
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

38

Manuscript received July 5, 2011
Manuscript revised July 20, 2011

Computer Aided Design for Low Power Fir Processor on System
On-Chip Platform Architecture for High Performance DSP

Applications

A. Hemalatha1, A. Shanmugam2

1Research Scholar , Anna University ,Chennai

2Principal, Bannari Amman Institute of Technology, Sathyamangalam

Abstract
The continually increasing integration density of integrated
circuit, with astronomical increase in fabrication cost and
enormous time to market portrays important paradigm shift in
next generation System –on-Chip (SoC) design. This leads more
programmable designs that can spin a wide range of applications.
Hence there is a trend away from the fixed SoC to highly flexible
SoC with improved time to market. The reconfigurability in SoC
can be achieved either by the Programmable gate arrays [FPGA]
and/or through Programmable interconnect. The emergence of
static memory based FPGA that are capable of being
dynamically reconfigured i.e. partially programmable during run
time has been a driving force for flexible architecture. At the
same time, the standardization of the intellectual property [IP]
deliverables and their wide availability has started gaining
importance towards expanding the possibility of reconfiguration
in SoC Synthesis of SoC has become less complicated shortening
design time, with the IP reuse which could be achieved by
socketisation. The pre-designed and pre-verified IP blocks are
obtained from the internal sources or third parties and combined
onto a single chip. This arises a need of rapid integration of
communication between different modules embedded in the
system. The proposed design provides a solution for achieved
with minimal cost of hardware and software, and improve the
performance. In a Hardware design, the hardware complexity of
the FIR filter is directly proportional to the tap length and the bit-
width of input signal. To reduce the hardware cost, this can be
figured out with iteration calculations by software; therefore, a
co-design of hardware and software may produce cost-efficient
FIR filters. The key design concept is to build a processor for
software processing with minimum hardware resources, without
sacrificing the performance of original FIR filter. The proposed
design methodology can be considered as an intellectual property
(IP) design for FIR filters in system-on-a- chip (SOC)
environment.

Introduction

In recent years, more and more products have started out
using DSP processors, fueling demand for faster, and
smaller, cheaper and more energy-efficient integrated
chips. These smaller, cheaper and more energy-efficient

integrated chips open the door for a new wave of products
to implement signal- processing capabilities. Although
fundamentally related, DSP processors are importantly
different from general- purpose processors (GPPs) like the
Intel Pentium. To realize why, we need to know what is
involved in signal processing. Some of the most common
functions executed in the digital domain are signal
filtering, convolution and fast Fourier transform. In
mathematical terms, these most functions perform a series
of dot products. This makes for us to the most popular
operation in DSP: the multiply and accumulate (MAC).
The major architectural change that discerned DSP
processors from the early GPPs was the addition of
specialized hardware that enabled single-cycle
multiplication. DSP architects also added accumulator
registers to hold the summation of several multiplication
products. Accumulator registers are typically wider than
other registers, often providing extra bits, called guard bits,
to avoid overflow. Another highly visible difference
between DSP processors and GPPs lies in their memory
structure. Typical DSP algorithms require more memory
bandwidth than the Von Neumann architecture used in
GPPs. Thus, most DSP processors use some forms of
Harvard architecture which has two separate memory
spaces, typically partitioned as program and data
memories.
Although, this may seem that DSP applications must pay
careful attention to numeric accuracy - which is much
easier to do with a floating-point data path, fixed-point
machines tend to be cheaper (and faster) than comparable
floating-point machines. To maintain accuracy without the
complexity of a floating-point data path, DSP processors
usually include, in both the instruction set and underlying
hardware, good support for saturation arithmetic, rounding,
and shifting.Currently designs are considered at the
system level.e.g. a module within a design itself represents
a highly complex component. System Level Integration
(SLI) is encouraging the trade of complex module designs
so called, Intellectual Property (IP) between all types of
providers and end users. This research aims to develop a

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

39

scheme for implementation of low power high
performance Digital Signal Processing intensive System-
on-Chip platforms.
This research will provide an overview of interface
strategy by which suggests dynamic plugging of various
IP blocks, with the aid of programmable interconnect to
enable ever changing system that can be adapted to almost
any requirement for SoC, Reconfigurable Pipeline Data
paths [RaPiD]. Simulations will be carried out with an FIR
filtering on to the platform. Results will be provided for
timing and power consumption of the whole SoC platform.
This research will involve synthesis and simulation of
complete systems with multiple high performances DSP
IP cores which include blocks for audio and image
manipulation together with IP cores for transmitting these
over a range of channels.

Trends in the DSP Processor Architecture

The fundamental difference between a DSP processor and
a generic processor is the DSP Processor’s hardware
multiplies-accumulate (MAC) block and specialized
memory and bus structures to facilitate frequent data
access commonly found in DSP applications. The MAC
operation is usually the performance bottleneck in most
DSP applications. DSP processor vendors incorporate
MAC blocks in their architecture to minimize this
performance bottleneck. Some DSP processor vendors
have also tried adding multiple MAC blocks to their
architecture to boost the overall multiplier bandwidth. For
example, the TMS320C6411 device from Texas
Instruments can calculate up to eight 8 × 8-multiplication
results in a single clock cycle. While adding more MAC
units may provide more DSP throughput, the processor
falls behind in raw data processing power for certain data-
intensive DSP functions such as Viterbi encoder/decoder
and FIR filters. To work around this problem, DSP
processor vendors have also tried incorporating a
hardware accelerator coprocessor) block such as the
Viterbi coprocessor, turbo coprocessor and the enhanced
filter coprocessor. While such coprocessor blocks provide
high DSP throughput, they do not cater to all DSP
applications. Most DSP applications cannot benefit from
the DSP vendors' predefined hardware accelerator blocks.
Additionally, such hardware accelerator blocks are fixed,
do not allow for any level of customization for the specific
design needs, and can quickly become obsolete in todays.

Efficient CPU Architecture for DSP
Processors

The core unit of the FIR-Processor is the embedded CPU,
which is an eight bit "Von Neumann" machine with single
accumulator. It has an eight-bit data bus; six-bit address
bus; neither stack nor status flags are present (Fig. 1). The
instruction set contains opcodes: conditional branch, load
memory into accumulator, store accumulator into memory,
and add accumulator with memory.

Figure 1:FIR Processor

A suggested instruction set

Fixed-point DSP processor instruction sets are designed
with two goals in mind. They must:
• Enable the processor to perform multiple operations per
instruction cycle, thus increasing per-cycle computational
efficiency, and
• Minimize the amount of memory space required to store
DSP programs.
To accomplish these goals, DSP processor instruction sets
generally allow programmers to specify several parallel
operations in a single instruction. However, to keep the
word size small, the instructions only permit the use of
certain registers for certain operations and do not allow
arbitrary combinations of operations. The net result is that
DSP processors tend to have highly specialized,
complicated, and irregular instruction sets. In our
approach, CPU architecture for a DSP processor, related
instruction set generally includes 7 categories of
operations.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

40

Arithmetic and logic unit (ALU)

The 8 bit ALU, shown in Figure 2, implements a wide
range of arithmetic, logical, and rotate functions. The
result is transferred to a destination accumulator (A or B)
or sent to the output bus for memory writing. There are
two input buses to read words of memory in a cycle and
write the result to the memory.

Figure 2: Arithmetic Logic unit

ALU input takes several forms from several sources. The
X-input source to the ALU is either
of the two values:
• The shifter output (shifted 8-bit data-memory operand or
a shifted accumulator value).
• A data-memory operand from data bus (D_data). The Y-
input source to the ALU is any of three values:
• The value in one of the accumulators (A or B).
• A data-memory operand from data bus (C_data).
• The value in T registers.

Multiplier and adder unit

The CPU architecture has a 8-bit ×8-bit hardware
multiplier coupled to a 16-bit dedicated adder. This
multiplier/adder provides multiply and accumulates
(MAC) capability in one cycle. The multiplier can
perform signed, unsigned, and signed/unsigned
multiplication. The multiplier output can be shifted left by
one bit to compensate for the extra sign bit generated by
multiplying two 16-bit 2s-complement numbers in
fractional mode. The adder’s inputs come from the
multiplier’s output and from one of the accumulators.
Once any multiply operation is performed in the unit, the
result is transferred to a destination accumulator (A or B).
This structure also has been designed to determine
absolute value of X-input when Y-input is fed through

constant one value.Multiply-accumulate instructions such
as:MAC Xmem, Ymem, src[,dst],which does the
following operation: (Xmem) × (Ymem) + src → dst
All of these operations should be performed in just one
cycle. Dot product that is commonly used in DSP
applications can be executed with MAC instruction
embedded in a repeat instruction.
Registers and memory
The CPU is accumulator based and supports minimal
registers. The ALU is 8 eight bits wide without carrying
bit generation as the overflow flag. The PC has a width
of six bits, which allows addressing 64 bytes of memory.
The memory space is shared between program code, data
and I/O devices (tab. 1).

Table :1 Rigister and memory

Execution of instructions

To achieve an efficient design for CPU architecture, we
had to clearly manifest every aspect of each instruction in
its hardware implementation. We required discovering
optimized arithmetic and logical operations enough to
execute all instructions. In addition, we had to determine
which component is the best for executing each
instruction.Fixed-point DSP processor instruction sets are
designed with two goals in mind. They must:
• Enable the processor to perform multiple operations per
instruction cycle, thus increasing per-cycle computational
efficiency, and• Minimize the amount of memory space
required to store DSP programs.To achieve these goals,
DSP processor instruction sets generally allow developers
to specify several parallel operations in a single instruction.
However, to keep the word size small, the instructions
only allow the use of certain registers for certain
operations and do not allow arbitrary combinations of
operations. The net result is that DSP processors tend to
have highly specialized, complicated, and irregular
instruction sets.

Address Purpose
00-1F Program memory

20-2F External memory or
devices

30-33 Constants of coefficient
38 X(n) input register
39 Y(n) output register
3A Result of multiplication
3B Reserved
3C X(n-3) register
3D X(n-2) register
3E X(n-1) register
3F Temporary A(n) register

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

41

Table: 2 Instructions

Filter Implementation Structure

FIR (Finite Impulse Response) filters and IIR (Infinite
Impulse Response) filters are two primary types of digital
filters used in digital signal processing applications. In
comparison, FIR filters require more memory and/or
calculation to achieve a given filter response characteristic,
but they offer some advantages, such as:
• They have "phase linearity" characteristic. The output
signal is delayed, but its phase is not distorted.
• They are simple to implement by using "finite-precision"
arithmetic and fractional arithmetic.
• They can use coefficients less than 1.0 in magnitude and
simplify the implementation with fixed-point processors.
• They are suitable for multi-rate applications by
"decimation", "interpolation" or both.
Finite Impulse Response (FIR) IP Cores are important
blocks in both audio and video signal processing. In
digital systems, noise reduction, echo cancellation etc are
repetitively executed with the help of FIR filters.The main
objective of this work is to present a design methodology
for an FIR Filtering IP Core that is parameterized and
programmable. The sequential implementation is selected
to minimize the overheads of design. The proposed
architecture has capability of run time programmability for
SoC design. Type of filter, number of coefficients, word
length for input data and filter coefficients can be changed.
The objective of the following simulations is to
experiment with a 4-tap FIR filter built with the designed
processor and implemented with sequential method saving
hardware resources. The input and output signals to and
from the filter are the unsigned 8-bit x [7..0] and the
unsigned 8-bit y [7..0]. This filter implements the
following FIR equation:
 y(n) = x(n)h(n) + x(n-1)h(n-1) + x(n-2)h(n-2) + x(n-
3)h(n-3) (1)
where h(n) = 7/16, h(n-1) = 5/16, h(n-2) = 3/16, h(n-3) =
1/16.
This equation can be rewritten as:

y(n) = 1/16 * 7x(n) + 1/16 *5x(n-1) +1/16 * 3x(n-2) +
1/16 *1x(n-3) (4.1)
or
y(n) = 1/16 * (7x(n) + 5x(n-1) + 3x(n-2) + 1x(n-3))
(2)
The equation 2 sums all multiply products then divided by
16, this will make an overflow calculation on the 8 bits
ALU, therefore each multiply product should divided by
16 (i.e. shifts 4 bits to right) first and sums later for the
FPGA design.

SYNTHESIZES AND PERFORMANCES

We have analyzed area and speed of di�erent FIR filters
architecture, using chip resources of four versions of
hardware implementations are listed in table 3.
Simulations were performed for generated data samples
using modelsim simulator. This was followed by
computing their area and speed with quatrus II EDA tool.
In all cases, a clock rate of 25MHz and 1.8V were
assumed.The 8- bits unsigned multiplier can be
synthesized either by logic element or by dedicated
multiplier circuit (V1.1 and V1.2). It occupies 34
combinational logic cells or one 9-bits DSP block
respectively. To compare the performance, a pure FIR
hardware circuit was synthesized with the same type
FPGA chip (V2.0). Although the version 1.1 and 1.2 uses
the most combinational logic cells (LC), its multiplier is in
the LCs, this made the design synthesis suitable for FPGA
chips without internal DSP blocks.

Figure 3: simulation result

Table 3: Hardware implementation result

Imple
mentat

ion

LC
Com
binati
onal

LC
Regist

ers

9 bits
DSP

Block

Total
logic
eleme

nt

Fmax (Mhz)

V1.1 145 71 0 171 79.62
V1.2 123 71 1 141 84.34
V2.0 77 57 0 102 123.46
V3.0 29 18 1 35 364.96

Mnemonic Description
LD Smem [,SHIFT],

dst, Load and store instructions

ADD Xmem,
Ymem, dst, Arithmetic instructions

XORM #lk, Smem, Logical instructions

ST src, Ymem ||
ADD Xmem, dst,

Arithmetic instructions with
parallel store and load

MAC Xmem,
Ymem, src[,dst], Multiply-accumulate instructions

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

42

D Q
PRE

ENA

CLR

D Q
PRE

ENA

CLR

A[5..0]

B[5..0]
OUT[5..0]

ADDER

D Q
PRE

ENA

CLR

A[1..0]

B[1..0]
OUT

EQUAL

A[1..0]

B[1..0]
OUT

EQUAL

A[1..0]

B[1..0]
OUT

EQUAL

A[1..0]

B[1..0]
OUT

EQUAL

WE

CLK0

CLK1

DATAIN[5..0]

WADDR[4..0]

RADDR[4..0]

DATAOUT[5..0]

SYNC_RAM

0

1

D Q
PRE

ENA

CLR

A[5..0]

B[5..0]
OUT[5..0]

MULTIPLIER

SEL
DATAA

DATAB
OUT0

MUX21

SEL
DATAA

DATAB
OUT0

MUX210

0

accu[5..0]
accu1[5..0] data_out[5..0]~reg0

data_out~[5..0]

clk
aclr

data_in[7..0]

data_out[5..0]

Equal1

2' h1 --

Equal3

2' h3 --

Equal0

2' h0 --

Equal2

2' h2 --

MEM~11

MEM

accu1~[5..0]
Mult0

mul[5..0]

Add0

Figure 4: comparison chart for various processors

CONCLUSIONS

In this paper a novel design methodology of FIR-
Processor on system on chip platform for DSP application
is presented. We alleviate the cost-efficient high speed
chip implementation for SoC systems, which offers some
advantages over conventional methods, such as:
• It can be synthesized and fitted to a FPGA/CPLD;
many identical units can be integrated into one chip for
parallel processing.
• It has the flexibility of easy changing values of
coefficients, easy extension to n-tap FIR filter, and easy
• Expansion to outside word using internal tri-state I/O
bus.
• Enable the processor to perform multiple operations
per instruction cycle, thus increasing per-cycle
computational efficiency, and
• Minimize the amount of memory space required to
store DSP programs.
The parameterized cores are an essential component for IP
based SoC design.

Implementation were carried out with an FIR filtering IP
core integrated on to the platform. Results were provided
for timing and area consumption of the whole SoC
platform.

Figure 5:RTL Schematic for FIR Processor

REFERENCES
[1] C.H.Wang, A.T.Erdogan, T.Arslan, "High throughput and

low power FIR filtering IP cares", Proceedings of IEEE
International SOC Conference 2004, pp. 127 –130, Sep.
2004.

[2] M.B.I.Reaz, M.T.Islam, M.S.Sulaiman, M.A.M.Ali,
H.Sarwar, S.Rafique, "FPGA realization of multipurpose
FIR filter", Proceedings of the Fourth International
Conference on Parallel and Distributed Computing,
Applications and Technologies, PDCAT'2003, pp. 912 –
915,Aug. 2003.

[3] A.T.Erdogan, M.Hasan, T.Arslan, "A low power FIR
filtering core", Proceedings of 14th Annual IEEE
International ASIC/SOC Conference 2001, pp. 271 –275,
Sep. 2001.

[4] A.T.Erdogan, T.Arslan, "High throughput FIR filter design
for low power SoC applications", Proceedings of 13th
Annual IEEE International ASIC/SOC Conference 2000, pp.
374 –378, Sep. 2000.

[5] J.Valls, M.M.Peiro, T.Sansaloni, E.Boemo, "Design and
FPGA implementation of digit-serial FIR filters", 1998
IEEE International Conference on Electronics, Circuits and
Systems, Vol. 2, pp. 191 –194, Sep. 1998.

[6] Lee Hanho, G.E.Sobelman, "FPGA-based FIR filters using
digit-serial arithmetic", Proceedings of Tenth Annual IEEE
International ASIC Conference and Exhibit 1997, pp. 225 –
228, Sep. 1997.

[7] HUANG, J.R., IYER, M.K., CHENG, K.T.: ‘A self-test
methodology for IP cores in bus- based programmable
SoCs’, VLSI Test Symposium, 19th IEEE Proceedings on
VTS 2001, 2001 pp. 198 –203.

[8] WILTON, S.J.E., SALEH, R.: ‘Programmable logic IP
cores in SoC design: opportunities and challenges’, Custom
Integrated Circuits, 2001, IEEE Conference on 2001 pp. 63
–66.

[9] KIM, K.W., KWANG, H.B., SHANBHAG, N., LIU, C.L.,
KANG S.M.: ‘Coupling-driven signal encoding scheme for
low-power interface design’, Computer Aided Design, 2000.
ICCAD-2000. IEEE/ACM International Conference on,
2000, pp. 318 -321.

[10] YOO, S.J.; NICOLESCU, G., LYONNARD, D.,
BAGHDADI, A., JERRAYA, A.A.: ‘A generic wrapper
architecture for multi-processor SoC cosimulation and
design’, Hardware/Software Codesign, 2001. CODES 2001.
Proceedings of the Ninth International Symposium on, 2001
pp. 195 -200.

