
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.6, June 2011

17

Manuscript received July 5, 2011
Manuscript revised July 20, 2011

Control of Network Operation Generator from OPNET Modeler
Environment

Milan Bartl†, Karol Molnar†† and Jiri Hosek†††,

Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic

Summary
This article concerns interfacing OPNET Modeler simulations
with a network operation generator. Data are extracted from the
OPNET simulation, and the network operation generator
(IxChariot), which generates data flow in real network, is
controlled by these data. Creating a middleware application
transmitting data from OPNET to IxChariot is described.
Key words:
Esys, IxChariot, traffic generator, OPNET Modeler

1. Introduction

As a part of a project aimed to develop new QoS features,
this article presents a middleware to interconnect the
OPNET Modeler with the network operation generator
IxChariot.

Based on a simulation in the OPNET Modeler, the IxChar-
iot generates data flow with certain parameters. The
IxChariot also gathers information about network
performance. This allows instant testing of theoretical
results in physical envi-ronment while giving an
immediate feedback to the simula-tion.

2. OPNET Modeler

2.1 Inside a Simulation

A simulation inside OPNET Modeler processes data that
will be sent to the network operation generator. Only a
single workstation was placed on the workspace for
development purposes. Its attributes contain additional
user-defined integer value that represents the output data
that will be used for the generator control.

This value is then transported via inner network architec-
ture of the workstation to a special process that writes the
data to the External System (ESYS) interface. This
interface is used to transfer data inside and outside of
simulation [5]. A trace of packets inside workstation’s
architecture is shown on the picture below.

Fig. 1 Packet trace inside workstation.

There is another additional process called snmp_manager
that is not a member of default processes of the
workstation. This process was developed as a part of
another project and its purpose is packet generation (more
in [4]).

An integer value was created as one of its attributes and
was promoted to global node’s attributes. This value will
be used to set DSCP and ECN bits [6] in an IP header of
packets generated by network operation generator. Its
range is from 0 to 255. Meaning of the value will be
described later.

During the simulation is the value transported inside
packets produced by the process described above.

2.2 Esys Process

Packets received by the esys process are then unpacked
and the integer value is extracted. This value is supposed
to be sent through the ESYS interface to the outer
environment.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

18

At this point there is a slight complication however. Ac-
cording to the documentation [3], in the very moment of
writing data to the interface a simulation pause occurs, and
execution is passed to an external application that
processes data incoming from the OPNET Modeler
simulation. The process that caused this pause is caught in
an unready state, being unable to process any data
incoming right after the return of execution to the
simulation. If the external application writes data back to
the ESYS interface, these data will be lost because of the
esys process being unable to process them.
OPNET Modeler offers a possibility to solve this
complication by using a so called “child process”. It is a
process invoked by another existing process. The invoking
process can pass any data to this process and let the
computation up to it. With this mechanism the esys
process gets time to return into a “ready” state for
processing any incoming data.

3. External application

3.1 Structure

The external application is compiled in a form of a
dynamic loaded library (DLL file). It contains three
important parts: a main function for initializing procedures,
so called callback function for data processing and
functions for communication with the IxChariot API. The
first and the second function mentioned have to be
exported using one of the prefixes shown in Fig. 2.
Exporting these functions makes them accessible from the
OPNET Modeler core.

Fig. 2 Exporting prefixes.

3.2 Main Function

The main function includes procedures for initialization of
co-simulation (simulation within OPNET Modeler that
communicates with outer environment). These functions
are called Esa_Init and Esa_Load. Definition of these
functions contains a header file esa.h that must be
included in the external application.

After the initialization, the callback function needs to be
attached to a certain ESYS interface. The Fig. 3 shows a
function that creates this interface-callback connection.

Fig. 3 Esa_Interface_Callback_Register.

The esaHandle identifier is a pointer to an OPNET Model-
er simulation instance. The status variable is used to store
a return status of the function. The other two pointers
stand for a proper interface and the callback function. The
last two arguments are not used.

During this initialization phase, execution of the current
co-simulation is on the side of the external application.
After the initialization finishes, it is necessary to pass
execution to the OPNET Modeler simulation. Calling a
function Esa_Execute_Until with a time parameter
ESAC_TIME_MAX passes full control over the co-
simulation to the simulation. Basically, the simulation
gains control until the time it is sup-posed to finish.

3.3 Callback

This function is attached to a certain ESYS interface.
Whenever are data written to this interface, execution is
passed to the external application and a code inside the
callback function is processed. When the end of the
callback function is reached, control is passed back to the
simulation.

At first, data from the ESYS interface are read. In this case,
data represent an integer value mentioned in the chapter 2.
A procedure of reading data from the ESYS interface is
shown in Fig. 4. The first function returns a pointer to the
required interface. The second function stores data from
the interface into a local variable called dscp.

 Fig. 4 Extracting data from ESYS interface.

Next part of the callback implements functions for
IxChariot (TCL/C) API control. These functions will be
described later.

iface = Esa_Interface_Get(esaHandle,
 "top.office.manager.esys.DSCP");

Esa_Interface_Value_Get(esaHandle,
 &status, iface, &dscp);

Esa_Interface_Callback_Register
(esaHandle, &status,
callback_interface,callback,
(EsaT_Interface_Array_Callback_Proc)
NULL, (void *)NULL);

Prefix from OPNET Modeler library:
extern "C" DLLEXPORT

Standard C prefix:
__declspec(dllexport)

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

19

After setting and running the network operation generator,
an end of the callback function is reached. It is not
desirable, however, to continue running the simulation.
Termination of the co-simulation is compounded of two
phases: termination of the OPNET Modeler simulation and
of the external application. The former phase contains
calling special Esa_Terminate function, the latter phase is
handled by calling standard exit function.

 Fig. 5 Termination of co-simulation.

4. Network Operation Generator IxChariot

4.1 IxChariot APIs

Network operation generator IxChariot, a product of
company IXIA, disposes two APIs for interfacing with
other applications. One of the interfaces is based on C
programming language, while the other one uses TCL
functions [1].

In the following chapters, approaches using both of the
APIs will be described. Advantages and disadvantages of
each approach will be discussed in the conclusion at the
end of the article.

4.2 TCL API

To control IxChariot through TCL API, the external
application has to implement a mechanism to call a TCL
script that contains the very functions from the API. To
enable this feature, a computer that is running the co-
simulation must dispose a TCL runtime environment
called “TCL Shell”.
This chapter describes structure and contents of the TCL
script and the calling mechanism in the external
application.

4.2.1 TCL script
At the beginning, it is necessary to load libraries with the
API functions. TCL language implements standard
functions load and package require for these occasions
(see Fig. 6) [2].

Fig. 6 Loading libraries.

With the libraries successfully loaded, next step is to
create variable for a test (packet flow generation context)
and a pair (definition of a packet flow). The test variable
should have set a filename to enable its storage later.

Fig. 7 Test and pair variables.

When the test variable is created, its duration can be set
(see Fig. 8). Test options variable is loaded at first, using
function getRunOpts. After, the duration is set on fixed
time limit, and a required number of seconds is provided.

Fig. 8 Test options.

Parameters of the generated packet flow are bound with
the pair variable. These parameters are IP addresses of
endpoints, a communication protocol, a script describing
character of the communication (packet size, packet
generation interval etc.), and a quality of service (QoS)
settings. Setting of these parameters is shown in the Fig. 9.
An expression [lindex $argv X], where X stands for a
number, means access to script’s arguments. The number
in the expression represents an index in a vector of
arguments. The arguments passed to the script will be
shown in the next chapter.

Setting QoS is, however, more complicated. IxChariot im-
plements an external file for saving so called “QoS
templates”. These templates contain a unique title and a
mask. The mask contains information about bit
combination of the DSCP field inside IP headers of the
generated packets. The information is stored in a form of
an integer value with range from 0 to 255. This value is
converted from decimal to binary format, which reveals
the resulting bit settings.

Fig. 9 Communication parameters.

chrPair set $pair E1_ADDR [lindex
$argv 0]

chrPair set $pair E2_ADDR [lindex
$argv 1]

chrPair set $pair PROTOCOL [lindex
 $argv 2]

chrPair useScript $pair <script>

set runOpts [chrTest getRunOpts $test]
chrRunOpts set $runOpts TEST_END

FIXED_DURATION
chrRunOpts set $runOpts TEST_DURATION

<seconds>

set test [chrTest new]
set pair [chrPair new]
chrTest set $test FILENAME <filename>

load ChariotExt
package require ChariotExt

Esa_Terminate(esaHandle,
ESAC_TERMINATE_NORMAL);

exit(0);

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

20

To set the pair with the QoS value from the argument
vector, it is necessary to create a new template first.
However, a newQosTosTemplate function that is used for
this purpose throws an error in the case when a template
with required title already exists. To avoid this behavior,
the function is passed as an argument to a catch function.
The catch function executes the function in its argument
field, and in the case of failure, the error output of the
executed function is stored in the err variable (see Fig. 10)
and the script execution continues.

Right after is the err variable tested, and if it contains
information about the error described above, another
function will be called which would change already
existing template.

The created/modified template is then assigned to the pair
variable using standard procedure from the Fig. 9.

Fig. 10 QoS settings.

When all settings are finished, the pair is associated with
the test variable, and the test is started (see Fig. 11).

Fig. 11 Starting the test.

The test is supposed to run for a limited time interval. The
script acts like a supervisor and implements a control
whether this limit has been reached, and, in the case the
test is still running, explicitly stops the test run. In the Fig.
12, the function isStopped indicates whether the test
stopped in a required time period, and the function stop
forces the test to stop.

Fig. 12 Stopping the test.

After the test has stopped, the script saves its configuration
along with collected results to a file (defined in the Fig. 7).
After that the script ends.

Fig. 13 Save and exit.

4.2.2 Script calling
The script has to be invoked from the code of the external
application. To run the script, the TCL Shell program must
be called with a proper path to the script as an argument. If
the script itself takes any arguments, these arguments will
be simply added behind the path to the script. The call
from a command line can look like in the Fig. 14.

Fig. 14 Script calling from command line.

The tclsh85 is an executable of the TCL interpreter TCL
Shell 8.5, the name of the script follows with the
arguments of IP addresses and protocol. The number 156
represents a QoS mask with EF (Expedited Flow) mark.
[6] The last part means routing of an error output of the
script to its standard output. This feature will bring benefit
later.

Calling the script from the external application is
maintained by using functions _popen and _pclose (see
Fig. 15).

The string path includes a path to TCL Shell executable
and to the TCL script, and the parameters string contains
arguments for the script shown in the Fig. 14. These two
strings are concatenated together and passed as a
parameter to the _popen function. This function invokes a
new process and attaches its standard output to a file
variable output.

Fig. 15 Script calling from external application.

output = _popen(strcat(path,
parameters), "rt");

while(!feof(output))
{
if(fgets(buffer,128,output)!= NULL)
printf(buffer);
}
_pclose(output);

tclsh85 tcp_qos.tcl 192.168.166.252
192.168.166.253 TCP 156 2>&1

chrTest save $test
return

if {![chrTest isStopped $test
<timeout>]} { chrTest stop $test }

chrTest addPair $test $pair
chrTest start $test

expr [catch {chrApi newQosTosTemplate
CHR_QOS_TEMPLATE_TOS_BIT_MASK
<title> [expr [lindex $argv 3]]
} err]

if {$err == "creating QoS template

failed: Value is invalid."}
 {chrApi modifyQosTosTemplate

CHR_QOS_TEMPLATE_TOS_BIT_MASK
<title> [expr [lindex $argv 3]]
}

chrPair set $pair QOS_NAME <title>

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

21

Inside the while cycle, the output is read and printed into
the OPNET Modeler debugging console. With the error
and the standard outputs chained together, the debugging
console inside the OPNET Modeler is able to show errors
that occurred in the script.

If the output reads EOF (end of file) mark, it will indicate
the script has finished. The cycle is stopped, and the
attachment of the output is closed by the _pclose function.

4.3 C API

This API is controlled via functions of the C programming
language. As far as the external application is coded with
C, these functions can be implemented right inside its code.

There is one disadvantage in comparison with the TCL
API functions. In TCL language, all the functions include
behavior for the case of an error. In C, a programmer has
to implement his own solution.

Therefore, using the C API, the external application
includes two internal (not exported) functions: the first
one for setting up and starting the test and the second one
for maintaining error correction.

To enable calling the IxChariot C API functions from the
external application, it is necessary to include a header file
chrapi.h.

4.3.1 Function for test setting up
The first function called from the C API is
CHR_api_initialize. It is used to initialize the API and to
access error information. If this function fails, it will
mean the API is not initialized and the error correction
would need to be maintained differently than with the
other API functions (see Fig. 16).

Fig. 16 API initialize.

The rc variable stores a return code of the function. After
the function finishes, the value inside this variable is tested

for errors. [2] This return code checking mechanism is
implemented with every function call from the C API, but
it will not be shown in the next code examples.

The following structure is similar to the TCL script. At
first, a new test and pair are created. A filename is
assigned to the test and the other parameters like IP
addresses etc. to the pair (see Fig. 17).

Fig. 17 Test and pair settings.

The situation with QoS settings is exactly the same as in
the TCL script. At first is attempted to create a new
template, and when the template already exists, it is
modified. Then it is added to pair settings, the pair is
attached to the test, and the test is started (see Fig. 18).

Now with the test running, the application waits until the
test stops. In the while loop in the Fig. 19 are tested
conditions whether the test is still running and whether the
maximal wait time has been reached. The function
CHR_test_query_stop returns a CHR_OK value in the case
the test has stopped in the time interval defined in the
timeout variable. If the return value is CHR_TIMED_OUT,
timer will increase and the loop will continue. Any other
return value indicates an undefined error.

Fig. 18 QoS settings and start of the test.

CHR_api_new_qos_tos_template
(CHR_QOS_TEMPLATE_TOS_BIT_MASK,
<title>, <length>, <mask>);

if (rc == CHR_VALUE_INVALID)
CHR_api_modify_qos_tos_template

(CHR_QOS_TEMPLATE_TOS_BIT_MASK,
<title>, <length>, <mask>);

CHR_pair_set_qos_name(pair, <title>,

<length>);

CHR_test_add_pair(test, pair);
CHR_test_start(test);

CHR_test_new(&test);
CHR_pair_new(&pair);
CHR_test_set_filename(test, <file>,

strlen(<file>));
CHR_pair_set_e1_addr(pair,<e1Addr>,
strlen(<e1Addr>));
CHR_pair_set_e2_addr(pair,<e2Addr>,
strlen(<e2Addr>));
CHR_pair_set_protocol(pair,

<protocol>);
CHR_pair_use_script_filename(pair,
 <script>, strlen(<script>));

rc = CHR_api_initialize
(CHR_DETAIL_LEVEL_ALL, errorInfo,
CHR_MAX_ERROR_INFO, &errorLen);

if (rc != CHR_OK)
{
printf("Initialization failed: rc =

%d\n", rc);
 printf("Extended error info:\n%s\n",

errorInfo);
 exit(255);
}

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

22

Right after the loop is a condition investigating whether
the test finished. If the answer is negative, an error will be
thrown, telling that maximum time limit has been reached.

Fig. 19 Test stop conditions.

In the opposite case is the test saved, and program returns
into the callback function.

4.3.2 Function for error correction
The function for error correction is named show_error. Its
main purpose is to gather information about an error and
print it into the OPNET Modeler console. Its concept has
been taken from examples in IxChariot SDK (Software
Development Kit) folder.

To gather basic error information, a function
CHR_api_get_return_msg is used. If this function
succeeds, the console will show the information (see Fig.
20).

Fig. 20 Basic error information.

In specific cases when the return code carries a value
CHR_OPERATION_FAILED or
CHR_OBJECT_INVALID, extended information is
available. This information is written into a log file (see
Fig. 21).

Fig. 21 Extended error information.

5. Conclusion

This article describes two possible approaches to create a
middleware to interconnect an OPNET Modeler
simulation with the IxChariot network operation generator.
The approaches differ in an API that is used to maintain
the connection.

Using the TCL API requires additional software (TCL
Shell). Also, the middleware is divided between the
external application and the TCL script, which means less
consistency of the source code.

The C API, on the other hand, requires more programming
effort during a development phase. Nevertheless,
increased consistency and lesser software requirements in
comparison with the TCL API make the C API right
choice when interconnecting the OPNET Modeler with the
IxChariot.

The TCL API could bring benefits if the application that
generates data (OPNET Modeler for this case) was based
on the TCL language. Such an application is the network
simulator NS-2 for instance.

fd = fopen(logFile, "a+");

rc = CHR_common_error_get_info(handle,

CHR_DETAIL_LEVEL_ALL, errorInfo,
CHR_MAX_ERROR_INFO, &errorLen);

if (rc == CHR_OK)
{
if (fd != NULL)
{
fprintf(fd, "%s %s failed\n",

timestamp, where);
fprintf(fd, "%s %s\n", timestamp,

errorInfo);

fclose(fd);
}
}

rc = CHR_api_get_return_msg(code, msg,
CHR_MAX_RETURN_MSG, &msgLen);

if (rc != CHR_OK)
{
printf("%s failed\n", where);
printf("Unable to get message

for return code %d, rc = %d\n",
code, rc);

}
else
{
printf("%s failed: rc = %d

(%s)\n", where, code, msg);
}

while(!isStopped && timer < maxWait)
{
rc = CHR_test_query_stop(test,
timeout);

if (rc == CHR_OK)
isStopped = CHR_TRUE;

else if (rc == CHR_TIMED_OUT)
{
timer += timeout;
printf("Waiting for test to stop...

(%d)\n", timer);
}
else
show_error(test,rc,

"test_query_stop");
}

if (!isStopped)

show_error(test, CHR_TIMED_OUT,
"test_query_stop");

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

23

Acknowledgments

This paper has been supported by the Grant Agency of the
Czech Republic (Grants No. GA102/09/1130 and No.
102/07/1012) and the Ministry of Education of the Czech
Republic (Project No. MSM0021630513).

References
[1] IXIA. IxChariot User Guide, Release 7.0. 913-0843 Rev. A.

July 2009.
[2] IXIA. IxChariot API Guide, Release 7.10. 913-0954-02 Rev.

A. June 2010.
[3] OPNET TECHNOLOGIES. OPNET Modeler

Documentation Set, Release 16.0. OPNET Technologies Inc.
July 2010.

[4] HOŠEK, J.; RŮČKA, L.; MOLNÁR, K.; BARTL, M.;
MATOCHA, T. Integration of Real Network Components
into OPNET Modeler Co-simulation Process. WSEAS
TRANSACTIONS on COMMUNICATIONS, 2010,
volume 9, issue 9, p. 553-562. ISSN: 1109- 2742.

[5] BARTL, M. Aplikace zpracovávající reálný síťový provoz v
prostředí OPNET Modeler. Brno: Vysoké učení technické v
Brně, Fakulta elektrotechniky a komunikačních technologií,
2009. 31 s.

[6] BEDNÁRIK, J. Modelovanie komunikácie proprietárnym
protokolom, určeným pre výmenu informácií s
podporovanou technológiou QoS, v prostredí Opnet
Modeler, Brno: Vysoké učení technické v Brně, Fakulta
elektrotechniky a komunikačních technologií, 2007. 35 s.

Milan Bartl is currently a 2nd-year master
student at the Department of
Telecommunications of the Faculty of
Electrical Engineering and Communication,
BUT. His master thesis is focused on the
issue of cooperation between external
systems and simulation environmet
OPNET Modeler and its utilization in QoS
assurance area.

Karol Molnar received his MSc. degree in
Electronics and Communications (1997)
and Ph.D. degree in Teleinformatics (2002)
at Brno University of Technology (BUT),
Czech Republic. He is with the Dept. of
Telecommunications of the Faculty of
Electrical Engineering and Computer
Science, BUT as Assistant Professors
(2002-2007) and Associate Professor (2008

– up-to-now). In his scientific work he focuses on modern
network technologies, especially on topics of QoS support in
both fixed and mobile network technologies. During the last
several years he actively participates in theoretical and research
works closely related to the technology of Differentiated
Services.

Jiri Hosek received the B.S. and M.S.
degrees in Electrical Engineering from
Faculty of Electrical Engineering and
Communication at the Brno University of
Technology in 2005 and 2007, respectively.
Recently he is studying for the Ph.D.
degree. He is currently an assistant at the
Department of Telecommunications of the
Faculty of Electrical Engineering and
Communication at the same university. His

research work has been concentrated on the design of new
methods for Quality of Service (QoS) assurance in data networks.

