
IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

43

Manuscript received July 5, 2011

Manuscript revised July 20, 2011

Implementing System Dynamics Models in JavaImplementing System Dynamics Models in JavaImplementing System Dynamics Models in JavaImplementing System Dynamics Models in Java

C. Caulfield
†
, D. Veal

††
, S. P. Maj

†††

Edith Cowan University, Perth, Western Australia

Summary
For a research project into the value of serious games — games

that teach and educate — in software engineering and project

management education, a game called Simsoft was developed.

Two keys parts of Simsoft were the system dynamics engine that

captured the fundamental causal relationships of the software

project being modelled; and the Java dashboard through which

the players entered their project decisions. Java also provided a

means of saving the players individual decisions so these could

later be analysed and replayed. While there are currently no Java

libraries for implementing system dynamic models, a system

dynamics model is simply a collection of non-linear differential

equations, and open-source Java libraries for these do exist.

Therefore, it is possible to implement a system dynamics model

in Java and take advantage of the features of a powerful, general

purpose programming language. This paper describes how the

model behind Simsoft was created using system dynamics

modeling tool called iThink and how the model was subsequently

implemented in Java using the Apache Commons Mathematics

library.

Key words:
 system dynamics, Java, iThink, serious games

1. System Dynamics

1.1 Background and History

In the late 1950s, Jay Forrester of the Sloan School of

Management at the Massachusetts Institute of Technology

(MIT) was asked by General Electric to review the

operations of their Kentucky appliance parts plant. The

company was concerned about the oscillating nature of

their production cycles that often saw periods of intense

activity followed by times of virtual dormancy during

which workers had to be laid off. Fluctuating demand and

normal business cycles did not seem to adequately explain

the situation. Coming from an electrical engineering

background and with a keen interest in management

science, Forrester approached the problem systematically,

but with just a pencil and a note pad. Starting with

columns for inventory, employees and orders, and

factoring in:

the policies they were following, one could decide how

many people would be hired in the following week. This

gave a new condition of employment, inventories, and

production [1].

Forrester’s calculations amounted to a simulation of the

system operating at General Electric’s plant.

Stemming from this first analysis came an article for the

Harvard Business Review in 1958 entitled “Industrial

Dynamics - A Major Breakthrough for Decision Makers”

with the theme being developed and expanded in the

seminal work, Industrial Dynamics [1, 2]. Industrial

dynamics became system dynamics as it came to be used

in areas other than industry.

For some time following the publication of Industrial

Dynamics, system dynamics was used as a tool for looking

at big-picture issues such as urban decay, major

sociological conditions and world economics [3-5]. In

more recent times, system dynamics has been finding a

purpose for itself in a range of business and social

applications. Instrumental in this change have been Peter

Senge’s The Fifth Discipline [6], and the development of

intuitive, graphical software packages that have made

system dynamics modelling more accessible by hiding the

computer source-code look of traditional models. System

dynamics has also found a place for itself in a number of

primary, secondary, and tertiary institutions in the United

States of America, Australia and Europe, well beyond its

ground zero at MIT.

To more formally define system dynamics, it could be said

that it:

…is concerned with creating models or representations of

real world systems of all kinds and studying their

dynamics (or behaviour). In particular, it is concerned

with improving (controlling) problematic system

behaviour… The purpose in applying System Dynamics is

to facilitate understanding of the relationship between the

behaviour of the system over time and its underlying

structure and strategies/policies/ decision rules [7].

A key element of this definition is the need to build a

computer model of the system under consideration. The

model is used to help understand the patterns of change or

dynamics that a system exhibits over time and to identify

the conditions that cause these patterns to be stable or

unstable. This knowledge of the system can then suggest

what kinds of prescriptions for governing it will work and

what kinds may not.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

44

However, building system dynamics models demands

persistence. Translating real-world information into model

elements is still an inexact science - trial and error can be

just as valid as considered judgment based on experience.

Perhaps a useful parallel can be drawn with that other hard,

inexact activity: finding object-oriented classes. Bjarne

Stroustrup, the creator of C++, notes that in design and

programming there are no cookbook methods that can

replace intelligence, experience and good taste; even he

just tries things [8]. The lesson for system dynamics

modellers would seem to be the same: just start, try things,

take advice of experienced modellers and then keep

iterating.

Yet the effort of building a system dynamics model has

some benefits:

• Modelling brings about an understanding of the

system because of the analytical and critical thinking

process it calls for. It helps bring to the surface the

mental models driving the current situation - those

models

...that one carries around in one’s head for dealing

with a problem or situation. Such a model maybe

based on experience or intuition, or on folklore and

myth; it may be influenced by politics and a wide

spectrum of human emotions [9]

Mental models may also be totally inappropriate or

counter-productive, or equally priceless. But unless

they are turned into something more tangible, one

may never know.

• System dynamics models make room for both

quantitative or hard variables— things that can be

measured directly like program size, staffing numbers

or dollars spent—; and qualitative or soft variables—

such as motivation, commitment, confidence or

perceptions. Soft variables have traditionally been left

out of engineering models because they are difficult to

measure and their importance may have been

underestimated. Yet,

...if you omit soft variables you run the risk of failing

to capture something essential to driving human

affairs. Leaving out something so essential is the only

hypothesis that you can reject with absolute certainty!

[10].

A system dynamics model can therefore be more

informed about its problem space.

With a system dynamics model in hand and George Box’s

tongue-in-cheek caution in mind (all models are wrong,

but some are useful), the model can be run. Certain

variables can be held steady while others are changed, it

can be placed under stress and tested for sensitivities and

leverage points. In short, the model can be experimented

with to better understand the present situation and to

search for alternatives for improvement. It has been stated

that:

The alternatives may come from intuitive insights

generated during the [initial analysis], from experience of

the analyst, from proposals advanced by people in the

operating system [or in the] experience, art, and skill for

imagining the most creative and powerful policy

alternatives [11].

Peter Senge points out that the causes of many problems

...lay in the very well-intentioned policies designed to

alleviate them. These problems were actually systems that

lured policy makers into interventions that focused on

obvious symptoms not underlying causes, which produced

short-term benefit but long term malaise, and fostered the

need for still more symptomatic interventions [12].

By simulating a problem space using a system dynamics

model, it is possible to potentially make more informed

decisions about events beyond our bounded rationality safe

from the dangers of real-world experimentation.

1.2 Stock and Flow Diagrams

At its lowest level, a system dynamics model looks like

computer source code, but even from the earliest days

there were graphical representations to help modellers

visualise their problem space. The stock-and-flow notation

(Fig. 1), first described by Forrester [1], consists of a small

number of symbols that together form a grammar telling a

story:

• Stocks or levels can be thought of as nouns since they

represent an accumulation of something (money,

inventory, staff, morale, etc.) at a point in time.

• Flows or rates determine how the stocks will be filled

or drained and so are analogous to verbs. Stuff (again

money, inventory, staff, morale, etc.) flows through

the pipe of the flow in the direction of the arrow and

at a rate determined by the flow regulator in the

middle. The flow regulator is fitted with a spigot that

can be conceptually tightened or loosened by other

variables within the model. The cloud at the end of the

flow represents the boundary of the model.

• Converters modify flows within the system, just as

adverbs modify verbs. They are often used to break

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

45

out the detail of the logic that might otherwise be

buried within a flow and might be used to represent

constant values. Converters typically influence the

behaviours of the regulators on the flows.

• Connectors tie the other three building blocks together.

They represent inputs and outputs, not inflows and

outflows. Connectors do not take on numerical

values— they merely transmit values taken on by

other building blocks.

Behind these symbols are stored the functions and values

(the 'source code' of the model) that drive the simulation

and ultimately produce the output. For a system dynamics

model, the output is a multi-scale graph (see Fig. 4 later)

that shows how certain variables of interest change over

time and in relation to each other.

Fig. 1: Stock and flow format of system dynamics models.

2. Basic Mathematics of System Dynamics

The basic mathematics of a system dynamics model is a

set of coupled non-linear first-order differential equations

[1, 13]. The advance of time is broken into small intervals

of equal length (typically called delta time or DT), which

is small enough that we can assume change will be

constant over that period. For each DT, the model's stocks,

rates, converters and auxiliary variables are evaluated to

yield a new value, and this value is used as input for

continuing calculations.

Fig. 2: Calculations at time K

In Fig. 2 [1], J, K, and L represent successive points in

time with K being the present. Stock equations are

evaluated first and the values are then available for use in

the rate equations. Using the simple stock-and-flow

diagram in Fig. 1:

����� = � �	
��	������ − 	
��	����������
�

�
 (1)

That is, the present value of Stock at time K is equal to the

value of Stock at time J, plus the difference between the

inflow rate and the outflow rate, multiplied by DT.

Flows or rates determine how stocks are filled or depleted.

To cater for the delay characteristics of information-

feedback systems, a rate equation is given by the outflow

rate of a first-order exponential delay. For example:

�����	��	���	� = 	 �����	��	���	�
���������	������� (2)

There are many other specialised functions available to

system dynamic modellers, but those for stocks and rates

represent the majority of most models.

3. System Dynamics and Java

3.1 Simsoft

For a research project into the value of serious games as

teaching tools for software engineers and software project

managers, a game — Simsoft — was developed that had

as its engine a system dynamics model. Physically,

Simsoft comes in two pieces:

• An A0-sized printed game board around which the

players gather to discuss the current state of the

project and to consider their next move. The board

shows the flow of the game while plastic counters are

used to represent the staff of the project. Poker chips

represent the team’s budget, with which they can

purchase more staff, and from which certain game

events may draw or reimburse amounts depending on

decisions made during the course of the game.

• A simple Java-based dashboard through which the

players can see the current and historical state of the

project through a series of simple reports, messages,

and other information; and can adjust the project’s

settings, for example to recruit new staff, before

advancing the game’s time to create the state of the

project.

The aim of the game is to complete the project on time and

with funds (poker chips) left over. At the start of the game

there is a pool of work to do. This pool is represented on

IJCSNS International Journal of Computer

46

the game board with small plastic counters in the

Do box. These counters can be thought of as Use Cases or

items in a work breakdown structure; whatever is most

familiar to the players. Depending on the resources

available to do the work, the units of work (the counters)

move from the Work To Do box to a

where the work is reviewed before passing to the

Completed Work box. Not unexpectedly, some work will

fail the review and go to the Rework box, before passing

back to For Review and trying again to get to

Work.

The work-to-do, review, rework, work-completed cycle is

a fundamental project work structure first discussed and

modelled by Roberts [14]. Roberts’ initial work has been

expanded greatly by subsequent researchers who have

added rich details based on actual projects (see

comprehensive survey of the field), but the underlying

work structure remains unchanged.

Of interest here is the Java dashboard and the system

dynamics model that implements the work

rework, work-completed cycle. The original design of

these two components called for a simple but attractive

graphical user interface on top of the stock

plumbing of the system dynamics model; and a means of

capturing the decisions made by the players for later

analysis. While there are a number of software packages

that can create a graphical user interface

dynamics models [16-18], some problems

encountered:

• There were limited features for creating attractive,

interactive user interfaces.

• All packages required some sort of

software to run the model.

• None provided a means to save the individual

decisions of multiple teams in a single database so

that the decisions could be later analysed or replayed.

• There is a .NET software development kit allows

system dynamics models to be integrated with

custom-designed software, but this limits further

development and deployment to Windows PCs,

the initial purchase cost and ongoing licensing

were relatively expensive.

Java was chosen because it addressed each of the above

problems. Even so, there are currently no Java libraries for

implementing system dynamic models. But, a system

dynamics model is simply a collection of non

differential equations, and open-source Java libraries for

these do exists, therefore it is possible to implement a

system dynamics model in Java.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

the game board with small plastic counters in the Work To

counters can be thought of as Use Cases or

items in a work breakdown structure; whatever is most

familiar to the players. Depending on the resources

available to do the work, the units of work (the counters)

box to a For Review box,

where the work is reviewed before passing to the

box. Not unexpectedly, some work will

box, before passing

and trying again to get to Completed

completed cycle is

a fundamental project work structure first discussed and

nitial work has been

expanded greatly by subsequent researchers who have

added rich details based on actual projects (see [15] for a

f the field), but the underlying

Of interest here is the Java dashboard and the system

that implements the work-to-do, review,

. The original design of

these two components called for a simple but attractive

graphical user interface on top of the stock-and-flow

plumbing of the system dynamics model; and a means of

capturing the decisions made by the players for later

le there are a number of software packages

that can create a graphical user interface for system

ome problems were

were limited features for creating attractive,

All packages required some sort of proprietary

None provided a means to save the individual

decisions of multiple teams in a single database so

decisions could be later analysed or replayed.

There is a .NET software development kit allows

system dynamics models to be integrated with

designed software, but this limits further

development and deployment to Windows PCs, plus

ase cost and ongoing licensing fees

Java was chosen because it addressed each of the above

problems. Even so, there are currently no Java libraries for

implementing system dynamic models. But, a system

a collection of non-linear

source Java libraries for

these do exists, therefore it is possible to implement a

3.2 Model Design in iThink

Building a system dynamics model

equations is time-consuming and error prone. Therefore,

the model behind Simsoft was first buil

graphical modelling package called iThink

model included almost a hundred stock

associated equations, so the aim here is to focus on a small

part of the model— that of worker burnout

Homer [19].

Burnout begins when a person

case of Simsoft, a software engineer on a development

project) tries to meet unmet exp

longer hours. By working longer hours they are exposed

more of the normal stress of

finite store of “adaptive energy”

quickly and they also have less time to recover. This

depleted energy level may leave the person even less

capable of meeting their expectations,

to make mistakes that have to be fixed at the expense of

real progress. In response, they

which will deplete their energy levels still more. Unless

the person is granted some respite, this

continue until they are leave in frustration or are

burned out and no longer able to contribute to the project.

Fig. 3 shows how burnout can be modelled in iThink.

Fig.3: Worker burnout modelled with iThink

 Here, a person has a stock of energy

that is depleted or recovered depending on the number of

hours they work each week.

each week on energy recovery and depletion are given in

Table 1.

The recovery and depletion rates are nominal values

normalised around a 40-hour week. As the number of

hours worked each week beyond this point increases, the

depletion rate increases; because the person is working

Science and Network Security, VOL.11 No.7, July 2011

3.2 Model Design in iThink

Building a system dynamics model by hand-coding

consuming and error prone. Therefore,

he model behind Simsoft was first built and tested using a

graphical modelling package called iThink [16]. The final

included almost a hundred stocks, flows and their

associated equations, so the aim here is to focus on a small

that of worker burnout as described by

a person working on a project (in the

case of Simsoft, a software engineer on a development

t unmet expectations by working

By working longer hours they are exposed to

he normal stress of work and consequently their

finite store of “adaptive energy” [20, 21] is depleted more

have less time to recover. This

depleted energy level may leave the person even less

capable of meeting their expectations, or may cause them

to make mistakes that have to be fixed at the expense of

real progress. In response, they may try to work harder,

deplete their energy levels still more. Unless

the person is granted some respite, this viscous cycle may

continue until they are leave in frustration or are they

burned out and no longer able to contribute to the project.

shows how burnout can be modelled in iThink.

: Worker burnout modelled with iThink

Here, a person has a stock of energy available to do work

that is depleted or recovered depending on the number of

week. The effect of hours worked

on energy recovery and depletion are given in

The recovery and depletion rates are nominal values

hour week. As the number of

hours worked each week beyond this point increases, the

depletion rate increases; because the person is working

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

longer days, evenings, or even weekends, there is less time

to recover, so the recovery rate slows.

Table 1: Effect of hours worked on energy recovery and depletion

Hours per week Recovery rate

0 1.30

20 1.20

40 1.10

60 0.70

80 0.50

100 0.35

120 0.25

It should be noted that the recovery and depletion rates are

known as soft or qualitative variables because they are

based on precise numerical data; such data does not exist

[19]. However, the compass of a system dynamics model

means that the rules by which it is calibrated and

will be slightly different from other modelling techniques.

For example, the output of a system dynamics model is

meant to be read, not for particular time

but for qualitative behavioural patterns such as growth,

decline, oscillation, stability, and instability

of understanding general dynamic tendencies means that

the model’s parameters are less reliant on

numerical data:

As long as the purpose of your model is not to predict

numerical magnitude of particular soft variables, you can

greatly benefit from including them in your models. Doing

so will cause you to think in a rigorous manner about the

relationships the variables bear to other variables in the

system.[10]

The calibration of soft variables may also seem an

arbitrary process in which the model is ‘made’ to respond

in a certain manner. However, the way in which the soft

(and hard) variables react must be internally consistent,

that is, they must generate behaviour that matches what is

observed in the actual system [10].

With this in mind, when this burnout model is run,

scale graph is produced (Fig. 4).

Viewed over a 13-month period, the person starts out by

working a 40-hour week. Every couple of weeks there is a

spike and they have to work 50-hour weeks for a short

time (this pattern can, of course, be changed

real-world circumstance). The graph shows that the

person’s energy levels rise and fall in line with oscillations

in the work week, but the overall trend is downwards

because the constant spikes in work never allow enough

time for proper recovery.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

longer days, evenings, or even weekends, there is less time

: Effect of hours worked on energy recovery and depletion

Depletion rate

0.30

0.60

1.00

1.50

2.00

2.50

3.00

It should be noted that the recovery and depletion rates are

known as soft or qualitative variables because they are not

; such data does not exist

e compass of a system dynamics model

calibrated and validated

will be slightly different from other modelling techniques.

For example, the output of a system dynamics model is

meant to be read, not for particular time-point predictions,

ral patterns such as growth,

decline, oscillation, stability, and instability [22]. This goal

of understanding general dynamic tendencies means that

the model’s parameters are less reliant on highly precise

As long as the purpose of your model is not to predict the

numerical magnitude of particular soft variables, you can

greatly benefit from including them in your models. Doing

so will cause you to think in a rigorous manner about the

relationships the variables bear to other variables in the

The calibration of soft variables may also seem an

arbitrary process in which the model is ‘made’ to respond

in a certain manner. However, the way in which the soft

les react must be internally consistent,

that is, they must generate behaviour that matches what is

hen this burnout model is run, a multi-

month period, the person starts out by

hour week. Every couple of weeks there is a

hour weeks for a short

time (this pattern can, of course, be changed to model any

world circumstance). The graph shows that the

person’s energy levels rise and fall in line with oscillations

in the work week, but the overall trend is downwards

because the constant spikes in work never allow enough

Fig. 4: Worker burnout over a 13

With this portion of the model defined, it only remained to

implement it in Java.

3.3 Implementation in Java

The model behind Simsoft was

using the open source Apache Commons Mathematics

library [23]. Among its many function

provides a programming interface for solving differential

equations.

To implement the system dynamics model shown in Fig

we need to:

• Create a class, EnergyEquations

FirstOrderDifferentialEquations

• Pass the class to an integrator

different time points.

Mathematics library provides a range of integrator,

but for system dynamics models, the Euler or Runge

Kutta methods are most often used.

The key method in

computeDerivatives— the one that evaluates the stock

equation given at (1).

/**

 * Get the current time derivative of the state vector.

 *

 * @param t current value of the independent time

variable

 * @param y array containing the current value of the

state vector

* @param yDot placeholder array where to put the time

derivative of the state vector

*/

public void computeDerivatives(double t, double[] y,

double[] yDot) throws DerivativeException {

yDot[0] = y[0] * (recoveryRate

}

EnergyEquations is covered by the following unit test:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011 47

: Worker burnout over a 13-month period

With this portion of the model defined, it only remained to

in Java

model behind Simsoft was implemented in Java by

using the open source Apache Commons Mathematics

Among its many functions, this library

provides a programming interface for solving differential

To implement the system dynamics model shown in Fig. 3,

EnergyEquations, that implements the

FirstOrderDifferentialEquations interface..

Pass the class to an integrator to calculate values at

different time points. The Apache Commons

Mathematics library provides a range of integrator,

ut for system dynamics models, the Euler or Runge-

Kutta methods are most often used.

The key method in EnergyEquations is

the one that evaluates the stock

* Get the current time derivative of the state vector.

* @param t current value of the independent time

* @param y array containing the current value of the

* @param yDot placeholder array where to put the time

e state vector

public void computeDerivatives(double t, double[] y,

double[] yDot) throws DerivativeException {

recoveryRate - depletionRate);

red by the following unit test:

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

48

public void testEnergyEquationsDerivatives() throws

Exception {

FirstOrderIntegrator integrator = new

EulerIntegrator(0.25);

FirstOrderDifferentialEquations energy = new

EnergyEquations(0.7, 1.50);

StepHandler stepHandler = new StepHandler() {

 public void handleStep(StepInterpolator interpolator,

boolean isLast) throws DerivativeException {

double t = interpolator.getCurrentTime();

double[] y = interpolator.getInterpolatedState();

System.out.println(t + "\t" + y[0]);

}

 public boolean requiresDenseOutput() {return false;}

};

 integrator.setStepHandler(stepHandler);

 integrator.integrate(energy,

 0.75, // start time

 new double[]{1.0}, // initial stock value

 13, // end time

 new double[1]); // storage

}

First, an Euler integrator is defined with a step size of 0.25.

Then, the EnergyEquations class is constructed and

initialised with recovery and depletion rates of 0.7 and

1.50 respectively, being values from Table 1 that equate to

a 60-hour week. (An inner StepHandler class is created so

we can see the output at each step). Finally, the

EnergyEquations instance is passed to the integrator along

with the initial conditions of the run. The first data items

are shown Table 2.

Table 2: Initial data items from

Time Energy Level Value

1.00 0.80

1.25 0.64

1.50 0.512

1.75 0.4096

2.00 0. 32768

2.25 0. 26214400000000004

…

In essence, the same pattern can be followed for all stocks.

4. Conclusions

System dynamics is concerned with building quantitative

and qualitative models of complex problem situations and

then experimenting with and studying the behaviour of

these models over time. Often such models will

demonstrate how unappreciated causal relationships,

dynamic complexity, and structural delays may lead to

counter-intuitive outcomes of less-informed efforts to

improve the situation. System dynamic models also make

room for soft factors such as burnout so that problem

spaces can ultimately be better understood and managed.

These features made system dynamics an obvious choice

for creating the model behind Simsoft because the game

was trying to demonstrate some of the dynamic

complexities of software development projects. However,

the means for implementing system dynamic models and

integrating them with custom-designed graphical user

interfaces and databases are limited.

By using simple open source tools, such as the Apache

Commons Mathematics library, it is possible to build

system dynamics models that integrate with general

purpose programming languages such as Java, meaning

the models can draw upon all the features of those

languages. For now this integration is largely manual:

create the system dynamics model using tools such as

iThink and then translate this into a matching class

structure in Java. Based on the results presented here,

further research is being conducted into ways of

automating this translation and being able to perform

round-trip translations.

References
[1] J.W. Forrester, Industrial Dynamics, Pegasus

Communications, Waltham, 1961.

[2] J.W. Forrester, Harvard Business Review, 36 (1958) 37 - 66.

[3] J.W. Forrester, Urban Dynamics, Productivity Press,

Portland, 1969.

[4] J.W. Forrester, World Dynamics, Productivity Press,

Portland, 1971.

[5] D.H. Meadows, D.L. Meadows, J. Randers, W.W. Behrens,

The Limits to Growth: A Report for the Club of Rome's

Project on the Predicament of Mankind, Earth Island Ltd,

London, 1972.

[6] P.M. Senge, The Fifth Discipline: The Art & Practice of The

Learning Organization, Revised edition ed., Random House

Business Books, London, 2006.

[7] E.F. Wolstenholme, System Enquiry: A System Dynamics

Approach, John Wiley & Sons, Brisbane, 1990.

[8] B. Stroustrup, The C++ Programming Language, special

edition ed., Addison-Wesley, Boston, 2000.

[9] E. Yourdon, Rise and Resurrection of the American

Programmer, Prentice-Hall, Sydney, 1998.

[10] B. Richmond, Modelling "Soft" Variables, in: An

Introduction to Systems Thinking, High Performance

Systems, Hanover, 1999, pp. 9-1 - 9-10.

[11] J.W. Forrester, System Dynamics Review, 10 (1994) 245 -

256.

[12] P.M. Senge, The Fifth Discipline: The Art & Practice of The

Learning Organization, Random House, Milsons Point,

1990.

[13] A. Ford, Modeling the Environment: An Introduction to

System Dynamics Modeling of Environmental Systems,

Island Press, Washington, 1999.

[14] E.B. Roberts, The Dynamics of Research and Development,

Harper & Row, New York, 1964.

[15] J.M. Lyneis, D.N. Ford, System Dynamics Review, 23

(2007) 157 – 189.

[16] isee Systems (http://www.iseesystems.com/), 2011. iThink

version 9.1.4.

IJCSNS International Journal of Computer Science and Network Security, VOL.11 No.7, July 2011

49

[17] Ventana Systems (http://www.vensim.com/), 2011. Vensim

version 5.

[18] Powersim (http://www.powersim.com/), 2011. Powersim

version 8.

[19] J.B. Homer, System Dynamics Review, 1 (1985) 42 - 62.

[20] H. Selye, Stress Without Distress, Signet Books,

Philadelphia, 1974.

[21] H. Selye, The Stress of Life, 2nd edition ed., McGraw-Hill,

New York, 1978.

[22] D.H. Meadows, J.M. Robinson, The Electronic Oracle:

Computer Models and Social Decisions, John Wiley & Sons,

New York, 1985.

[23] Apache Commons Mathematics Library

(http://commons.apache.org/math/), 2011. Version 2.2.

Craig Caulfield is a senior software

engineer for a technology consulting

company and PhD candidate at Edith

Cowan University. His research areas

include problem-based learning and the

application of serious games to software

engineering education and project

planning.

Dr. David Veal is a Senior Lecturer at

Edith Cowan University. He is the manager

of Cisco Network Academy Program at

Edith Cowan University and be a unit

coordinator of all Cisco network

technology units. His research interests are

in Graphical User Interface for the visually

handicapped and also computer network

modeling.

A/Prof S. P. Maj has been highly

successful in linking applied research with

curriculum development. In 2000 he was

nominated ECU University Research

Leader of the Year award He was awarded

an ECU Vice-Chancellor’s Excellence in

Teaching Award in 2002, and again in

2009. He received a National Carrick

Citation in 2006 for “the development of

world class curriculum and the design and implementation of

associated world-class network teaching laboratories”.

