
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 
 

24

Manuscript received July 5, 2011 
Manuscript revised July 20, 2011 

An Algorithm for String Searching Based on Brute-Force 
Algorithm 

Rawan Ali Abdeen 
  
 

Summary 
String searching is a very important component of many 
problems, including text editing, text searching and symbol 
manipulation. In this paper a string searching algorithm is 
proposed as an improvement of the brute-force searching 
algorithm. The algorithm is named Start-End-Mid Algorithm. 
The proposed algorithm does not preprocess neither the pattern 
nor the text to perform searching. 
Key words: 
String searching, pattern, start-end-mid algorithm. 

1. Introduction 

Although we deal with data in a lot of forms, text remains 
the main form to exchange information and take advantage 
of it. 
String searching sometimes called string matching is 
concerned in finding the occurrences of a substring 
(called the pattern) of length m in a string (called the 
text) of length n (where n ≥ m) [1-3].   
In order to search for a pattern within a string, an 
algorithm is needed to find the pattern as well as to know 
the locations where it was found in a given sequence of 
characters. 
A lot of algorithms were created to perform string 
searching. Each algorithm uses a specific strategy to 
perform the search. Some need to preprocess the pattern 
[4-6]. Others need to preprocess the text; also there are 
algorithms that require both the pattern and the text to be 
preprocessed before searching [7] and some do not 
perform preprocessing neither for the text nor for the 
pattern.  
One of the simplest string searching algorithms is the 
Brute-force algorithm. It is the least efficient way to check 
whether one string occurs inside another.     
Various string searching algorithms were created to 
improve the Brute-Force algorithm. From those 
algorithms: the Knuth-Morris-Pratt (KMP), Boyer-
Moore (BM) and Karp and Rabin algorithms [1][8]. Still 
to determine which of the algorithms is the best to use 
depends on the application were the algorithm is to be 
applied.  
The Knuth-Morris-Pratt (KMP) algorithm uses 
information about the characters of the pattern to 
determine how much to move along that string after a 

mismatch occurs [9][10]. The Rabin–Karp algorithm 
computes a hash function to seek for a pattern within a 
given text [10]. The Boyer-Moore algorithm works by 
searching the target string from right to left, while moving 
it left to right [9]. The Start-To-End algorithm begins the 
search process by comparing the first character of the 
pattern with the first character of the segment taken, if 
they match, then it compares the last character of the 
pattern with the last character of the segment, if a match 
occurs, then it will allow to perform character by character 
matching between the segment and the pattern, for the rest 
of the characters that remain without comparing [11].  

2. Brute-Force Algorithm 

Brute-force algorithm, which is also called the “naïve” is 
the simplest algorithm that can be used in pattern 
searching. It is probably the first algorithm we might think 
of for solving the pattern searching problem. It requires no 
preprocessing of the pattern or the text [12]. 
The idea is that the pattern and text are compared 
character by character [8][10]; in the case of a mismatch, 
the pattern is shifted one position to the right and 
comparison is repeated, until a match is found or the end 
of the text is reached [1]. 
The algorithm works with two pointers; a “text pointer” i 
and a “pattern pointer” j. For all (n-m) possibly valid 
shifts, pattern and text are compared; while text and 
pattern characters are equal, the pattern pointer is 
incremented. If a mismatch occurs, i is incremented, j is 
reset to zero and the comparing process is restarted. In 
case a match is found, the algorithm returns the position of 
the pattern; if not, it returns not found message [9, 12]. 
The worst case will happen if all the characters of the 
pattern were matched with the text segment except the last 
one. 
Referring to the algorithm, the outer for-loop is executed 
at most n-m+1 times and the inner loop is executed at 
most m times. Thus, the running time (time complexity) of 
the brute force algorithm is: O((n-m+1)m) which is 
O(nm) [8]. In the worst case, when n and m are equal, this 
algorithm has a quadratic running time [1]. 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 

25

3. Start-End-Mid Algorithm 

This algorithm finds all the occurrences of the pattern in 
the text. It does not require performing preprocessing 
neither for the text nor for the pattern. 
The idea is that the first, last and mid characters of the 
pattern are first compared to the corresponding first, last 
and mid characters of the segment taken from the text, in 
which we start by comparing the first character in the 
pattern with the first character in the segment, if they 
match, then we continue by comparing the last character in 
the pattern with the last character in the text, if a match 
occurs then we proceed by comparing the mid character in 
the pattern with the mid character in the text, if a match 
occurs, then the rest of the characters of the pattern will be 
compared with the rest of the characters of the segment 
taken, character by character. In the case of a mismatch 
while performing character by character comparison, we 
directly take the next segment of the text shifted one 
position from the previous one, else continue comparing. 
If all the characters of the pattern match with the 
characters of the segment then signal that the pattern was 
found and at which location in the text it was found. After 
that, proceed with the next segment to find other 
occurrences of the pattern in the text. If we have scanned 
all of the segments of the text without matching the pattern 
with any of the introduced segments a not found signal is 
performed. Fig. 1 illustrates the algorithm in a flowchart 
to find the first occurrence of the pattern within the text. 

 
3.1 Algorithm Steps 
 
Step 1: Divide the text into segments in which the first 
segment begins from element at index 0, the second 
segment begins at the element of index 1 and so on. That 
is each segment to be taken is shifted one character than 
the previous one. 

Step 2: Compare the first character of the pattern with the 
corresponding first character of the segment taken, if a 
match occurs, then go to the next step. If a mismatch 
occurs, then take the next segment and  repeat step 2. 

Step 3: Compare the last character of the pattern with the 
corresponding last character of the segment taken, if a 
match occurs, then go to the next step, else if a mismatch 
occurs, then take the next segment of the text and go to 
step 2. 

Step 4: Check the length of the pattern. If the pattern 
consists of two characters then go to Step 5. While, if it 
consists of more than two characters then compare the 
floor(length of the pattern/2) character of the pattern 
with the corresponding floor(length of the pattern/2) 
character of the segment taken, if a match occurs, then go 

to the next step, else if a mismatch occurs, then take the 
next segment of the text and go to step 2. 

Step 5: Perform character by character comparison for the 
rest of the characters of the pattern with the rest of the 
characters of the segment taken. Note that, in this step if 
the pattern consists of two characters then the first and last 
characters will not be considered within the comparison, 
while; if the pattern consists of more than one character 
then the first, last and floor(length of the pattern/2) 
characters are not considered in the comparison process. If 
a mismatch is encountered while matching in any step of 
the comparison, then we stop comparing and proceed with 
the next segment for comparison and go to step 2, else 
continue comparing. If all the characters of the pattern 
match with the characters of the segment then signal that 
the pattern was found and at which location in the text it 
was found. After that, proceed with the next segment and 
repeat step 2, to search for other occurrences of the pattern 
in the text. 

4. Results 

The proposed algorithm finds all the occurrences of the 
pattern in the text. The improvement process for the Brute-
Force algorithm within the proposed (Start-End-Mid) 
algorithm does not require performing preprocessing for 
the pattern as the other algorithms that have improved the 
Brute-Force algorithm do. Table 1 summaries the 
algorithms that has improved the brute-force algorithm 
with their time complexity. 

The time complexity for the proposed Start-End-Mid 
algorithm can be detailed as follows: 
 

 If the first, last and mid characters of the pattern 
does not match with the first, last and mid 
characters of all the segments in the text, then the 
time complexity would be:   

         O( ((n-m)+1) * (m-3) ). 
 

 If the first character of the pattern does not match 
the first character of all the segments in the text, 
then the time complexity would be:  

         O(n-m+1). 
 

Table 2 illustrates the differences in the time complexity 
between the brute-force algorithm and the proposed start-
end-mid algorithm depending on an example where the 
number of characters of the text is 14 and of the pattern is 
5. 
 

 
 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 

26

 
 

 
 
 
 
 

 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 
 

 

27

  
Table 1: A summary for the algorithms that has improved the brute-force algorithm with their time complexity 

Time Complexity Preprocessing 
the PatternAlgorithm 

O((n-m+1)*m) No preprocessingBrute-Force 
Algorithm 

O(((n-m)+1)*(m-3))No preprocessingStart-End-Mid 
Algorithm 

O(((n-m)+1)*(m- 
2)) No preprocessingStart-to-End 

Algorithm 

O(nm) Preprocesses the 
pattern 

Rabin-Karp 
Algorithm 

O(n+m) Preprocesses the 
pattern 

Knuth-Morris-
Pratt Algorithm 

O(nm) Preprocesses the 
pattern 

Boyer-Moore 
Algorithm 

 
Table 2: The differences in the time complexity between the brute-force algorithm and the proposed start-end-mid algorithm depending on an example 

where the number of characters of the text is 14 and  the number of characters of the pattern is 5. 

Description Brute-Force Time 
Complexity 

Start-to-End Time 
Complexity 

Start-End-Mid 
Time Complexity 

If the pattern is not found after 
performing character by character 
matching for all of the segments 
of the text with the characters of 
the pattern. 

44 30 20 

If the first character of the pattern 
does not match the first character 
of all the segments in the text. 

44 10 10 

5. Conclusion 

In conclusion, this paper has proposed a string searching 
algorithm as an improvement for the brute-force algorithm 
without the need to preprocess neither the pattern nor the 
text. The improvement that this algorithm has offered over 
the brute-force algorithm is that it does not allow character 
by character matching between the segment taken from the 
text and the pattern only after it checks that the first, last 
and mid characters in the pattern match the corresponding 
first, last and mid characters in the segment taken from the 
text. This process of checking improved the time of 
searching of the brute-force algorithm. 
 
References 
[1] Thierry Lecroq, Experimental Results on String Matching 

Algorithms, SOFTWARE—PRACTICE AND 
EXPERIENCE, 1995, VOL. 25(7), 727–765.  

[2] Stephen G., String Searching Algorithms, World Scientific, 
Singapore, 1994.  

[3] Apostolico A. and Galil Z., Pattern Matching Algorithms, 
Oxford University Press, 1997. 

[4] Liu Z, Du X,and Ishii N., An improved adaptive string 
searching algorithm, Software Practice and Experience, 
1988, 28(2):191–198.  

[5] Sunday D., A very fast substring search algorithm, 
Communications of the ACM, 1990, 33(8):132–142.  
 

 
[6] Bruce W. and Watson E., A Boyer-Moore-style Algorithm 

for Regular Expression Pattern Matching, Science of 
Computer Programming, 2003, 48: 99-117. 

[7] Fenwick P., Fast string matching for multiple searches, 
Software–Practice and Experience, 2001, 31(9):815–833. 

[8] Ohdan Masanori, Takeuchi Ryo And Satou Tadamasa, An 
Evaluation of String Search Algorithms at Users Standing, 
Proceedings of the 3rd WSES International Conference on 
Mathematics and Computers in Mechanical Engineering 
(MCME), 2001, pp. 4231-4236, ISBN: 960-8052-35-1. 

[9] Softpanorama, Searching Algorithms, 2001, 
http://www.softpanorama.org/Algorithms/searching.shtml. 
Accessed on 8 Jan., 2011. 

[10] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest 
and Clifford Stein, Introduction to Algorithms,  3rd edition, 
2009, MIT Press.  

[11] Rawan A. Abdeen, Start-to-End Algorithm for String 
Searching, IJCSNS International Journal of Computer 
Science and Network Security, VOL.11 No.2, February 
2011, pp. 179-182.  

[12] Michael T. Goodrich and Roberto Tamassia, Algorithm 
Design, 2002, John Wiley and Sons, Inc. 

[13] Hume and Sunday, Fast String Searching, SOFTWARE—
PRACTICE AND EXPERIENCE, 1991, VOL. 21(11), 
1221–1248. 

Rawan A. Abdeen received the B.S. degree in Information 
Technology and M.S. degree in Computer Science from Al-
Balqa' Applied University. 


