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Summary 
We propose a novel adaptation of the Ant Colony Optimization 
(ACO) Technique for the resolution of analog sizing 
optimization problems. The paper details the proposed algorithm 
and highlights its performances using some mathematical test 
functions. This novel adaptation of the ACO technique is used 
for the optimal design of analog circuits, namely, a differential 
pair current conveyor and an inverted second generation current 
conveyor. SPICE simulation results are given to show the 
viability of the proposed algorithm. 
Keywords: 
Metaheuristic, ACO, Test functions, CMOS, Current conveyors. 

1. Introduction 

Over the past decade, significant progress has been 
realized with the appearance of the new generation of 
powerful and approximate optimization methods, known 
as metaheuristics [1]. Such methods are used to solve real-
world problems by giving approximate solutions within a 
reasonable amount of time [2]. Some (meta-)heuristics are 
also proposed in the literature and are used by the 
designers to optimize the sizing of the analog components 
automatically, such as Tabu Search (TS) [3,4], Genetic 
Algorithms (GA) [5], local search (LS) [6], etc… 
Recently, a new set of nature inspired heuristic 
optimization techniques were proposed. These techniques 
are inventive, resourceful, efficient and easy to use. They 
are known as SI: ‘Swarm Intelligence Techniques’[7,8]. 
The SI techniques focus on animal conduct in order to 
develop some meta-heuristics which can mimic their 
problem resolution abilities, namely Ant Colony 
Optimization (ACO) [9], Wasp Nets (WN) [8], Bacterial 
Foraging Optimization (BFO) [10] and Particle Swarm 
Optimization (PSO) [11, 12]. 
The ACO technique’s basic idea is to imitate the 
cooperative behavior of ant colonies in order to solve 
combinatorial optimization  problems  within  an 
acceptable amount of time. Ant Colonies (AC) is a general  
purpose heuristic (meta-heuristic) that has been proposed 
by Dorigo et al. in [13,9]. ACO has been successfully used 
for the optimization of digital circuits [14,15] and its 

application in the analog design field was recently  
proposed [16,17].  
In this paper we present a novel adaptation of the ACO 
technique to the optimal sizing of CMOS analog circuits: 
i.e. a differential pair Class AB current conveyer (diff-
CCII) and an inverted second generation current conveyor 
(ICCII). The proposed method has been validated using 
some test functions. SPICE simulations are given to show 
the validity of obtained results. 
The remainder of the paper is structured as follows: The 
second section presents an overview of the ACO 
technique. The third section deals with the proposed 
adaptation of the ACO technique for solving 
combinatorial optimization problems. The fourth section 
highlights the algorithm viability via some test functions. 
The fifth section discusses and illustrates the 
parameterization of the algorithm. The sixth section 
presents two application examples dealing with the 
optimal sizing of CMOS current conveyors: A differential 
pair and an inverted second generation current conveyors. 
Finally, concluding remarks are given in the last section. 

2. Ant colony optimization technique: An 
overview 

ACO technique is inspired by the collective behavior of 
deposit and monitoring of slopes that is observed in insect 
colonies [9,18], such as ants. Figure 1 shows an 
illustration of the ability of ants to find the shortest path 
between food and their nest. It is illustrated through the 
example of the appearance of an obstacle on their path. 
Ants communicate indirectly through dynamic changes in 
their environment (pheromone trails). 
Pheromones are chemical substances that are laid down by 
ants. Thus, when other ants find the path taken by the 
former ant, they are no more likely to ‘walk randomly’, 
but instead they follow the trail and reinforce it if they 
eventually find food [19]. 
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Fig. 1 Self-adaptive behavior of a real ant colony 
(a) Q ants go in search of food; 

(b) ants follow a path between nest and food source. They; choose, 
with equal probability, whether the shortest  or longest path; 
(c) the majority of ants have chosen the shortest path.  

 
ACO was initially used to solve graph related problems, 
such as the traveling salesman problem [20], vehicle 
routing problem [21], etc. For solving such problems, ants 
randomly select the vertex to be visited. When ant k is in 
vertex i, the probability of going to vertex j is given by 
expression (1) [9,13,22,23]. 
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(1)

where k
iJ  is the set of neighbours of vertex i of the kth ant, 

ijτ is the amount of pheromone trail on edge (i,j), α and β 
are weightings that control the pheromone trail and the 
visibility value, i.e. ijη , which expression is given by (2). 

 

ij
ij d
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ijd  is the distance between vertices i and j. 
 
The pheromone values are updated each iteration by all 
the m ants that have built a solution in the iteration itself. 
The pheromone ijτ , which is associated with the edge 

joining vertices i and j, is updated as follows: 
 

∑ Δ+−= =
k
ij

m
kijij ττρτ 1)1(  (3)

where ρ is the evaporation rate, m is the number of ants, 
and )(tk

ijτΔ  is the quantity of pheromone laid on edge (i, 

j) by ant k: 
 

 

if ant k used edge (i, j) in its tour,
 
otherwise. 
 

(4)

Q is a constant: ‘Quantity of deposit pheromone by the 
best ant’, and Lk is the length of the tour constructed by ant 
k. 

3. Adaptation of the ACO technique 

The proposed algorithm consists of constructing a kind of 
graph which vertices, i.e. nodes, are the discretized 
variable vectors values. Each ant constructs its path by a 
random move from a variable value to another, as it is 
depicted on Figure 2. V1, V2, V3…VN are the discrete 
variable vectors. 
 
Initially, each ant k will randomly choose a path (values of 
V1, V2 …), according to the probability given by 
expression (1) with β=0, and form a directed graph while 
randomly generating a rate of pheromone at the 
constructed graph edges. At each iteration, the path giving 
the minimum value of the objective function (OF) sees its 
rate increase, in contrast with the other paths for which 
pheromone rates are partially evaporated with respect to 
expression (3). 
 
The proposed algorithm operates as shown in Figure 3. It 
mainly consists of the following steps:  
 

 Calculation of the movement probability, 
 

 Computation of the ‘objective function’, 
 

 Save and update of the ‘best’ result. 
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Fig. 2  A pictorial graph showing the mouvement of ants along the virtual 

graph. 

4. Validation by test functions  

In order to validate the proposed algorithm, the later was 
used to deal with some optimization test functions [24]. 
 
4.1. Example 1: First test function 
 
The first function is: 

( ) ( )xxxg cos+=  (5)

[ ]+∞∞−∈ ,x  
The absolute minimum of the function g is:  
( ) ,10 =g  as shown in Figure 4. 

 
 

Fig. 4  The function g values vs. x  for  -20≤x≤20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3  Flowchart  “Adaptation of the ACO technique”. 
 

Random initialization of 
the pheromone rates 

Save the best OF   

Update pheromones’ values 

Report the best solution (OFmin)  

End 

it=F? 

it=1,  i=1,   k=1 

Calculation of  OF 

k=M ? 

i=N ? 

For current ant: 
-Compute of the probability P for each 
value of Vi 
- Deduce the Pmax (3) 
- Determine the value of Vi 
corresponding to Pmax 

i=i+1 

k=k+1 

F=number of iteration 
N=number of variables   

M=number of ant 

it=it+1 
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4.2. Example 2: Second test function 
 
The second function is: 
 

( ) ( ) ( )yyxxyxf 2sin1.14sin, +=  (6)

where +∞≤≤∞− yx, . 
This function has many local minimal points, as shown in 
Figure 5. 
 
The absolute minimum of the function f is: 
f(9.039,8.668)= -18.5547 

 
Fig. 5  The function f values vs. x,y  for  -10≤x,y≤10 

 
We applied the proposed MATLAB-implemented ACO 
algorithm to compute the minima of both functions; the 
algorithm's parameters are given in Table 1 with a 
generation algorithm of 1000. 

Table 1: Parameters of ACO algorithm 

Evaporation rate (ρ) 0.1

Quantity of deposit pheromone by the best ant (Q) 0.2

Number of ants                           50

 
The parameters' range values were discretized with a step 
that equals 0.0001 for f and g. Obtained results are equal 
to those expected, i.e. obtained using Matlab software to 
solve the test problems. 

5. Parameterization of the algorithm 

In the following we present a study regarding the effect of 
varying the algorithm parameters (evaporation rate (ρ), 
quantity of deposit pheromone (Q)). Functions f and g 
presented in section 4 were considered for this purpose for 
20 ants and 500 generations algorithm. 
 
 

5.1 Evaporation rate and the fitness convergence 
 
The following figure shows the variation of fitness 
convergence according to the evaporation rate (with 
quantity of deposit pheromone equal to 0,2) for f and g.  

 
Fig. 6  f and g convergence rate vs. evaporation rate. 

 
From these curves we can clearly deduce that the 
evaporation rate which gives the best convergence of the 
algorithm is around 10%. 
 
5.2 Quantity of deposit pheromone and the fitness 
convergence 

 

 
Fig. 7  f and g convergence rate vs. quantity of deposit pheromone. 

 
Figure 7 shows the variation of fitness convergence 
according to quantity of deposit pheromone (with an 
evaporation rate that equals to 0,1) for f and g.  
We note that the amount of deposed pheromone by ants 
which gives the best convergence of the algorithm is 
around 0.2. 

6. Application to the optimal design of analog 
circuits 

6.1 Differential pair Class AB current conveyer (diff-
CCII) 
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Figure 8 shows the schematic of the diff-CCII circuit [25]. 
Two objective functions are considered separately: 
minimizing the input X-pole parasitic resistance (Rx) and 
maximizing the dominant pole (fp) value of the current 
transfer function between X and Z poles.  Expressions of 
Rx and fp are given by equations (7) and (8), respectively. 
 

Fig. 8  A differential pair Class AB current conveyor. 
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where Cgs, gm and go refer, respectively, to the parasitic 
grid to source capacitance, the transconductance and the 
conductance of the MOS transistor. Indexes N and P refer 
to the NMOS and PMOS channel transistors, respectively. 
The proposed algorithm was applied to optimize the MOS 
transistors sizes: The channels lengths (LN, and Lp), the 
gates widths (WN and WP) and the value of the bias 
current (Io). Main considered constraints are ensuring the 
saturation working mode of all the transistors. 
Table 2 shows the optimal sizes obtained by the algorithm 
using the parameter values listed in Table 1. The average 
computing time equals 5s for a 1000 generation algorithm, 
using an Intel  Pentium (M) 1.73GHz 794MHz, 1.5Go 
RAM. 
In order to check the convergence rate of the proposed 
algorithm, a robustness test was performed. i.e. the 
algorithm was applied a hundred times for optimizing each 
objective. In Figure 9 we present obtained results for some 
variables (corresponding to the optimization of fp) where 
one can clearly notice the relatively high convergence 
ratio to the (same) respective 'optimal' value. Table 3 
summarizes and highlights these convergence ratios. 

Table 2.  Optimal sizes of transistor dimensions and the respective 
performances for Rx and fp 

 WN 

(μm) 
WP 

(μm) 
LN= LP 

(μm) 
Io 

(μA) 
Rx  
(Ω) 

fp  
(Ghz)

min 
Rx 

42.41 100.00 0.35 15 3.1 1.452

max 
fp 

20.00 43.62 0.35 15 11.2 1.851

 

 
 

 
 

 
 

 

Fig. 9  Results obtained for 100 runs of the algorithm for variables: WN, 
WP,  LN, LP and Io 
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Table 3:  Convergence ratio (%) to the same 'optimal' parameter's value. 
 WN(μm) WP(μm) LN(μm) IO(μA) 

Rx (Ω) 81 77 80 93 
fp (GHz) 79 80 82 94 

 
Obtained 'optimal' sizings were used to simulate the 
circuits using SPICE software. The technology under 
consideration is AMS 0.35µm. VDD/VSS=±1.5V. 
 
Figures 10 and 11  show obtained results. Table 4 gives a 
comparison of the results obtained using SPICE and 
Matlab. 
We notice that simulation results are in good agreement 
with the expected ones. 

 

Table 4:  Optimal performances of the AB-CCII 

 

           Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz
V(V12:+)/ I(V12)

0

10

20

Fig. 10  Rx-pole resistance (Ω) vs. frequency (Hz), 
 

           Frequency

100Hz 10KHz 1.0MHz 100MHz 10GHz
DB(I(R1)/I(V1))

-20

-10

0

10

Fig. 11  Current gain (dB) vs. frequency (Hz), 
 
6.2 Inverted second generation current conveyor 
(ICCII) 
 
The second considered circuit is an inverted CMOS 
second generation current conveyor (ICCII), it is shown in 
Figure 12. For comparison reasons, we adopted the 

weighting  technique to combine two objective functions, 
as presented in [26]. 
For comparison raisons, with results published in [26], all 
the NMOS transistors were considered having the same 
dimensions, ditto for the PMOS transistors. 
 

 

Fig. 12  The inverted second-generation CMOS current conveyor. 

The problem consists of minimizing input X-pole parasitic 
resistance (Rx) and maximizing the dominant pole (fp) 
value of the current transfer function between X and Z 
poles while combining them into a single objective 
function. Expressions of both objective functions are 
given by (9) and (10), respectively [26,27]: 
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) 
 
Actually, the optimization problem was transformed into a 
monobjective one using the weighting approach (for 
comparison reasons, as mentioned above). The equivalent 
objective is given by expression (11). 

••

+= RxfpOF 21 γγ              (11) 

where 
•

fp  and 
•

Rx  represent the normalized values1 of fp 
and Rx, respectively.  
                                                           
1  The considered objectives are incommensurable. Thus, a 
normalizing technique was adopted [26]. It consists of bringing 
the variation range of each objective fi, to the range [0,1], as 
follows:  

 Matlab (ACO) SPICE 
Rx (Ω) 3.1 3.7 
fp (Ghz) 1.851 1.882 
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Table 5 gives optimal sizes corresponding to different 
values of iγ  and presents comparisons between 
theoretical (algorithm results) and simulation (SPICE) 
results. The good agreement between simulation and 
expected results can be noticed. Also, it is to be noted that 
the ACO average computing time equals 34s for a 5000 
generation algorithm using the parameter values given in 
Table 1.  

 
Table 5: ‘‘Optimal’’ device scaling and performances of the ICCII for 

different weightings ( )iγ   
(Ln=Lp=0.35μm) 

OF 4fp+Rx 2fp+Rx fp+Rx fp+2Rx fp+4Rx
Wn (μm) 3.41 6.24 9.53 13.38 23.40 
Wp (μm) 10.00 18.52 28.26 39.87 70.00 
Matlab 
Rx (Ω) 154.1 90.3 64.4 46.2 24.6 
Fp (GHz) 2.347 1.731 1.401 1.187 0.887 
SPICE 
Rx (Ω) 130.4 94.9 72.3 58.8 36.4 
Fp (GHz) 2.371 1.706 1.392 1.228 0.990 

 
In Table 6 we notice a good percentage of convergence 
ratio for different weightings ( )iγ . 100 runs of the 
algorithm were considered. 

Table 6:  Convergence ratio (%) to the same 'optimal' parameter's value. 

 
The same ICCII was optimized in [26], Table 7 presents 
performances and sizing given in [26]. It can be clearly 
noticed that the proposed ACO algorithm globally offers 
better results in terms of objectives and computation time, 
as well.  

Table 7: Performances proposed in [26]  
(Ln=Lp=0.35μm) 

OF 4fp+Rx 2fp+Rx fp+Rx fp+2Rx fp+4Rx
Wn (μm) 3.71 6.43 9.80 13.56 23.13 
Wp (μm) 11.13 19.17 29.25 40.66 69.08 
Spice 
Rx (Ω) 115.3 80.7 61.7 50.5 37.6 
Fp (GHz) 2.206 1.695 1.398 1.192 0.913 
 
Figures 13 and 14 show respectively SPICE simulations of 
Rx and current gain (Iz/Ix) performed using the sizes 

                                                                                               

min imax i

min i

ff
ffff i

i −
−

=→
•

 

given in Table 6 with a voltage power supply of 
VDD/VSS=±1.8V and using the AMS 0.35µm technology. 
We notice that simulation results are in good agreement 
with those obtained using ACO. 
 

           Frequency

100Hz 1.0KHz 10KHz 100KHz 1.0MHz 10MHz 100MHz 1.0GHz 10GHz
V(V1:+)/ I(V1) V(V2:+)/ I(V2) V(V3:+)/ I(V3) V(V4:+)/ I(V4) V(V5:+)/ I(V5)

0

0.2K

0.4K

0.6K

0.8K

1.0K

Fig. 13  Rx (Ω) vs. frequency (Hz), for different values of iγ . 
 

           Frequency

30MHz 100MHz 300MHz 1.0GHz 3.0GHz
DB(I(R1)/I(V1)) DB(I(R2)/I(V2)) DB(I(R3)/I(V3)) DB(I(R4)/I(V4)) DB(I(R5)/I(V5))

-16

-12

-8

-4

0

4

Fig. 14 Current gain (dB) vs. frequency (Hz), for different values of iγ . 
 

 4fp+Rx 2fp+Rx fp+Rx fp+2Rx fp+4Rx
WN (μm) 88 89 83 78 82 
WP (μm) 91 94 94 90 93 
LN=LP (μm) 84 85 87 77 81 

4fp+Rx 

fp+4Rx 

2fp+Rx 

fp+Rx 

fp+2Rx 

fp+4Rx 

4fp+Rx 
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Conclusion 

In this brief, a novel adaptation of the ant colony 
optimization technique for the optimal sizing of analog 
circuits is proposed. The corresponding algorithm was 
validated by mathematical test functions and applied to 
optimize performances of analog circuits, namely two 
variants of CMOS second generation current conveyors. 
Optimal parameters of the algorithm were determined 
using a statistical approach. Reached performances were 
validated via SPICE simulations. Besides robustness tests 
are given. It was also shown that the proposed algorithm 
gives better results in terms of computing time and 
optimum quality, when compared to already published 
works. 
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