = 0, top right = 1, bottom left = 2 and
bottom right = 3).

(a)

(b)

(c)

Fig. 2 Unique node indices for quadtree. (a) Depth of 1; (b) Depth of 2;
(c) Depth of 3.

The tree construction approach is described as a bottom-up
approach as the leaves of the tree data structure are
inserted one after another. As such, the maximum tree
depth has to be defined from the start. Voxels form the
leaves of the tree and encompass areas of either stone or
air. Parent nodes for the child nodes are created whenever

necessary. To check what material a voxel contains, the
procedural cave structure generation method previously
described in section 3.1 is used. If the voxel contains stone
and is not already in the tree, it is created and inserted into
the tree. Once the tree is fully built, all remaining leaf
nodes are created and assigned as voxels containing air.

The node insertion algorithm follows a scan-line fill
algorithm. The scan-line fill algorithm is commonly used
in computer graphics for filling connected pixels in a
polygon with a colour along scan-lines. In this case, the
algorithm is used to insert connected voxels containing
stone material into the tree. After a node is inserted, a test
is performed to check whether the sibling nodes all
contain the same material (i.e. stone). If so, a merge
operation is performed where the parent node is assigned
that material and the child nodes are removed from the
tree. This reduces memory storage requirements. Figure 3
gives an example which illustrates the overall process.

(a)

(b)

(c)

(d)

(e)

Fig. 3 Example of building the quadtree. (a) Actual composition of air
and stone for the cave structure; (b) Insertion along scan-lines; (c)

Example of a merge operation; (d) All connected stone voxels inserted;
(e) Material of remaining leaves assigned as air.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

164

Figure 3a shows the composition of stone and air that
would be obtained from the procedural cave structure
generation algorithm, ‘S’ represents stone and ‘A’
represents air. Figure 3b depicts quadtree state after the
first scan-line and moving to the second scan-line, ‘N’
represents null (i.e. nodes not yet created). In Figure 3c, a
merge operation was just performed and the children for
that node were deleted. Figure 3d shows the state of the
quadtree after insertion of all connected stone voxels. In
Figure 3e, the material for all the remaining leaf nodes are
assigned as air. In comparing Figure 3a with 3e, one can
see that the stones in the middle that are not connected to
the walls of the cave have been removed. This quadtree
example can be seen as a slice or cross-section of an
octree. To build the octree with the cave structure, simply
repeat the process for all the slices. It can be seen that all
unconnected ‘floating islands’ are ignored when building
the tree.

3.3 Determining the Cave Boundary Surfaces

This next stage deals with the removal of small ‘air
pockets’ from the stone (previously highlighted in Figure
1d, and represented in Figure 3e as node 002). At the same
time, the boundary surfaces that separate stone from air
(i.e. the internal walls of the 3D cave) are determined. The
approach adopted is based on the flood-fill algorithm (also
known as seed-fill), traditionally used in computer
graphics to fill connected neighbouring pixels with the
same colour.

The important property of the flood-fill algorithm
exploited in this approach is that it can be used to find
neighbouring voxels in 3D. However, when used in the
context of voxel-based octrees, a complication arises when
neighbouring voxels are of different sizes and at different
depths in the octree. In view of the fact that all nodes were
assigned a unique index based on their depth and child
number (refer to Figure 2), the problem can be overcome
by referring to the neighbouring voxels’ indices. Figure 4
depicts how this was done in a quadtree scenario. Figure
4a shows the initial seed voxel, ‘S’. In Figure 4b,
neighbouring nodes ‘N1’ to ‘N4’, of the same depth are
found. If a neighbouring node has children, the child
nodes that are adjacent to the seed node should be
considered instead. This is depicted in Figure 4c, where
the children of ‘N3’ and ‘N4’ are considered, and the child
nodes adjacent to the seed node are selected. Figure 4d
shows all the connected neighbours that were found.

The initial seed voxel must be a voxel containing air that
is located somewhere inside the cave. The algorithm will
recursively search for neighbouring air voxels until it hits

a stone voxel. That means that on completion of the flood-
fill process, any ‘air pockets’ in the stone will be removed
as only the boundary voxels that separate air from stone
will remain in the octree. Figure 5a illustrates the quadtree
after the flood-fill process. From this, the cave boundary
surfaces can be determined by selecting the smaller of
adjacent stone-air voxels (i.e. nodes with larger depth), as
depicted in Figure 5b. Then the polygonal surfaces of the
cave wall can be computed, as shown in Figure 5c.

(a)

(b)

(c) (d)

Fig. 4 Finding neighbouring voxels at different depths. (a) Initial seed
voxel; (b) Neighbours of the same depth; (c) Child nodes found where

necessary; (d) All connected neighbours.

(a) (b)

(c)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

165

Fig. 5 (a) Boundary voxels; (b) Selecting the smaller of adjacent stone-
air voxels; (c) Polygonal surfaces of the cave walls.

4. Results and Discussion

A number of experiments were conducted to evaluate the
procedural cave generation and voxel-based octree
building method proposed in this research. The proposed
techniques were implemented in an application program
that was written in C# on an Intel dual-core 3.33GHz PC,
and the XNA framework was used for displaying the
resulting 3D cave model.

Table 1: Comparison between the number of voxels, vertices and
triangles for different octree depths.

Octree
Depth

Boundary Voxels Vertices TrianglesStone Air Total
5 250 172 422 674 1296
6 1012 606 1618 2693 5196
7 4235 2284 6519 11135 21376
8 17858 9501 27359 47756 90760
9 73760 43766 117526 207836 388084

Table 1 shows the complexity of a typical octree resulting
from the 3D cave model that was built using the proposed
approach. The cave model was constructed using a
spherical foundation with a bias value of 0.05. The table
gives a comparison between the total number of boundary
voxels in the octree, along with the breakdown of
boundary voxels containing stone and air. Without using
an octree, the total number of voxels that would have to be
stored in memory would equal 2depth×2depth×2depth. It can be
seen that the total number of octree voxels significantly
reduced memory requirements. In addition, the total
number of vertices and triangles that form the surface of
the cave walls are also provided in Table 1.

Experiments were also conducted to compare two
common octree construction approaches with the
specialised approach that was developed in this research.
The first approach that was used to build the octree
followed a top-down sequence. In this approach, voxels in
a node are sampled and if the node encompasses voxels of
more than one type of material (both air and stone), the
node is subdivided into eight child nodes. Then the
scanline-fill process was performed to remove ‘floating
islands’ from the octree. This was followed by the flood-
fill process for ‘air pocket’ removal. The second approach
used was a bottom-up octree construction approach with
each node visited in the traditional Morton order [24]. The
‘floating island’ and ‘air pocket’ removal process was
similar to the first approach described above. The third
approach was the method detailed in section 3. To provide

a basis for comparisons, all three approaches were built
using the same procedural 3D cave model.

For comparison, the three different approaches were
evaluated based on the total number of required material
checks, i.e. whether a given voxel’s material was air or
stone. Table 2 shows the total number of material checks
that were done when building the octrees. Table 3 in turn
shows the total number of material checks performed on
the already constructed octree in order to obtain the
resulting cave boundary voxels. It can be seen that in both
comparisons, the third approach required less material
checks as opposed to the other two approaches. This
means that the specialised approach developed in this
paper successfully reduced the overall computational
requirements.

Table 2: Total number of voxel material checks required in the
construction of the octree.

Octree
Depth Approach 1 Approach 2 Approach 3

5 6211 4096 3992
6 106212 32768 29642
7 414810 262144 225313
8 3329425 2097152 1799992
9 26616879 16777216 14187327

Table 3: Total number of octree node material checks required to obtain
the cave boundary voxels.

Octree
Depth Approach 1 Approach 2 Approach 3

5 7706 7706 3357
6 39154 39154 17109
7 236444 236444 90318
8 1588910 1588910 678910
9 10026594 10026594 4860953

Table 4 and 5 demonstrate how diverse cave models can
be generated by adjusting certain parameters to give rise to
different cave characteristics. These tables show 2D cross-
sections of the cave structure produced by varying the bias
value and the Perlin noise frequency. The cave models
shown in Table 4 were generated using a spherical cave
foundation, whereas the cave models in Table 5 were
created from a cubic foundation. It can be seen that larger
bias values give rise to caves with rough walls, while
smaller bias values result in cave models that closely
follow the cave foundation shape. In addition, Perlin noise
frequencies with smaller values leads to cave models with
smoother surfaces as opposed to when larger values are
used.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

166

Table 4: 2D cave structure cross-sections resulting from a spherical
foundation with different bias values and Perlin noise frequency.
 Perlin noise frequency

64 16 4 1

B
ia

s,
b

0.
5

0.
05

0.
00

5

0.
00

05

Table 5: 2D cave structure cross-sections resulting from a cubic
foundation with different bias values and Perlin noise frequency.
 Perlin noise frequency

64 16 4 1

B
ia

s,
b

0.
5

0.
05

0.
00

5

0.
00

05

(a)

(b)

(c)

Fig. 6 Screenshots of a 3D cave model. (a) Voxels; (b) Wireframe
depiction of the polygonal surfaces; (c) After smoothening.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

167

There are a number of methods for displaying voxel
octrees, including ray casting, splatting and iso-surface
construction. For real-time rendering, the approach used in
this research was to render the polygonal surfaces of the
cave walls. Screenshots showing components of an
example procedurally generated cave model are shown in
Figure 6. In Figure 6a, individual voxels were rendered to
highlight the voxel-based cave model. Figure 6b shows the
triangles that were form from these voxels. From the
wireframe rendering, one can see that some voxels are
larger than others. Figure 6c in turn shows the results of
the 3D cave model after a smoothening function was
applied to the polygons. The cave model was rendered
with directional lighting only, without any texturing.

5. Conclusion and Future Work

The automated generation of synthetic 3D cave
environments is an important but largely unexplored area
of research. This paper presents an approach to
procedurally generating diverse cave structures using 3D
noise functions by adjusting parameters such as the bias
value, overall cave foundation shape and sampling. An
efficient method of storing the resulting 3D spatial cave
data using voxel-based octrees was also presented along
with a specialised bottom-up octree construction approach.
Furthermore, techniques to remove ‘floating islands’ and
‘air pockets’ from the resulting octree were detailed along
with how to determine the boundary surfaces of the cave.

In order to increase the realism of the 3D cave model, real
caves have speleothems such as stalactites and stalagmites.
Future work will investigate the generation of cave
features like stalactites and stalagmites, as well as how to
incorporate these into the resulting cave structure. The use
of different 3D noise functions to create different cave
models will also be examined, along with the parameters
required to control the look and feel of the cave structure.
In addition, the procedural generation of realistic cave
textures is also an important topic for future work.

References
[1] Smelik, R.M., Tutenel, T., de Kraker, K.J. and Bidarra, R.,

“A Declarative Approach to Procedural Modeling of Virtual
Worlds,” Computer and Graphics, Vol. 35, pp. 352-363,
2011.

[2] Fletcher, D, Yue, Y. and Al Kadar, M., “ Challenges
and Perspectives of Procedural Modelling and
Effects,” in Proceedings of the 14th International
Conference on Information Visualisation, pp. 543- 550,
2010.

[3] Zhou, H., Sun, J., Turk, G. and Rehg, J.M., “Terrain
Synthesis from Digital Elevation Models,” IEEE
Transactions on Visualization and Computer Graphics, Vol.
13, No. 4, pp. 834-848, 2007.

[4] Peytavie, A., Galin, E., Grosjean, J. and Merillou, S.,
“Arches: a Framework for Modeling Complex Terrains,”
Computer Graphics Forum, Proceedings of
EUROGRAPHICS, Vol. 28, No. 2, pp. 457-467, 2009.

[5] Lluch, J., Camahort, E. and Vivó, R., “ Procedural
Multiresolution for Plant and Tree Rendering,” in
Proceedings of the 2nd International Conference on
Computer Graphics, Virtual Reality, Visualisation
and Interaction in Africa (AFRIGRAPH ‘ 03), pp.
31-37, 2003.

[6] Müller, P., Wonka, P., Haegler, S., Ulmer, A. and Van Gool,
L., “Procedural Modeling of Buildings,” ACM Transactions
on Graphics (TOG), Vol. 25, No. 3, pp. 614-623, 2006.

[7] Parish, Y.I.H. and Müller, P., “Procedural Modeling of
Cities,” in Proceedings of the 28th Annual Conference on
Computer Graphics and Interactive Techniques
(SIGGRAPH ’01), pp. 301-308, 2001.

[8] Sun, J., Yu, X., Baciu, G. and Green, M., “Template-based
Generation of Road Networks for Virtual City Modeling,”
in Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (VRST ’02), pp. 33-40, 2002.

[9] Fuller, A.R., Krishnan, H., Mahrous, K., Hamann, B. and
Joy, K.I., “Real-time Procedural Volumetric Fire,” in
Proceedings of the 2007 Symposium on Interactive 3D
Graphics and Games (I3D ’07), pp. 175-180, 2007.

[10] Hinsinger, D., Neyret, F. and Cani, M.P., “Interactive
Animation of Ocean Waves,” in Proceedings of the 2002
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (SCA ’02), pp. 161-166, 2002.

[11] Shi, L. and Yu, Y., “Controllable Smoke Animation with
Guiding Objects,” ACM Transactions on Graphics (TOG),
Vol. 24, Issue 1, pp. 140-164, 2005.

[12] Flores, L. and Horsley, D., “Underground Cave Sequence
for Land of the Lost,” in Proceedings of SIGGRAPH: Talks,
2009.

[13] Boggus, M. and Crawfis, R., “Procedural Creation of 3D
Solution Cave Models,” in Proceedings of the 20th IASTED
International Conference on Modelling and Simulation, pp.
180-186, 2009.

[14] Boggus, M. and Crawfis, R., “Explicit Generation of 3D
Models of Solution Caves for Virtual Environments,” in
Proceedings of the 2009 International Conference on
Computer Graphics and Virtual Reality, pp. 85-90, 2009.

[15] Št’ava, O., Beneš, B., Brisbin, M. and Køivánek, J.,
“Interactive Terrain Modeling using Hydraulic Erosion,” in
Proceedings of the 2008 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (SCA ’08), pp. 201-
210, 2008.

[16] am Ende, B.A., “3D Mapping of Underwater Caves,” IEEE
Computer Graphics Applications, Vol. 21, No. 2, pp. 14-20,
2001.

[17] Schuchardt, P. and Bowman, D.A., “The Benefits of
Immersion for Spatial Understanding of Complex

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

168

Underground Cave Systems,” in Proceedings of the 2007
ACM Symposium on Virtual Reality Software and
Technology (VRST ’07), pp. 121-124, 2007.

[18] Boggus, M. and Crawfis, R., “Prismfields: A Framework for
Interactive Modeling of Three Dimensional Caves,” in
Proceedings of the 6th International Conference on
Advances in Visual Computing (ISVC ‘10), Volume Part II,
pp. 213-221, 2010.

[19] Johnson, L., Yannakakis, G.N. and Togelius, J., “Cellular
Automata for Real-time Generation of Infinite Cave
Levels,” in Proceedings of the 2010 Workshop on
Procedural Content Generation in Games (PCGames ’10),
pp. 1-4, 2010.

[20] Ebert, D.S., Musgrave, F.K., Peachey, D., Perlin, K. and
Worley, S., Texturing and Modeling: A Procedural
Approach, 3rd Edition, Morgan Kaufmann, 2003.

[21] Perlin, K. and Heffort, E.M., “Hypertexture,” Computer
Graphics, Proceedings of SIGGRAPH ’89, Vol. 23, No. 3,
1989.

[22] Laine, S. and Karras, T., “Efficient Sparse Voxels Octrees,”
in Proceedings of the 2010 ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, pp. 55-63, 2010.

[23] Wilhelms, J. and Van Gelder, A., “Octrees for Faster
Isosurface Generation,” ACM Transactions on Graphics,
Vol. 11, No. 3, pp. 201-227, 1992.

[24] Morton, G.M., “A Computer Oriented Geodetic Data Base
and a New Technique in File Sequencing,” IBM Ltd.
Technical Report, Ottawa, Canada, 1966.

Juncheng Cui received the B.S.
degrees in Software Engineering from
Tongji University, China, in 2007. He
is currently working toward to the M.S.
degree under the supervision of Dr.
Yang-Wai Chow and A/Prof. Minjie
Zhang. His research interests include
computer graphics, procedural content
generation and artificial intelligence.

Yang-Wai Chow received his BSc.,
B.Eng. (Hons.) and Ph.D. from Monash
University, Australia, in 2003 and 2007.
He is currently a Lecturer in the School
of Computer Science and Software
Engineering, at the University of
Wollongong, Australia. His research
interests include computer graphics,
virtual reality, interactive real-time
interfaces, human visual perception and
human computer interaction.

Minjie Zhang is an Associate
Professor in the School of Computer
Science and Software Engineering and
the Director of Intelligent System
Research Group in the Faculty of
Informatics, at University of
Wollongong, Australia. She received
her BSc. degree from Fudan University,
China in 1982 and the PhD degree in

Computer Science from the University of New England,
Australia in 1996. Her research interests include distributed
artificial intelligence, multi-agent systems, agent-based
simulation and modeling in complex domains, grid computing,
and knowledge discovery and data mining.

