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Summary 
For a research project into the value of serious games — games 

that teach and educate — in software engineering and project 

management education, a game called Simsoft was developed. 

Two keys parts of Simsoft were the system dynamics engine that 

captured the fundamental causal relationships of the software 

project being modelled; and the Java dashboard through which 

the players entered their project decisions. Java also provided a 

means of saving the players individual decisions so these could 

later be analysed and replayed. While there are currently no Java 

libraries for implementing system dynamic models, a system 

dynamics model is simply a collection of non-linear differential 

equations, and open-source Java libraries for these do exist. 

Therefore, it is possible to implement a system dynamics model 

in Java and take advantage of the features of a powerful, general 

purpose programming language. This paper describes how the 

model behind Simsoft was created using system dynamics 

modeling tool called iThink and how the model was subsequently 

implemented in Java using the Apache Commons Mathematics 

library. 
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1. System Dynamics 

1.1 Background and History 

In the late 1950s, Jay Forrester of the Sloan School of 

Management at the Massachusetts Institute of Technology 

(MIT) was asked by General Electric to review the 

operations of their Kentucky appliance parts plant. The 

company was concerned about the oscillating nature of 

their production cycles that often saw periods of intense 

activity followed by times of virtual dormancy during 

which workers had to be laid off. Fluctuating demand and 

normal business cycles did not seem to adequately explain 

the situation. Coming from an electrical engineering 

background and with a keen interest in management 

science, Forrester approached the problem systematically, 

but with just a pencil and a note pad. Starting with 

columns for inventory, employees and orders, and 

factoring in: 

 

the policies they were following, one could decide how 

many people would be hired in the following week. This 

gave a new condition of employment, inventories, and 

production [1]. 

 

Forrester’s calculations amounted to a simulation of the 

system operating at General Electric’s plant. 

 

Stemming from this first analysis came an article for the 

Harvard Business Review in 1958 entitled “Industrial 

Dynamics - A Major Breakthrough for Decision Makers” 

with the theme being developed and expanded in the 

seminal work, Industrial Dynamics [1, 2]. Industrial 

dynamics became system dynamics as it came to be used 

in areas other than industry.  

 

For some time following the publication of Industrial 

Dynamics, system dynamics was used as a tool for looking 

at big-picture issues such as urban decay, major 

sociological conditions and world economics [3-5]. In 

more recent times, system dynamics has been finding a 

purpose for itself in a range of business and social 

applications. Instrumental in this change have been Peter 

Senge’s The Fifth Discipline [6], and the development of 

intuitive, graphical software packages that have made 

system dynamics modelling more accessible by hiding the 

computer source-code look of traditional models. System 

dynamics has also found a place for itself in a number of 

primary, secondary, and tertiary institutions in the United 

States of America, Australia and Europe, well beyond its 

ground zero at MIT.  

 

To more formally define system dynamics, it could be said 

that it: 

 

…is concerned with creating models or representations of 

real world systems of all kinds and studying their 

dynamics (or behaviour). In particular, it is concerned 

with improving (controlling) problematic system 

behaviour… The purpose in applying System Dynamics is 

to facilitate understanding of the relationship between the 

behaviour of the system over time and its underlying 

structure and strategies/policies/ decision rules [7]. 

 

A key element of this definition is the need to build a 

computer model of the system under consideration. The 

model is used to help understand the patterns of change or 

dynamics that a system exhibits over time and to identify 

the conditions that cause these patterns to be stable or 

unstable. This knowledge of the system can then suggest 

what kinds of prescriptions for governing it will work and 

what kinds may not. 
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However, building system dynamics models demands 

persistence. Translating real-world information into model 

elements is still an inexact science - trial and error can be 

just as valid as considered judgment based on experience. 

Perhaps a useful parallel can be drawn with that other hard, 

inexact activity: finding object-oriented classes. Bjarne 

Stroustrup, the creator of C++, notes that in design and 

programming there are no cookbook methods that can 

replace intelligence, experience and good taste; even he 

just tries things [8]. The lesson for system dynamics 

modellers would seem to be the same: just start, try things, 

take advice of experienced modellers and then keep 

iterating. 

 

Yet the effort of building a system dynamics model has 

some benefits: 

 

• Modelling brings about an understanding of the 

system because of the analytical and critical thinking 

process it calls for. It helps bring to the surface the 

mental models driving the current situation - those 

models  

 

...that one carries around in one’s head for dealing 

with a problem or situation. Such a model maybe 

based on experience or intuition, or on folklore and 

myth; it may be influenced by politics and a wide 

spectrum of human emotions [9]   

 

Mental models may also be totally inappropriate or 

counter-productive, or equally priceless. But unless 

they are turned into something more tangible, one 

may never know. 

 

• System dynamics models make room for both 

quantitative or hard variables— things that can be 

measured directly like program size, staffing numbers 

or dollars spent—; and qualitative or soft variables— 

such as motivation, commitment, confidence or 

perceptions. Soft variables have traditionally been left 

out of engineering models because they are difficult to 

measure and their importance may have been 

underestimated. Yet,  

 

...if you omit soft variables you run the risk of failing 

to capture something essential to driving human 

affairs. Leaving out something so essential is the only 

hypothesis that you can reject with absolute certainty! 

[10]. 

 

A system dynamics model can therefore be more 

informed about its problem space.  

 

With a system dynamics model in hand and George Box’s 

tongue-in-cheek caution in mind (all models are wrong, 

but some are useful), the model can be run. Certain 

variables can be held steady while others are changed, it 

can be placed under stress and tested for sensitivities and 

leverage points. In short, the model can be experimented 

with to better understand the present situation and to 

search for alternatives for improvement. It has been stated 

that: 

 

The alternatives may come from intuitive insights 

generated during the [initial analysis], from experience of 

the analyst, from proposals advanced by people in the 

operating system [or in the] experience, art, and skill for 

imagining the most creative and powerful policy 

alternatives [11]. 

 

Peter Senge points out that the causes of many problems  

 

...lay in the very well-intentioned policies designed to 

alleviate them. These problems were actually systems that 

lured policy makers into interventions that focused on 

obvious symptoms not underlying causes, which produced 

short-term benefit but long term malaise, and fostered the 

need for still more symptomatic interventions [12]. 

 

By simulating a problem space using a system dynamics 

model, it is possible to potentially make more informed 

decisions about events beyond our bounded rationality safe 

from the dangers of real-world experimentation. 

1.2 Stock and Flow Diagrams 

At its lowest level, a system dynamics model looks like 

computer source code, but even from the earliest days 

there were graphical representations to help modellers 

visualise their problem space. The stock-and-flow notation 

(Fig. 1), first described by Forrester [1], consists of a small 

number of symbols that together form a grammar telling a 

story: 

 

• Stocks or levels can be thought of as nouns since they 

represent an accumulation of something (money, 

inventory, staff, morale, etc.) at a point in time.  

• Flows or rates determine how the stocks will be filled 

or drained and so are analogous to verbs. Stuff (again 

money, inventory, staff, morale, etc.) flows through 

the pipe of the flow in the direction of the arrow and 

at a rate determined by the flow regulator in the 

middle. The flow regulator is fitted with a spigot that 

can be conceptually tightened or loosened by other 

variables within the model. The cloud at the end of the 

flow represents the boundary of the model. 

• Converters modify flows within the system, just as 

adverbs modify verbs. They are often used to break 
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out the detail of the logic that might otherwise be 

buried within a flow and might be used to represent 

constant values. Converters typically influence the 

behaviours of the regulators on the flows. 

• Connectors tie the other three building blocks together. 

They represent inputs and outputs, not inflows and 

outflows. Connectors do not take on numerical 

values— they merely transmit values taken on by 

other building blocks. 

 

Behind these symbols are stored the functions and values 

(the 'source code' of the model) that drive the simulation 

and ultimately produce the output. For a system dynamics 

model, the output is a multi-scale graph (see Fig. 4 later) 

that shows how certain variables of interest change over 

time and in relation to each other.  

 

 

 

 

 

 

 

 

Fig. 1: Stock and flow format of system dynamics models. 

2. Basic Mathematics of System Dynamics 

The basic mathematics of a system dynamics model is a 

set of coupled non-linear first-order differential equations 

[1, 13]. The advance of time is broken into small intervals 

of equal length (typically called delta time or DT), which 

is small enough that we can assume change will be 

constant over that period. For each DT, the model's stocks, 

rates, converters and auxiliary variables are evaluated to 

yield a new value, and this value is used as input for 

continuing calculations. 

 

 

Fig. 2: Calculations at time K 

In Fig. 2 [1], J, K, and L represent successive points in 

time with K being the present. Stock equations are 

evaluated first and the values are then available for use in 

the rate equations. Using the simple stock-and-flow 

diagram in Fig. 1: 

 

����� = � �	
��	������ − 	
��	����������
�

�
 (1) 

 

That is, the present value of Stock at time K is equal to the 

value of Stock at time J, plus the difference between the 

inflow rate and the outflow rate, multiplied by DT. 

Flows or rates determine how stocks are filled or depleted. 

To cater for the delay characteristics of information-

feedback systems, a rate equation is given by the outflow 

rate of a first-order exponential delay. For example: 

 

�����	��	���	� = 	 �����	��	���	�
���������	������� (2) 

 

There are many other specialised functions available to 

system dynamic modellers, but those for stocks and rates 

represent the majority of most models.  

3. System Dynamics and Java 

3.1 Simsoft 

For a research project into the value of serious games as 

teaching tools for software engineers and software project 

managers, a game — Simsoft — was developed that had 

as its engine a system dynamics model. Physically, 

Simsoft comes in two pieces: 

 

• An A0-sized printed game board around which the 

players gather to discuss the current state of the 

project and to consider their next move. The board 

shows the flow of the game while plastic counters are 

used to represent the staff of the project. Poker chips 

represent the team’s budget, with which they can 

purchase more staff, and from which certain game 

events may draw or reimburse amounts depending on 

decisions made during the course of the game. 

• A simple Java-based dashboard through which the 

players can see the current and historical state of the 

project through a series of simple reports, messages, 

and other information; and can adjust the project’s 

settings, for example to recruit new staff, before 

advancing the game’s time to create the state of the 

project. 

 

The aim of the game is to complete the project on time and 

with funds (poker chips) left over. At the start of the game 

there is a pool of work to do. This pool is represented on 
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the game board with small plastic counters in the 

Do box. These counters can be thought of as Use Cases or 

items in a work breakdown structure; whatever is most 

familiar to the players. Depending on the resources 

available to do the work, the units of work (the counters) 

move from the Work To Do box to a 

where the work is reviewed before passing to the 

Completed Work box. Not unexpectedly, some work will 

fail the review and go to the Rework box, before passing 

back to For Review and trying again to get to 

Work. 

 

The work-to-do, review, rework, work-completed cycle is 

a fundamental project work structure first discussed and 

modelled by Roberts [14]. Roberts’ initial work has been 

expanded greatly by subsequent researchers who have 

added rich details based on actual projects (see 

comprehensive survey of the field), but the underlying 

work structure remains unchanged. 

 

Of interest here is the Java dashboard and the system 

dynamics model that implements the work

rework, work-completed cycle. The original design of 

these two components called for a simple but attractive 

graphical user interface on top of the stock

plumbing of the system dynamics model; and a means of 

capturing the decisions made by the players for later 

analysis. While there are a number of software packages 

that can create a graphical user interface 

dynamics models [16-18], some problems 

encountered: 

 

• There were limited features for creating attractive, 

interactive user interfaces. 

• All packages required some sort of 

software to run the model. 

• None provided a means to save the individual 

decisions of multiple teams in a single database so 

that the decisions could be later analysed or replayed.

• There is a .NET software development kit allows 

system dynamics models to be integrated with 

custom-designed software, but this limits further 

development and deployment to Windows PCs, 

the initial purchase cost and ongoing licensing 

were relatively expensive.  

 

Java was chosen because it addressed each of the above 

problems. Even so, there are currently no Java libraries for 

implementing system dynamic models. But, a system 

dynamics model is simply a collection of non

differential equations, and open-source Java libraries for 

these do exists, therefore it is possible to implement a 

system dynamics model in Java. 
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3.2 Model Design in iThink

 

Building a system dynamics model 

equations is time-consuming and error prone. Therefore, 

the model behind Simsoft was first buil

graphical modelling package called iThink

model included almost a hundred stock

associated equations, so the aim here is to focus on a small 

part of the model— that of worker burnout

Homer [19]. 

 

Burnout begins when a person

case of Simsoft, a software engineer on a development 

project) tries to meet unmet exp

longer hours. By working longer hours they are exposed 

more of the normal stress of

finite store of “adaptive energy”

quickly and they also have less time to recover. This 

depleted energy level may leave the person even less 

capable of meeting their expectations, 

to make mistakes that have to be fixed at the expense of 

real progress. In response, they 

which will deplete their energy levels still more. Unless 

the person is granted some respite, this 

continue until they are leave in frustration or are 

burned out and no longer able to contribute to the project. 

 

Fig. 3 shows how burnout can be modelled in iThink.

 

Fig.3: Worker burnout modelled with iThink

 Here, a person has a stock of energy 

that is depleted or recovered depending on the number of 

hours they work each week.

each week on energy recovery and depletion are given in 

Table 1. 

The recovery and depletion rates are nominal values 

normalised around a 40-hour week. As the number of 

hours worked each week beyond this point increases, the

depletion rate increases; because the person is working 
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3.2 Model Design in iThink 

Building a system dynamics model by hand-coding 

consuming and error prone. Therefore, 

he model behind Simsoft was first built and tested using a 

graphical modelling package called iThink [16]. The final 

included almost a hundred stocks, flows and their 

associated equations, so the aim here is to focus on a small 

that of worker burnout as described by 

a person working on a project (in the 

case of Simsoft, a software engineer on a development 

t unmet expectations by working 

By working longer hours they are exposed to 

he normal stress of work and consequently their 

finite store of “adaptive energy” [20, 21] is depleted more 

have less time to recover. This 

depleted energy level may leave the person even less 

capable of meeting their expectations, or may cause them 

to make mistakes that have to be fixed at the expense of 

real progress. In response, they may try to work harder, 

deplete their energy levels still more. Unless 

the person is granted some respite, this viscous cycle may 

continue until they are leave in frustration or are they 

burned out and no longer able to contribute to the project.  

shows how burnout can be modelled in iThink. 

 

: Worker burnout modelled with iThink 

Here, a person has a stock of energy available to do work 

that is depleted or recovered depending on the number of 

week. The effect of hours worked 

on energy recovery and depletion are given in 

The recovery and depletion rates are nominal values 

hour week. As the number of 

hours worked each week beyond this point increases, the 

depletion rate increases; because the person is working 
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longer days, evenings, or even weekends, there is less time 

to recover, so the recovery rate slows. 

Table 1: Effect of hours worked on energy recovery and depletion

Hours per week Recovery rate 

0 1.30 

20 1.20 

40 1.10 

60 0.70 

80 0.50 

100 0.35 

120 0.25 

 

It should be noted that the recovery and depletion rates are 

known as soft or qualitative variables because they are 

based on precise numerical data; such data does not exist 

[19]. However, the compass of a system dynamics model 

means that the rules by which it is calibrated and 

will be slightly different from other modelling techniques. 

For example, the output of a system dynamics model is 

meant to be read, not for particular time

but for qualitative behavioural patterns such as growth, 

decline, oscillation, stability, and instability 

of understanding general dynamic tendencies means that 

the model’s parameters are less reliant on

numerical data: 

 

As long as the purpose of your model is not to predict 

numerical magnitude of particular soft variables, you can 

greatly benefit from including them in your models. Doing 

so will cause you to think in a rigorous manner about the 

relationships the variables bear to other variables in the 

system.[10] 

 

The calibration of soft variables may also seem an 

arbitrary process in which the model is ‘made’ to respond 

in a certain manner. However, the way in which the soft 

(and hard) variables react must be internally consistent, 

that is, they must generate behaviour that matches what is 

observed in the actual system [10]. 

 

With this in mind, when this burnout model is run, 

scale graph is produced (Fig. 4). 

 

Viewed over a 13-month period, the person starts out by 

working a 40-hour week. Every couple of weeks there is a 

spike and they have to work 50-hour weeks for a short 

time (this pattern can, of course, be changed 

real-world circumstance). The graph shows that the 

person’s energy levels rise and fall in line with oscillations 

in the work week, but the overall trend is downwards 

because the constant spikes in work never allow enough 

time for proper recovery. 
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Fig. 4: Worker burnout over a 13

With this portion of the model defined, it only remained to 

implement it in Java. 

3.3 Implementation in Java

The model behind Simsoft was 

using the open source Apache Commons Mathematics 

library [23]. Among its many function

provides a programming interface for solving differential 

equations. 

 

To implement the system dynamics model shown in Fig

we need to:  

 

• Create a class, EnergyEquations

FirstOrderDifferentialEquations

• Pass the class to an integrator 

different time points. 

Mathematics library provides a range of integrator, 

but for system dynamics models, the Euler or Runge

Kutta methods are most often used.

 

The key method in 

computeDerivatives— the one that evaluates the stock 

equation given at (1). 

 
/** 

 * Get the current time derivative of the state vector.

 *  

 * @param t current value of the independent time 

variable 

 * @param y array containing the current value of the 

state vector 

* @param yDot placeholder array where to put the time 

derivative of the state vector

*/ 

public void computeDerivatives(double t, double[] y, 

double[] yDot) throws DerivativeException {

 

yDot[0] = y[0] * (recoveryRate 

} 

 

EnergyEquations is covered by the following unit test:
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: Worker burnout over a 13-month period 

With this portion of the model defined, it only remained to 

in Java 

model behind Simsoft was implemented in Java by 

using the open source Apache Commons Mathematics 

Among its many functions, this library 

provides a programming interface for solving differential 

To implement the system dynamics model shown in Fig. 3, 

EnergyEquations, that implements the 

FirstOrderDifferentialEquations interface.. 

Pass the class to an integrator to calculate values at 

different time points. The Apache Commons 

Mathematics library provides a range of integrator, 

ut for system dynamics models, the Euler or Runge-

Kutta methods are most often used. 

The key method in EnergyEquations is 

the one that evaluates the stock 

* Get the current time derivative of the state vector. 

* @param t current value of the independent time 

* @param y array containing the current value of the 

* @param yDot placeholder array where to put the time 

e state vector 

public void computeDerivatives(double t, double[] y, 

double[] yDot) throws DerivativeException { 

recoveryRate - depletionRate); 

red by the following unit test: 
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public void testEnergyEquationsDerivatives() throws 

Exception { 

 

FirstOrderIntegrator integrator = new 

EulerIntegrator(0.25); 

FirstOrderDifferentialEquations energy = new 

EnergyEquations(0.7, 1.50);  

 

StepHandler stepHandler = new StepHandler() { 

   public void handleStep(StepInterpolator interpolator, 

boolean isLast) throws DerivativeException { 

double t = interpolator.getCurrentTime(); 

double[] y = interpolator.getInterpolatedState(); 

System.out.println(t + "\t" + y[0]); 

} 

   public boolean requiresDenseOutput() {return false;} 

}; 

   integrator.setStepHandler(stepHandler); 

   integrator.integrate(energy, 

 0.75,              // start time 

 new double[]{1.0}, // initial stock value 

    13,                // end time 

   new double[1]);   // storage 

} 

 

First, an Euler integrator is defined with a step size of 0.25. 

Then, the EnergyEquations class is constructed and 

initialised with recovery and depletion rates of 0.7 and 

1.50 respectively, being values from Table 1 that equate to 

a 60-hour week. (An inner StepHandler class is created so 

we can see the output at each step). Finally, the 

EnergyEquations instance is passed to the integrator along 

with the initial conditions of the run. The first data items 

are shown Table 2. 

Table 2: Initial data items from 

Time Energy Level Value 

1.00 0.80 

1.25 0.64 

1.50 0.512 

1.75 0.4096 

2.00 0. 32768 

2.25 0. 26214400000000004 

…  

 

In essence, the same pattern can be followed for all stocks. 

4. Conclusions 

System dynamics is concerned with building quantitative 

and qualitative models of complex problem situations and 

then experimenting with and studying the behaviour of 

these models over time. Often such models will 

demonstrate how unappreciated causal relationships, 

dynamic complexity, and structural delays may lead to 

counter-intuitive outcomes of less-informed efforts to 

improve the situation. System dynamic models also make 

room for soft factors such as burnout so that problem 

spaces can ultimately be better understood and managed. 

 

These features made system dynamics an obvious choice 

for creating the model behind Simsoft because the game 

was trying to demonstrate some of the dynamic 

complexities of software development projects. However, 

the means for implementing system dynamic models and 

integrating them with custom-designed graphical user 

interfaces and databases are limited. 

 

By using simple open source tools, such as the Apache 

Commons Mathematics library, it is possible to build 

system dynamics models that integrate with general 

purpose programming languages such as Java, meaning 

the models can draw upon all the features of those 

languages. For now this integration is largely manual: 

create the system dynamics model using tools such as 

iThink and then translate this into a matching class 

structure in Java. Based on the results presented here, 

further research is being conducted into ways of 

automating this translation and being able to perform 

round-trip translations. 
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