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Summary 
This paper is devoted to the presentation of a novel hybrid 
method by combining gravitational search algorithm (GSA) with 
simulated annealing (SA) method. In GSA, the representation of 
the problem on hand is based on the random-key encoding 
scheme. While GSA is employed as a global search algorithm, a 
multi-type local improvement scheme is incorporated into it, 
performing as a local search operator. Furthermore, SA is 
utilized to manipulate the iteration progress algorithmically. The 
resultant proposed hybrid random-key gravitational search 
algorithm (Hr-GSA) is tested on the famous traveling salesman 
problem. The experimental results show that Hr-GSA is more 
robust and efficient than other seven traditional population based 
algorithms, such as genetic algorithm, particle swarm 
optimization, artificial immune system, and so on. 
Key words: 
Gravitational search, simulated annealing, local improvement, 
population-based algorithm, hybridization.  

1. Introduction 

Population-based optimization algorithms are the 
techniques which are in the set of the nature based 
optimization algorithms. The creatures and natural systems 
which are working and developing in nature are one of the 
interesting and valuable sources of inspiration for 
designing and inventing new systems and algorithms in 
different fields of science and technology. Evolutionary 
Computation [1], Neural Networks [2], Time Adaptive 
Self-Organizing Maps [3], Ant Systems [4], Particle 
Swarm Optimization [5], Simulated Annealing [6], Bee 
Colony Optimization [7] and DNA Computing [8] are 
among the problem solving techniques inspired from 
observing nature. These algorithms have been used to 
solve different optimization problems, and have received 
promising results. Moreover, some algorithms give a 
better solution for some particular problems than others. 
Nevertheless, there is no specific algorithm to achieve the 
best solution for all optimization problems. As a result, 
searching for new heuristic optimization algorithms is still 
a challenging problem [9]. 
 
Among these heuristic optimization problems, 
Gravitational search algorithm (GSA) [10] is a global 
search algorithm appropriate for problems with huge 

search spaces. It is a novel population-based optimization 
approach based on the law of gravity. In GSA, the 
individuals are a collection of masses which interact with 
each other based on the Newtonian gravity and the laws of 
motion. A population of candidate solutions is modeled as 
a swarm of objects. At each iteration time, the objects 
update their position (and solution) by moving 
stochastically towards regions previously visited by the 
other objects. The object with heavier mass has a larger 
effective attraction radius and hence a greater intensity of 
attraction. By lapse of time, the objects tend to move 
towards the heaviest object. The simplicity, robustness, 
and adaptability of GSA, enable it to have applications in 
a wide-range of function optimization problems; and it has 
been shown that the global search ability of GSA is 
superior to that of other famous algorithms (such as the 
particle swarm optimization (PSO) [5]) in most cases.  
 
The original developed GSA is designed to search solution 
in a continuous space. For the purpose of applying it to the 
traveling salesman problem (TSP), which actually is 
within a discrete state space, a random-key encoding 
technique is used. Furthermore, because GSA’s local 
search ability is weaker than global searching ability, in 
order to get better solution, some local search schemes 
should be integrated with the GSA. In this paper, we 
embedded a multi-type local improvement scheme based 
on the simulated annealing technique into GSA. The 
resultant algorithm (Hr-GSA) enhances the object’s 
searching ability and is suitable to solve the TSP. The 
experimental results show that the proposed algorithm Hr-
GSA with multi-type local improvement scheme 
outperforms the original GSA and is more efficient than 
those of existing meta-heuristics methods such as neural 
networks, particle swarm optimization, genetic algorithm, 
and artificial immune system for TSP, respectively.  
 
The remainder of this paper is organized as follows: a 
brief introduction of the GSA is given in the following 
section. Section 3 gives a general description of the 
traveling salesman problems involving its mathematics 
representation. Section 4 provides the details of the 
proposed Hr-GSA and apply it on the TSP. Section 5 
discusses the experimental results. Finally, some remarks 
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and conclusions are summarized. 

2. Gravitational search algorithm 

Gravitational search algorithm (GSA) is a recently 
proposed method used on optimization problem [10, 11]. 
It has been compared with some well-known heuristic 
optimization methods exiting, and the obtained results 
showed the high performance of the method. The GSA is 
constructed on the law of Newtonian Gravity: “Every 
particle in the universe attracts every other particle with a 
force that is directly proportional to the product of their 
masses and inversely proportional to the square of the 
distance between them”. In the algorithm, all the 
individuals can be viewed as objects with masses. The 
objects attract each other by the gravity force, and the 
force makes all of them move towards the ones with 
heavier masses. The objects transform information by the 
gravitational force, and the objects with heavier masses 
become heavier. Until now, GSA has received more and 
more attentions and has been applied to multiple-objective 
optimization problem [12], data clustering [13], static var 
compensator allocation [14], parameters identification of 
hydraulic governing system [15], and so on. 
 
Each agent in GSA has four specifications: position, 
inertial mass, active gravitational mass, and passive 
gravitational mass. The position of agent corresponds to a 
solution of the optimization problem at hand. Moving the 
position of agent can result in an improvement of the 
solution’s quality. From a view of optimization context, 
GSA approach can be regarded as a population-based 
algorithm that performs a parallel search on the space of 
solutions. Several solutions of a given problem constitute 
a population (the swarm). Each solution is seen as an 
object. All objects attract each other by a gravity force, 
and this force causes a movement of all objects globally 
towards the objects with heavier masses. The heavy 
masses correspond to good solutions of the problem. 
These objects search the problem’s solution space by 
balancing the intensification and the diversification efforts. 
By lapse of time, the objects will be attracted by the 
heaviest object, which presents an optimum solution in the 
search space. The process iterates until a stopping 
condition is fulfilled. Different from other population-
based algorithms, especially the famous PSO algorithm, 
several characteristics of GSA can be remarked: (1) GSA 
is a memory-less algorithm, indicating that only a smaller 
memory capability of hardware is required during 
implementation. (2) The movement direction of an agent is 
calculated based on the overall force obtained from its 
surrounding agents. (3) In GSA, the force is proportional 
to the fitness value but reversely proportional to the 
distance between solutions, in such a way heavy masses 

have large effective attraction radius and great intensities 
of attraction, thus inferring that the agents always tend to 
move towards the best agent. 
 
The GSA algorithm can be described as follows:  
First assuming there are N objects and each of them has m 
dimensions, we define the i-th object by: 
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According Newton gravitation theory, the force acting on 
the i-th mass from the j-th mass is defined as: 
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where iM and jM are masses of agents, G(t) is the 

gravitational constant at time t. iM  is calculated through 
comparison of fitness: 
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Here, best(t) and worst(t) are the best and worst fitness of 
all agents, respectively. For the i-th agent, the randomly 
weighted sum of the forces exerted from other agents: 
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Based on the law of motion, the acceleration of the i-th 
agent is calculated by: 
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Then, the searching strategy on this concept can be 
described by following equations. 
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where d
ix represents the position of the i-th agent in d-th 

dimension, d
iv is the velocity, d

ia is the acceleration. 
It is worth pointing out that the gravitational constant G(t) 
is important in determining the performance of GSA, it is 
defined as a function of time t: 

)
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exp()( 0
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where 
0G is the initial value, β is a constant, t is the 

current iteration number, and tmax is the maximum 
number of iterations. 

3. Traveling Salesman Problem 

The Travelling Salesman Problem (TSP) is a 
representative of a large class of problems known as 
combinatorial optimization problems. In the ordinary form 
of the TSP, a map of cities is given to the salesman and he 
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has to visit all the cities only once to complete a tour such 
that the length of the tour is the shortest among all 
possible tours for this map. The data consist of weights 
assigned to the edges of a finite complete graph, and the 
objective is to find a Hamiltonian cycle, a cycle passing 
through all the vertices, of the graph while having the 
minimum total weight. In the TSP context, Hamiltonian 
cycles are commonly called tours.  
 
In general, the TSP includes two different kinds, the 
symmetric TSP and the asymmetric TSP. In the symmetric 
form known as STSP there is only one way between two 
adjacent cities, i.e., the distance between cities A and B is 
equal to the distance between cities B and A. But in the 
ATSP (asymmetric TSP) there is not such symmetry and it 
is possible to have two different costs or distances 
between two cities. Hence, the number of tours in the 
ATSP and STSP on n vertices (cities) is (n-1)! and (n-1)!/2, 
respectively. Please note that the graphs which represent 
these TSPs are complete graphs. In this paper we mostly 
consider the STSP. It is known that the TSP is an NP-hard 
problem [16] and is often used for testing the optimization 
algorithms. Finding Hamiltonian cycles or traveling 
salesman tours is possible using a simple dynamic 
program using time and space )2( )1(On nO , that finds 
Hamiltonian paths with specified endpoints for each 
induced subgraph of the input graph [17]. The TSP has 
many applications in different engineering and 
optimization problems. The TSP is a useful problem in 
routing problems e.g. in a transportation system. 
 
There are different approaches for solving the TSP. 
Solving the TSP was an interesting problem during recent 
decades. Almost every new approach for solving 
engineering and optimization problems has been tested on 
the TSP as a general test bench. First steps in solving the 
TSP were classical methods. These methods consist of 
heuristic and exact methods. Heuristic methods like 
cutting planes and branch and bound [18], can only 
optimally solve small problems whereas the heuristic 
methods, such as 2-opt [19], 3-opt, Markov chain [20], 
simulated annealing [6] and tabu search [21] are good for 
large problems. Besides, some algorithms based on greedy 
principles such as nearest neighborhood, and spanning tree 
can be introduced as efficient solving methods. 
Nevertheless, classical methods for solving the TSP 
usually result in exponential computational complexities. 
Hence, new methods are required to overcome this 
shortcoming, population based optimization algorithms 
just meet this need. 
 
The followings give a mathematical description for TSP. 
Let ),( nnn EVK = be the complete undirected graph with 

nVn = nodes and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

2

n
Em n

edges. An edge e 

with endpoints i and j is also denoted by ij, or by (i,j). We 
denote by nEℜ the space of real vectors whose 
components are indexed by the elements of nE . The 

component of any vector nz Eℜ∈ indexed by the edge 
ije =  is denoted by ez , ijz or z(i,j). Given an 

objective function nc Eℜ∈ , that associated a length 

ec with every edge e of nK , the symmetric traveling 
salesman problem consists of finding a Hamiltonian cycle 
(a cycle visiting every node exactly once) such that its c-
length (the sum of the lengths of its edges) is as small 
(large) as possible. Without loss of generality, we only 
consider the minimization version of the problem. From 
now on we use the abbreviation TSP only for the 
symmetric traveling salesman problem, i.e. STSP. Of 
special interest are the Euclidean instances of the traveling 
salesman problem. In these instances the nodes defining 
the problem correspond to points in the 2-dimensional 
plane and the distance between two nodes is the Euclidean 
distance between their corresponding points. More 
generally, instances that satisfy the triangle inequality, i.e., 

ikjkij ccc ≥+ for all three distinct i ,j and k, are of 
particular interest. In this paper, when applying GSA on 
TSP, we only consider Euclidean instances. 

4. Hr-GSA for TSP 

Before actually introducing the hybrid random-key 
encoding gravitational search algorithm (Hr-GSA), some 
issues are in applying GSA to solve TSP. The original 
GSA design is developed to solve continuous function. 
However, TSP is a combinatorial problem, the solution 
space is discrete.  
 
(1) The first issue is to find a suitable representation 

which the particles of GSA can simulate an operation 
permutation schedule of TSP. In this paper, based on 
an operation permutation, the continuous GSA 
combined with a random-key (RK) encoding scheme 
is used to solve the first issue. The detailed 
description will be discussed in Section 4.1.  

(2) The second issue is how to enhance GSA’s local 
search ability by applying GSA to solve the 
combinatorial problems. No matter applying 
continuous GSA [10] or binary GSA [11] or discrete 
GSA to the combinatorial problem, embedding the 
local search ability in GSA algorithm is an effective 
way to get a better solution. A multi-type local 
improvement scheme based on simulated annealing 
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algorithm (SA) is applied to enhance the local search 
ability of GSA. The detailed description is stated in 
Section 4.3. The complete algorithm named Hr-GSA 
is shown in Section 4.5, which consists of random-
key (RK) encoding scheme, multi-type local 
improvement scheme based on SA and gravitational 
search algorithm. 
 

4.1 Representation of a position for TSP 

The search space is created in a N1 × dimensions space 
for N cities TSP problem. The position of a mass in GSA 
is represented by the N1 ×  vector V (where N denotes the 
number of cities), such that k=iV  if city k is in position 
i in the tour. Then, a solution 

),...,,...,(V 1 Nk vvv=  represents that the first city 
to be visited is the value of 

1v and the k-th city to be 
visited is the value of 

kv . The last city to be visited before 
going back to the city 1v  is the city Nv .  
 

4.2 Random-key encoding scheme 

The random-key encoding scheme can be used to 
transform a position in a continuous space to a discrete 
space. A vector in the random-key space consists of real 
numbers. According to random-key scheme, one mass 
represented by real numbers can simulate an operation 
permutation that consists of discrete numbers. 
 
In the random key method, we assign each position of a 
mass a random number drawn uniformly from [0, 1). To 
decode the position from the random-key space into the 
real solution space, we visit the nodes in ascending order 
of their value of each dimension. An example can be 
illustrated as shown in Fig. 1. 
 

 
Fig. 1: An example of the random-key encoding scheme. 
 
Nodes that should be early in the tour tend to evolve the 
value of dimension closer to 0 and those that should come 
later tend to evolve genes closer to 1. By doing so, the 
position of an object in GSA, 

),...,,...,( 1 m
i

d
iii xxxX =  can be transformed to a 

valid solution in TSP search space, i.e. 

),...,,...,(V 1 Nk vvv= . 
 

4.3 Multi-type local improvement scheme 

Since the GSA is a global search algorithm, its local 
search ability is weak. For the purpose of enhancing the 
exploitation capability of GSA and get a better solution, in 
this paper, we developed a new multi-type local 
improvement scheme for TSP. The multi-type local 
improvement scheme is composed of swapping operation, 
insertion operation, inversion operation and long-distance 
movement operation which can be used to search an 
individual’s neighborhood to get a better solution.  
 
The following illustrates the details of the multi-type local 
improvement scheme. Swapping operation scheme is to 
swap two weighting numbers that indirectly represent two 
operations in the p-th and q-th dimension ( qp ≠ ) of an 
individual in the random-key virtual space. Insertion 
operation is to remove the one in the p-th dimension and 
insert it into the q-th dimension ( qp ≠ ) of an individual. 
In general, it is enough to get a better solution for most 
problems by using these two types of enhancement 
scheme. By the experimental experience, it needs a 
scheme to jump away from the local optimal for some 
hard problems which have higher dimensions. So, we 
incorporated another two types of enhancement scheme to 
the proposed algorithm. The inversion operation scheme is 
to pick two dimensions p and q ( qp ≠ ) first and invert 
the weighting numbers between them. The last 
enhancement scheme is the long distance movement 
operation. At the beginning, pick two dimensions p and q 
( qp ≠ ) of an individual, remove all weighting numbers 
between them and insert these removed weighting 
numbers to the place where it begins at the r-th dimension. 
 
The progress of multi-type local improvement scheme is 
to select an operation scheme from multi-type local 
improvement scheme, to operate on an object (mass), and 
to compare the fitness obtained before the selected scheme 
and that obtained after the selected scheme. If the latter is 
better than the former, update the real vector of the 
individual by the selected operation scheme. If not, the 
new real vector can be accepted and updated according to 
a threshold that is generated by the simulated annealing 
algorithm (SA). If a random probability is less than a 
threshold, the new real vector can be accepted and 
updated; otherwise, drop the new real vector and keep the 
previous real vector as a next position to carry out the 
local search operation. After finishing one scheme, 
continue to select another scheme to operate on the 
individual until it meets the stop criterion. 
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Figs. 2-5 give an example of the usage of the multi-type 
local improvement scheme in order to explain this scheme 
more clearly. In Fig. 2, the individual (0.71, 0.56, 0.08, 
0.13, 0.92, 0.45) is obtained by swapping two items 
located at the second dimension and the fourth dimension 
from the individual (0.71, 0.13, 0.08, 0.56, 0.92, 0.45). 
According to the RK encoding scheme, the individual can 
be transformed into a permutation solution in TSP. If the 
fitness of the latter solution is better than that of the 
former solution, the position of the mass is updated from 
(5, 2, 1, 4, 6, 3) to (5, 4, 1, 2, 6, 3). 
 

 
Fig. 2: Swapping operator scheme, p=2, q=4. 
 

 
Fig. 3: Insertion operator scheme, p=2, q=5. 
 

 
Fig.4: Inversion operator scheme, p=2, q=5. 

 
Fig. 5: Long-distance movement operator scheme, p=5, 
q=6, r=1. 
 
Fig. 2 illustrates the insertion operator scheme by inserting 
the fifth dimension into the second dimension, that is, the 
individual (0.71, 0.13, 0.08, 0.56, 0.92, 0.45) will be 
varied to (0.71, 0.92, 0.13, 0.08, 0.56, 0.45). As a result, 
the fitness comparison is implemented, determining 
whether the update process carries out. Similar 
descriptions can be made on Figs. 3-5. In general, the four 
operators involving the swapping operator, insertion 
operator, inversion operator, and long-distance movement 
operator work together to act as the local improvement 
scheme.  
 
Algorithm 1 depicts a partial algorithm concerning four 
type operations. Probs means the probability of executing 
the swapping scheme; Probi means the probability of 
executing the insertion scheme; Probinv means the 
probability of executing the inversion scheme; Problong 
means the probability of executing the long distance 
movement scheme, respectively.  
 
Algorithm 1: the operation of multi-type local 
improvement scheme. 
Input: p, the individual to be enhanced
Output: p’, one individual after executing multi-type Local 
improvement
1: q= rand()
2: If (0<q<Probs) then execute swapping scheme for
individual p
3: Else if (Probs<q<Probs+Probi) then execute inserting
scheme for individual p
4: Else if (Probs+Probi<q<Probs+Probi+Probinv) then
execute inversion scheme for individual p
5: Finally, (q will match with Problong)

Else execute long distance movement scheme for
individual p
6: End if

 
 
For instance, suppose that Probs=0.4, Probi=0.4, 
Probinv=0.1 and Problong=0.1, if rand()=0.33, the individual 
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p will be enhanced by swapping scheme; if rand()=0.66, 
the individual p will be enhanced by inserting scheme; if 
rand()=0.88, the individual p will be enhanced by 
inversion scheme; if rand()=0.98, the individual p will be 
enhanced by long distance movement scheme. 
 

4.4 Simulated annealing algorithm 

When the number of feasible pedigrees is too large for 
exhaustive enumeration, an alternative is the use of 
simulated annealing, an optimization tool which has 
proven effective in a large variety of combinatorial 
optimization problems [6]. 
 
Suppose we wish to maximize a function f on a state space 
X. We construct a Monte Carlo Markov chain (MCMC) on 
X as follows. For each Xx ∈  there is a neighborhood of 
states, assumed to be a constant size N. A transition from 
state xi to xi+1 is defined by first selecting at random a 
proposal state xi+1’ from the neighborhood of xi. Then xi+1’ 
is accepted as the subsequent state with probability 
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where the constant c is referred to as the temperature and, 
in a simulated annealing algorithm, is allowed to decrease 
to zero. If the proposal state is accepted we set xi+1= xi+1’; 
otherwise xi+1= xi. This acceptance rule is known as the 
Metropolis criterion. 
 
Algorithm 2: Multi-type local improvement scheme 
manipulated by simulated annealing algorithm. 

 

Algorithm 3: The implementation progress of Hr-GSA. 

 
 
By SA algorithm, we can decide whether to accept an 
individual (object) that is enhanced by Algorithm 1 but its 
fitness is not better than the individual not being enhanced 
by Algorithm 1 or not. For an enhanced individual that did 
not make improvement for fitness, if one random 

probability is smaller than 
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individual’s position can be accepted as a new position of 
the individual; otherwise, we drop the position and keep 
the previous position for the individual. A complete multi-
type local improvement scheme based on simulated 
annealing algorithm (SA) is shown in Algorithm 2. 
 

4.5 The Hr-GSA algorithm 

Based on the above schemes, in this paper, we integrate 
the random-key encoding scheme, multi-type local 
improvement scheme into gravitational search algorithm, 
named it as Hr-GSA. In order to test the effectiveness of 
Hr-GSA, the famous traveling salesman problems are 
utilized as benchmark instances. In Hr-GSA, a position of 
a mass in GSA is represented by a real vector as shown in 
Fig. 1. Every mass moves its position in the random-key 
virtual space by Eq. 6 and Eq.7, and the objective function 
of one position corresponding to the solution space of TSP 
can be evaluated by the transformation from random-key 
space to a solution space of TSP. For increasing the local 
search capability of GSA, multi-type local improvement 
scheme is used as an effective way to search the local 
neighborhood of one position in the solution space of TSP. 
The random-key encoding scheme provides a search space 
for the continuous gravitational search algorithm (GSA) 
and an easy way to encode the representation of GSA. 
According to the random-key encoding scheme, we 
enhance the position by multi-type local improvement 
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scheme that is corresponding to make a local search for 
the mass. One mass is selected with a probability Probtotal 
as an individual to be enhanced in the multi-type local 
improvement algorithm. After multi-type local 
improvement algorithm, the selected particles can be in a 
better position than the previous one. Then, each mass of 
the population moves to a new position according to Eq. 6 
and Eq. 7. The process of multi-type local improvement 
scheme and GSA is executed until it gets the optimal 
solution or the maximum iteration number is reached. The 
total implementation progress of Hr-GSA can be referred 
to as in Algorithm 3. 

5. Simulation Results 

In order to verify the performance of the proposed Hr-
GSA, we use five benchmark instances taken from the 
TSPLIB [22] to be the test suit. Seven typical bio-inspired 
population-based algorithms are used to make a 
comparison involving the genetic algorithm (GA), ant 
colony optimization (ACO), particle swarm optimization 
(PSO), artificial immune system (AIS), intelligent water 
drops algorithm (IWDA), bee colony optimization 
algorithm (BCO) and finally electromagnetism-like 
mechanism (EM). 
 
First, we summarize the descriptions of the above seven 
algorithms one by one except the proposed Hr-GSA. GA 
was introduced by Holland in the 1970s [23]. These 
algorithms are adaptive search techniques based on the 
mechanisms of natural selection and the survival of the 
fittest concept of biological evolution. By simulating 
biological evolution, GAs can solve searching problem 
domains effectively and easily apply to many of the 
current engineering problems. GAs have been widely used 
in many applications of TSP and its extensions throughout 
the literature.  
 
Ant Colony Optimization (ACO), first proposed by M. 
Dorigo et al. [24][25], is a population-based, general-
purpose heuristic approach to combinational optimization 
problems. The earliest ACO algorithm, Ant System (AS), 
was applied to the TSP (mainly because the TSP is “a 
shortest path problem to which the ant colony metaphor is 
easily adapted and that it is a didactic problem”. After that, 
most improved ACO algorithms also used the TSP as a 
test problem and the result is promising.  
 
The particle swarm optimization (PSO) was originally 
presented by Kennedy and Eberhart in 1995 [5]. It is an 
algorithm based stochastic optimization technique which 
inspired by social behavior among individuals. In the PSO 
system, individuals (we call them particles) move around a 
multidimensional search space. Each particle represents a 

potential solution of the problem, and can remember the 
best position (so1ution) it has reached. All the particles 
can share their information about the search space, so 
there is a global best solution.  
 
Like the natural immune systems the AIS is a set of 
techniques, which try to algorithmically mimic natural 
immune systems’ behavior [26]. The immune system is 
susceptible to all of the invaders, also the outer influences, 
like vaccines which are artificial ways of raising 
individual's immunity. The first work in investigating 
potential application of the immune system in solving 
numerical optimization problems was the study by Bersini 
and Varela [27]. After that, many studies have been 
performed that focus on the AIS, also its application on 
TSP.  
 
Based on the observation on the behavior of water drops, 
an artificial water drop algorithm (IWDA) [28] possesses 
some of the remarkable properties of the natural water 
drop. This Intelligent Water Drop, IWD for short, has two 
important properties: one is the amount of the soil it 
carries now, soil and the other is the velocity that it is 
moving now, velocity, flows in its environment. This 
environment depends on the problem at hand. In an 
environment, there are usually lots of paths from a given 
source to a desired destination, which the position of the 
destination may be known or unknown. If we know the 
position of the destination, the goal is to find the best 
(often the shortest) path from the source to the destination. 
In some cases, in which the destination is unknown, the 
goal is to find the optimum destination in terms of cost or 
any suitable measure for the problem.  
 
The bee colony optimization algorithm (BCO) [29] 
according to nature is as follows. At first, each bee 
belonging to a colony looks for the feed individually. 
When a bee finds the feed, it informs other bees by 
dancing. Other bees collect and carry the feed to the hive. 
After relinquishing the feed to the hive, the bee can take 
three different actions. With a certain probability that is 
dependent on the obtained feed quality, its distance from 
the hive and the number of the bees which are now 
engaged with this feed resource, a bee selects one of the 
stated actions and follows its work in a similar repetitive 
form.  
 
The Electromagnetism-like mechanism (EM) is a heuristic 
that was introduced by Birbil and Fang [30]. The method 
utilizes an attraction-repulsion mechanism to move the 
sample points towards the optimality. In other words, EM 
simulates the attraction-repulsion mechanism of 
electromagnetism theory which is based on Coulomb’s 
law. The main concentration of the first introduction of 
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this heuristic was on the problems with bounded variables. 
One of the most attractive approaches for solving TSP 
using EM is cited in [31]. 
 
Second, the performances of the selected eight algorithms 
were put together to make a comparison. Table 1 
summarized the simulation results on the five TSP 
benchmark instances taken from TSPLIB. All these 
instances belong to the Euclidean distance type. In Table 1, 
Opt. denotes the known-so-far optimal solution quality, 
and the other results recorded were the ratio of the 
solutions found by each algorithm to the optimal solution 
over 30 runs. In TSP which is a minimum optimization 
problem, it was clear that the smaller the values, the better 
quality of the solution. Furthermore, in the seventh column 
of Table 1, the recorded values represented the average 
quality of each algorithm over the five instances. Besides, 
Fig. 6 depicted the comparison illustration of the 
simulation results in Table 1.  
 
From Table 1 and Fig. 6, we can easily find that the 
proposed algorithm Hr-GSA performed better than other 
seven traditional population-based algorithms on all the 
tested benchmark instances, which also gave implications 
that Hr-GSA has potential applications on other 
combinatorial optimization problems. For a more clearly 
description, we also gave two final solutions of TSP found 
by Hr-GSA in Fig. 7, where the left side of the figure is 
for eil56, and the right one is for pr124, both of them 
showing well performances. 

6. Conclusion 

In this paper, we proposed a hybrid gravitational search 
algorithm (Hr-GSA) by incorporating the random-key 
encoding scheme, the multi-type local improvement 
scheme, and the simulated   annealing   algorithm.  The  
 
 
Table 1: Simulation results of the eight algorithms on five 
TSP benchmark instances. 
  eil51 st70 rd100 pr124 rat195 average
Opt. 426 675 7910 59030 2323 

GA 2.58% 2.35% 5.27% 2.74% 6.68% 3.92%

ACO 1.08% 1.98% 3.14% 1.23% 2.59% 2.00%

PSO 1.12% 2.32% 2.65% 1.98% 3.45% 2.30%

AIS 1.22% 1.79% 2.03% 1.45% 2.77% 1.85%

IWDA 4.08% 5.20% 4.97% 6.12% 5.34% 5.14%

BCO 2.19% 3.01% 2.44% 2.78% 3.43% 2.77%

EM 2.67% 3.05% 2.78% 3.45% 5.45% 3.48%

Hr-GSA 0.54% 0.34% 1.12% 1.05% 2.56% 1.12%

 
Fig. 6: The illustration of the simulation results. 
 

  
Fig. 7: Two typical optimal solutions found by Hr-GSA 
for TSP, the left side of the figure is for eil56, while the 
right one is for pr124. 
 
random-key encoding scheme was utilized to transform 
the continuous search space in the original GSA into a 
discrete solution space, especially for discrete engineering 
problems. As the GSA is typically a population-based 
global search algorithm, the multi-type local improvement 
scheme was employed to enhance the exploitation 
capability for GSA. Furthermore, the simulated annealing 
algorithm was carried out to manipulate the search 
strategy of exploitation and exploration.  
 
The resultant hybrid algorithm Hr-GSA was tested on 
several TSP benchmark instances and compared with 
other seven traditional population-based algorithms, such 
as the genetic algorithm, the particle swarm optimization. 
The simulation results indicated that the proposed Hr-GSA 
performed competitive solutions than the other algorithms, 
thus implying that it not only can be used to solve TSP, 
but also other discrete combinatorial optimization problem, 
for instance, the job shop scheduling problem. 
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