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Abstract 
The continually increasing integration density of integrated 
circuit, with astronomical increase in fabrication cost and 
enormous time to market portrays important paradigm shift in 
next generation System –on-Chip (SoC) design. This leads more 
programmable designs that can spin a wide range of applications. 
Hence there is a trend away from the fixed SoC to highly flexible 
SoC with improved time to market. The reconfigurability in SoC 
can be achieved either by the Programmable gate arrays [FPGA] 
and/or through Programmable interconnect. The emergence of 
static memory based FPGA that are capable of being 
dynamically reconfigured i.e. partially programmable during run 
time has been a driving force for flexible architecture. At the 
same time, the standardization of the intellectual property [IP] 
deliverables and their wide availability has started gaining 
importance towards expanding the possibility of reconfiguration 
in SoC Synthesis of SoC has become less complicated shortening 
design time, with the IP reuse which could be achieved by 
socketisation. The pre-designed and pre-verified IP blocks are 
obtained from the internal sources or third parties and combined 
onto a single chip. This arises a need of rapid integration of 
communication between different modules embedded in the 
system. The proposed design provides a solution for achieved 
with minimal cost of hardware and software, and improve the 
performance.  In a Hardware design, the hardware complexity of 
the FIR filter is directly proportional to the tap length and the bit-
width of input signal.  To reduce the hardware cost, this can be 
figured out with iteration calculations by software; therefore, a 
co-design of hardware and software may produce cost-efficient 
FIR filters. The key design concept is to build a processor for 
software processing with minimum hardware resources, without 
sacrificing the performance of original FIR filter.  The proposed 
design methodology can be considered as an intellectual property 
(IP) design for FIR filters in system-on-a- chip (SOC) 
environment.  

Introduction 

In recent years, more and more products have started out 
using DSP processors, fueling demand for faster, and 
smaller, cheaper and more energy-efficient integrated 
chips. These smaller, cheaper and more energy-efficient 

integrated chips open the door for a new wave of products 
to implement signal- processing capabilities. Although 
fundamentally related, DSP processors are importantly 
different from general- purpose processors (GPPs) like the 
Intel Pentium. To realize why, we need to know what is 
involved in signal processing. Some of the most common 
functions executed in the digital domain are signal 
filtering, convolution and fast Fourier transform. In 
mathematical terms, these most functions perform a series 
of dot products. This makes for us to the most popular 
operation in DSP: the multiply and accumulate (MAC). 
The major architectural change that discerned DSP 
processors from the early GPPs was the addition of 
specialized hardware that enabled single-cycle 
multiplication. DSP architects also added accumulator 
registers to hold the summation of several multiplication 
products. Accumulator registers are typically wider than 
other registers, often providing extra bits, called guard bits, 
to avoid overflow. Another highly visible difference 
between DSP processors and GPPs lies in their memory 
structure. Typical DSP algorithms require more memory 
bandwidth than the Von Neumann architecture used in 
GPPs. Thus, most DSP processors use some forms of 
Harvard architecture which has two separate memory 
spaces, typically partitioned as program and data 
memories.  
Although, this may seem that DSP applications must pay 
careful attention to numeric accuracy - which is much 
easier to do with a floating-point data path, fixed-point 
machines tend to be cheaper (and faster) than comparable 
floating-point machines. To maintain accuracy without the 
complexity of a floating-point data path, DSP processors 
usually include, in both the instruction set and underlying 
hardware, good support for saturation arithmetic, rounding, 
and shifting.Currently designs are considered at the 
system level.e.g. a module within a design itself represents 
a highly complex component. System Level Integration 
(SLI) is encouraging the trade of complex module designs 
so called, Intellectual Property (IP) between all types of 
providers and end users. This research aims to develop a 
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scheme for implementation of low power high 
performance Digital Signal Processing intensive System-
on-Chip platforms.  
This research will provide an overview of interface 
strategy by which suggests dynamic plugging of various 
IP blocks, with the aid of programmable interconnect to 
enable ever changing system that can be adapted to almost 
any requirement for SoC, Reconfigurable Pipeline Data 
paths [RaPiD]. Simulations will be carried out with an FIR 
filtering on to the platform. Results will be provided for 
timing and power consumption of the whole SoC platform. 
This research will involve synthesis and simulation of 
complete systems with multiple high performances DSP 
IP cores which include blocks for audio and image 
manipulation together with IP cores for transmitting these 
over a range of channels. 

Trends in the DSP Processor Architecture 

The fundamental difference between a DSP processor and 
a generic processor is the DSP Processor’s hardware 
multiplies-accumulate (MAC) block and specialized 
memory and bus structures to facilitate frequent data 
access commonly found in DSP applications. The MAC 
operation is usually the performance bottleneck in most 
DSP applications. DSP processor vendors incorporate 
MAC blocks in their architecture to minimize this 
performance bottleneck. Some DSP processor vendors 
have also tried adding multiple MAC blocks to their 
architecture to boost the overall multiplier bandwidth. For 
example, the TMS320C6411 device from Texas 
Instruments can calculate up to eight 8 × 8-multiplication 
results in a single clock cycle. While adding more MAC 
units may provide more DSP throughput, the processor 
falls behind in raw data processing power for certain data-
intensive DSP functions such as Viterbi encoder/decoder 
and FIR filters. To work around this problem, DSP 
processor vendors have also tried incorporating a 
hardware accelerator coprocessor) block such as the 
Viterbi coprocessor, turbo coprocessor and the enhanced 
filter coprocessor. While such coprocessor blocks provide 
high DSP throughput, they do not cater to all DSP 
applications. Most DSP applications cannot benefit from 
the DSP vendors' predefined hardware accelerator blocks. 
Additionally, such hardware accelerator blocks are fixed, 
do not allow for any level of customization for the specific 
design needs, and can quickly become obsolete in todays. 
 

Efficient CPU Architecture for DSP 
Processors 

The core unit of the FIR-Processor is the embedded CPU, 
which is an eight bit "Von Neumann" machine with single 
accumulator. It has an eight-bit data bus; six-bit address 
bus; neither stack nor status flags are present (Fig. 1).  The 
instruction set contains opcodes: conditional branch, load 
memory into accumulator, store accumulator into memory, 
and add accumulator with memory. 

Figure 1:FIR Processor 

A suggested instruction set 

Fixed-point DSP processor instruction sets are designed 
with two goals in mind. They must: 
• Enable the processor to perform multiple operations per 
instruction cycle, thus increasing per-cycle computational 
efficiency, and 
• Minimize the amount of memory space required to store 
DSP programs. 
To accomplish these goals, DSP processor instruction sets 
generally allow programmers to specify several parallel 
operations in a single instruction. However, to keep the 
word size small, the instructions only permit the use of 
certain registers for certain operations and do not allow 
arbitrary combinations of operations. The net result is that 
DSP processors tend to have highly specialized, 
complicated, and irregular instruction sets. In our 
approach, CPU architecture for a DSP processor, related 
instruction set generally includes 7 categories of 
operations.  
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Arithmetic and logic unit (ALU) 

The 8 bit ALU, shown in Figure 2, implements a wide 
range of arithmetic, logical, and rotate functions. The 
result is transferred to a destination accumulator (A or B) 
or sent to the output bus for memory writing. There are 
two input buses to read words of memory in a cycle and 
write the result to the memory. 

Figure 2: Arithmetic Logic unit 

ALU input takes several forms from several sources. The 
X-input source to the ALU is either 
of the two values: 
• The shifter output (shifted 8-bit data-memory operand or 
a shifted accumulator value). 
• A data-memory operand from data bus (D_data). The Y-
input source to the ALU is any of three values: 
• The value in one of the accumulators (A or B). 
• A data-memory operand from data bus (C_data). 
• The value in T registers. 

Multiplier and adder unit 

The CPU architecture has a 8-bit ×8-bit hardware 
multiplier coupled to a 16-bit dedicated adder. This 
multiplier/adder provides multiply and accumulates 
(MAC) capability in one cycle. The multiplier can 
perform signed, unsigned, and signed/unsigned 
multiplication. The multiplier output can be shifted left by 
one bit to compensate for the extra sign bit generated by 
multiplying two 16-bit 2s-complement numbers in 
fractional mode. The adder’s inputs come from the 
multiplier’s output and from one of the accumulators. 
Once any multiply operation is performed in the unit, the 
result is transferred to a destination accumulator (A or B). 
This structure also has been designed to determine 
absolute value of X-input when Y-input is fed through 

constant one value.Multiply-accumulate instructions such 
as:MAC Xmem, Ymem, src[,dst],which does the 
following operation: (Xmem) × (Ymem) + src → dst 
All of these operations should be performed in just one 
cycle. Dot product that is commonly used in DSP 
applications can be executed with MAC instruction 
embedded in a repeat instruction. 
Registers and memory 
The CPU is accumulator based and supports minimal 
registers. The ALU is 8 eight bits wide without carrying 
bit generation as  the overflow flag.  The PC has a width 
of six bits, which allows addressing 64 bytes of memory.  
The memory space is shared between program code, data 
and I/O devices (tab. 1). 

Table :1 Rigister and memory 

Execution of instructions 

To achieve an efficient design for CPU architecture, we 
had to clearly manifest every aspect of each instruction in 
its hardware implementation. We required discovering 
optimized arithmetic and logical operations enough to 
execute all instructions. In addition, we had to determine 
which component is the best for executing each 
instruction.Fixed-point DSP processor instruction sets are 
designed with two goals in mind. They must: 
• Enable the processor to perform multiple operations per 
instruction cycle, thus increasing per-cycle computational 
efficiency, and• Minimize the amount of memory space 
required to store DSP programs.To achieve these goals, 
DSP processor instruction sets generally allow developers 
to specify several parallel operations in a single instruction. 
However, to keep the word size small, the instructions 
only allow the use of certain registers for certain 
operations and do not allow arbitrary combinations of 
operations. The net result is that DSP processors tend to 
have highly specialized, complicated, and irregular 
instruction sets. 
 
 

Address Purpose 
00-1F Program memory

20-2F External memory or 
devices 

30-33 Constants of coefficient
38 X(n) input register
39 Y(n) output register
3A Result of multiplication
3B Reserved 
3C X(n-3) register
3D X(n-2) register
3E X(n-1) register
3F Temporary A(n) register
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Table: 2 Instructions 

Filter Implementation Structure 

FIR (Finite Impulse Response) filters and IIR (Infinite 
Impulse Response) filters are two primary types of digital 
filters used in digital signal processing applications.  In 
comparison, FIR filters require more memory and/or 
calculation to achieve a given filter response characteristic, 
but they offer some advantages, such as:  
• They have "phase linearity" characteristic.  The output 
signal is delayed, but its phase is not distorted.  
• They are simple to implement by using "finite-precision" 
arithmetic and fractional arithmetic.  
• They can use coefficients less than 1.0 in magnitude and 
simplify the implementation with fixed-point processors.  
• They are suitable for multi-rate applications by 
"decimation", "interpolation" or both. 
Finite Impulse Response (FIR) IP Cores are important 
blocks in both audio and video signal processing. In 
digital systems, noise reduction, echo cancellation etc are 
repetitively executed with the help of FIR filters.The main 
objective of this work is to present a design methodology 
for an FIR Filtering IP Core that is parameterized and 
programmable. The sequential implementation is selected 
to minimize the overheads of design. The proposed 
architecture has capability of run time programmability for 
SoC design. Type of filter, number of coefficients, word 
length for input data and filter coefficients can be changed.   
The objective of the following simulations is to 
experiment with a 4-tap FIR filter built with the designed 
processor and implemented with sequential method saving 
hardware resources.  The input and output signals to and 
from the filter are the unsigned 8-bit x [7..0] and the 
unsigned 8-bit y [7..0]. This filter implements the 
following FIR equation:  
 y(n) = x(n)h(n) + x(n-1)h(n-1) + x(n-2)h(n-2) + x(n-
3)h(n-3)  (1) 
where h(n) = 7/16, h(n-1) = 5/16, h(n-2) = 3/16, h(n-3) = 
1/16.  
This equation can be rewritten as:  

y(n) = 1/16 * 7x(n) + 1/16 *5x(n-1) +1/16 * 3x(n-2) + 
1/16 *1x(n-3) (4.1)  
or  
y(n) = 1/16 * (7x(n) + 5x(n-1) + 3x(n-2) + 1x(n-3))              
(2) 
The equation 2 sums all multiply products then divided by 
16, this will make an overflow calculation on the 8 bits 
ALU, therefore each multiply product should divided by 
16 (i.e. shifts 4 bits to right) first and sums later for the 
FPGA design. 

SYNTHESIZES AND PERFORMANCES 

We have analyzed area and speed of di�erent FIR filters 
architecture, using chip resources of four versions of 
hardware implementations are listed in table 3. 
Simulations were performed for generated data samples 
using modelsim simulator. This was followed by 
computing their area and speed with quatrus II EDA tool. 
In all cases, a clock rate of 25MHz and 1.8V were 
assumed.The 8- bits unsigned multiplier can be 
synthesized either by logic element or by dedicated 
multiplier circuit (V1.1 and V1.2).  It occupies 34 
combinational logic cells or one 9-bits DSP block 
respectively.  To compare the performance, a pure FIR 
hardware circuit was synthesized with the same type 
FPGA chip (V2.0). Although the version 1.1 and 1.2 uses 
the most combinational logic cells (LC), its multiplier is in 
the LCs, this made the design synthesis suitable for FPGA 
chips without internal DSP blocks. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: simulation result 

Table 3: Hardware implementation result 

Imple
mentat

ion 

LC 
Com
binati
onal

LC 
Regist

ers 

9 bits 
DSP 

Block 

Total 
logic 
eleme

nt 

Fmax (Mhz)

V1.1 145 71 0 171 79.62 
V1.2 123 71 1 141 84.34 
V2.0 77 57 0 102 123.46 
V3.0 29 18 1 35 364.96 

Mnemonic Description 
LD Smem [,SHIFT], 

dst, Load and store instructions 

ADD Xmem, 
Ymem, dst, Arithmetic instructions 

XORM #lk, Smem, Logical instructions 

ST src, Ymem  || 
ADD Xmem, dst, 

Arithmetic instructions with 
parallel store and  load 

MAC Xmem, 
Ymem, src[,dst], Multiply-accumulate instructions
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Figure 4: comparison chart for various processors 

CONCLUSIONS 

In this paper a novel design methodology of FIR-
Processor on system on chip platform for DSP application   
is presented.  We alleviate the cost-efficient high speed 
chip implementation for SoC systems, which offers some 
advantages over conventional methods, such as:  
• It can be synthesized and fitted to a FPGA/CPLD; 
many identical units can be integrated into one chip for 
parallel processing.  
• It has the flexibility of easy changing values of 
coefficients, easy extension to n-tap FIR filter, and easy  
• Expansion to outside word using internal tri-state I/O 
bus. 
• Enable the processor to perform multiple operations 
per instruction cycle, thus increasing per-cycle 
computational efficiency, and 
• Minimize the amount of memory space required to 
store DSP programs. 
The parameterized cores are an essential component for IP 
based SoC design.  

Implementation were carried out with an FIR  filtering  IP 
core integrated on  to the  platform. Results were provided 
for timing and area consumption of the whole SoC 
platform. 

Figure 5:RTL Schematic for FIR Processor  
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